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Von Neumann Algebras (type I, finite dimension)

Multi-qubit system

States in Hilbert space: [¢) € H = H?n
‘ é * ¢ Inner Product: (1)|¢)

Transformations
‘} Unitary Matrices \

\ Bounded Operators
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T ——
Von Neumann Algebras (type |)

Type 1;: bounded operators or block diagonal subalgebras
on d-dimensional Hilbert space (matrices)

Trace denoted tr(X) = sum of eigenvalues of X

Let 1 denote identity matrix

tr ~ 1 as an element of the dual space
Cyclic property: tr(XY) =tr(Y X)
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T ——
Von Neumann Algebras (type |)

Type 1;: bounded operators or block diagonal subalgebras
on d-dimensional Hilbert space (matrices)

Trace denoted tr(X) = sum of eigenvalues of X

Let 1 denote identity matrix

tr ~ 1 as an element of the dual space
Cyclic property: tr(XY) =tr(Y X)

Type I..: bounded ops on d-dim Hilbert space for d — oo

A

tr(1) = oo, tr is semifinite (not always infinite)
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What happens with infinite qubits?

XXX ;

H=Ho @ Ho X ...

Naively, leads to a troublesomely infinite vector space

Less naively, it leads to higher von Neumann algebra types

See Witten’s 2018 Review Article, Araki-Woods 1968
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e —
Hyperfinite I,

660 b9
‘ * b <‘> <,> nfinkely

Maximally Entangled

Take operators on respective chains as M & M/’, use truncated inner products
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Hyperfinite |

oo o
‘ * é <‘> Q Infinitely

Not Maximally Entangled

Take operators on respective chains as M & M/’, use truncated inner products
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Hyperfinite |

oo (1 o
®o0® (| o

“Tail” state cycles between states

Take operators on respective chains as M & M/’, use truncated inner products
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Many types of infinite-dimensional vN algebras

Type I1;: finite trace, tr(1) =1

Type Il,,: semifinite (not always infinite) trace

Type 11,

Type Iy for A € (0,1) has potential thermal analogies

e

I'ype I11; arises in quantum field theory

—»No (semifinite) trace
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Relative Entropy in General von Neumann Algebras

Let M be a von Neumann algebra with normal, faithful state w

/ p'% is glven by Sp|wX w) = XT|p)
1 /2
S p|w ol /(polar decomposition)
relative Tomita operator ~relative modular operator
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Relative Entropy in General von Neumann Algebras

Let M be a Von Neumann algebra with normal, faithtul state w

p|9 is glven by Sp|wX lw) = XT|p)
/ Splw = p|w |/ /(polar decomposition)
relative Tomita operator ~relative modular operator

Relative Entropy: D(p|lw) = tfr( (Inp — Inw)) (when there is a trace)

— (plIn Ay, [p)

Von Neumann Entropy: H(p) = —D(p||1)
Subsystem Entropy: H(A), = H(p?) for p*8
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I —
Strong Subadditivity

H(AC), + H(BC), — H(ABC), — H(C), > 0

Lieb & Ruskai 1973)
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I —
Strong Subadditivity

H(AC), + H(BC), — H(ABC), — H(C), > 0

Lieb & Ruskai 1973)

Holographic Version from Headrick & Takayanagi, 2007
///—\\\ AUB ///—\\\
RS // \\ ///,__\\/ \\
f \\ / Cr \\
A | C B '_FF
Minimal Surfaces for AC & BC are... ...non-minimal for ABC, C.

High energy use of entropy inequalities motivate recovery maps in type Il
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I —
Strong Subadditivity

H(AC), + H(BC), — H(ABC), — H(C), > 0

Lieb & Ruskai 1973)

< Data Processing: D(p||n) — D(®(p)||®(n)) > 0

for densities p,n, quantum channel (open physical process) ®
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T ——
Recall Data Processing, Recovery

(Lindblad 1975), (Petz 1986 & 1988), (Fawzi & Renner 2015), (Wilde 2015), (Junge et al. 2018), (Carlen & Vershynina 2020)...

Petz Map: Ry, ¢(n) = w'/2®T(®(w)™1/2n®(w)~1/2)w!/?

D(pllw) = D(®(p)[|®(w)) = p = Ru,a o (p)
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T ——
Recall Data Processing, Recovery

(Lindblad 1975), (Petz 1986 & 1988), (Fawzi & Renner 2015), (Wilde 2015), (Junge et al. 2018), (Carlen & Vershynina 2020)...

Petz Map: Ry, ¢(n) = w'/2®T(®(w)™1/2n®(w)~1/2)w!/?
Rotated: R (1) = w "Ry o(P(w)n®(w)~#)w

Fidelity: f1(p,n) = [l/pv/11

D(pllw) = D(®(p)|2(w)) > ~21n ( sup f1(p, Rl © 2(p) )

Generalized to von Neumann algebras in 2020 (Gao & Wilde)
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T ——
Recall Data Processing, Recovery

(Lindblad 1975), (Petz 1986 & 1988), (Fawzi & Renner 2015), (Wilde 2015), (Junge et al. 2018), (Carlen & Vershynina 2020)...

Petz Map: Ry, ¢(n) = w'/2®T(®(w)™1/2n®(w)~1/2)w!/?
Rotated: R (1) = w "Ry o(P(w)n®(w)~#)w

zt/2( )dt
sh(xD)+1)

Universal: R, ¢(n fR 2(co

D(pllw) — D(®(p)|®(w)) > —21n fi(p, Rw.s © ®(p))
Generalized to von Neumann algebras in 2020 (Faulkner, Hollands, Swingle & Wang; Junge & L)
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Trace inequalities often become quantum (noncommutative)
replacements for functional calculus of (classical) info theory.

For vectors &, ¢, element-wise multiplication: exp(Z + ¢) = exp(Z) exp(¥)
For Hermitian matrices X,Y, tr(exp(X +Y)) < tr(exp(X)exp(Y))

(Golden-Thompson inequality)
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Recall || X||, = tr(|X|P)1/P

For Hermitian matrices {X;}7_1,p > 1, Bo(t) = Z( cosh(mt) + 1)_17

epoXk _/dtﬁg lnHHeXp 1+ 1t) Xk)

(Generalized Golden -Thompson inequality from Sutter, Berta, & Tomamichel 2017)

p
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T ——
Recall Data Processing, Recovery

(Lindblad 1975), (Petz 1986 & 1988), (Fawzi & Renner 2015), (Wilde 2015), (Junge et al. 2018), (Carlen & Vershynina 2020)...

Petz Map: Ry, ¢(n) = w'/2®T(®(w)™1/2n®(w)~1/2)w!/?
Rotated: R (1) = w "Ry o(P(w)n®(w)~#)w
zt/2
o (n)dt

sh(wt)—l—l)
Measured relative entropy: Dy (pr) -= SUPmeasurements M D(M(p) ||M(w))

D(pllw) = D(®(p)||®(w)) = Dar(p||Ru,@ o 2(p))
(via the generalized Golden-Thompson inequality of Sutter, Berta & Tomamichel)
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What happens without a (semifinite) trace?
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What happens without a (semifinite) trace?
It will still work.

(but we need more even to make sense of It)
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T ——
(Haagerup, Junge, Xu 2008)
Haagerup LIO Spaces

Given algebra M with normal, faithful state w...

1. Construct the crossed product M x R, of type I1

2. Construct the Haagerup Spaces L, (M) for 0 < p < oo
Then we have...

o [,(M) is a linear subspace, M-bimodule

o L1(M) has a “trace” T'r, densities d,, < n for n € M

e {L,(M)} have Holder conjugates & inequality

e L,(M) supports polar decompositions, || X||z, ) = Tr(|X|P)?
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Kosaki L Spaces
P (Kosaki 1984)

HXHL;’(M),,O,n — Hdg)l_w)/deg/pHLp(M)

form an interpolation family for 1 < p < oo,
where L,(M) is the Haagerup L,, space

for X € M, p,n states € M,, w € [0, 1]
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a — z Reényi relative entropy <+ Kosaki L)) norm

V. o i
Da,z(pHn):ﬁlané/ o Ir=-

“(M,p,n)
See (Audenaert & Datta 2015)
Subsumes sandwiched, Petz-Rényi forms
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S
Intuitive Connection...

Haagerup L) Spaces = Kosaki L, Spaces
For X € L,(M) For X € M
Tr(|X|P) makes sense and states p,n € M,
| X ||z, (am) makes sense d/(ol—’LU)/deg/p e L, (M)
Loo(M) =M M finite — || - || (v,11 = 11+ s

Can yield usual p-norms if original algebra had finite trace
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S
~ (Haagerup, Junge, Xu 2008)
Haagerup Reduction

Given algebra M with normal, faithful state n, construct the crossed product
M x G, where G = U,,27"Z C R. Then...

e 1 a norm-preserving, faithful conditional expectation £ : M x G — M

e There exists an increasing family of subalgebras M, and normal condi-
tional expectation Fj, : M x G — My, such that (no &)F, = (no&);

o limy, || Fi(v) — ¥||(mxa). = 0 for every normal state 1 € (M x G),;

e M, has a finite trace (type 117) for all k.
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Theorems

Let p,n be states on M, p > 1, r € (0,1], n € N, w € [0,1], and consider
a collection {Y;}7_; C M of positive semidefinite, bounded operators. Then
(generalized Araki-Lieb-Thirring, see Sutter, Berta & Tomamichel 2017)

n o0 n
r 142t
n || T 7 <r | amom| ][V, .
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Theorems

Let p,n be states on M, p > 1, r € (0,1], n € N, w € [0,1], and consider
a collection {Y;}7_; C M of positive semidefinite, bounded operators. Then
(generalized Araki-Lieb-Thirring, see Sutter, Berta & Tomamichel 2017)

< r/ dtf,(t) In
L;;”/T(Mapﬂ?) g

Assume d, = exp(Xp) has full support, and consider a collection { X }7_; € M
of bounded, Hermitian operators. Then (generalized Golden-Thompson)

[1v
k=1

n

H Ykl—l—it

k=1

Ly (M,p,n)

X n

In || exp (—0 -+ ZX’“) < / dtBy(t) In H exp((1 + t) X)
P = Ly(M) IR LL(M,p)
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T ——
Theorem: Recovery & p-Fidelity

Let ® : M — N be a normal, completely positive map from von Neumann
algebra M to algebra N. Let p,w be states on M. Then

D(pllw) > D(®(p)||®(w)) — 2p / dtBo(t) In £, (p'/?, RS £9/7(8(p) /7))

for p > 1, Bo(t) = Z(cosh(nt) +1) ", fo(p,w) = |\/Bv@llp. f1 is usual fidelity
up to square. See (Liang et al. 2018) for p-fidelities.

Subsumes recovery from (Junge et al. 2018)

Also yields forms of “nonlinear” recovery for p # 1
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T ——
Recovery Via Trace Inequalities

D(pllw) — D(2(p)[|@(w)) = D (pl| Ruvw © 2(p))

iIn general von Neumann algebras

* In principle, follows from generalized Golden-Thompson
* |n practice, many subtle continuity issues
« Easier: Golden-Thompson in type |lI, + Haagerup reduction
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S
Theorem

Let IA>0: p<dw, & &: Ly (M) — Li(N). The following are equivalent
L. D(®(p)|[®(w)) = D(pl|lw);

2. There exists a w-conditioned subalgebra My C M and a completely pos-
itive Lq-isometry u such that
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.
Conclusions

Multivariate trace inequalities extend to Kosaki or Haagerup
norm inequalities

D(pllw) > D(®(p)[|®(w)) + max{ —2p /R dtBo(t) In f,(p*/?, RS &P (@(p)'/P)), Das (|| v, © <I><p>>}

in general von Neumann algebras

D(p||w) = D(®(p)||®(w)) <= Li-isometry
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