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Background

One of the key tasks in the development of quantum technologies is the certification of quantum devices. This
ensures that the devices are performing according to their specification. One of the ways such certification
may be carried out is by using self-testing methods which enable us to infer the quantum-mechanical
description of a device merely from classical observations (measurement statistics). We can then treat
these devices as black boxes as we need not trust the inner workings of the system, a scenario which
one refers to as device-independence. Beginning with [MY04], in which the term was first coined, self-
testing has found many applications, such as device-independent quantum cryptography [MY98, MY04],
delegated quantum computation [CGJV19], entanglement detection [BvCA18a, BvCA18b], investigating
the structure of the quantum correlation set [CS17, GKW+18], and novel advances in quantum complexity
theory [FJVY19, NV18, NW19]. Self-testing is also one of the ingredients behind the recent breakthrough
result establishing that MIP∗ = RE [JNV+20]; which further implies a negative answer to the celebrated
Connes’ embedding problem [Con76] from the theory of von Neumann algebras.

A general scenario of self-testing is the following. Suppose that spatially separated agents, Alice and
Bob, share a quantum state ψ and each one of them has a quantum measurement device. The device has n
measurement settings with k outcomes each. Alice and Bob randomly pick settings v and w, respectively.
Alice gets an outcome i, and similarly, Bob gets an outcome j after performing their measurements.
Performing such measurements many times and with all the settings, they can estimate p(i, j |v,w) which
is the conditional probability that they get outcomes i and j upon performing measurement v and w,
respectively. For certain correlations p(i, j |v,w), it is possible to essentially identify what the shared state
ψ and the measurements must have been. We then say that the correlation p(i, j |v,w) self-tests the state ψ
and the corresponding measurements. In practice, Alice and Bob can never learn the correlation p(i, j |v,w)
exactly. In addition, any real-world devices are bound to have some imperfections. Therefore, we are
interested in robust self-testing which guarantees that the only way to produce correlation close to p(i, j |v,w)
is by sharing a state close to ψ and performing measurements that are close to the reference ones.

Often times self-testing results are proven using ad-hoc techniques, which means that to obtain new
results one essentially has to start from scratch. One notable exception is an approach that uses perturbative
representation theory of groups to establish robust self-testing [Vid18, CS17, CMMN20]. The basic idea
is that in the ideal case one deduces algebraic relations which the measurement operators must satisfy
on the quantum state. One then associates a suitable finite group such that one gets a representation of
the group. This transfers to the well-studied field of the representation theory of finite groups and the
problem reduces to identifying suitable irreducible representations of the group. In the robust case, one
gets approximate versions of the algebraic relations which yield “approximate” representations of the group
(with respect to state-dependent distance). A key tool used in the approximate case is the Gowers–Hatami
theorem [GK17, Gow17, Vid18] which relates an “approximate” representation of a group to a representation
of that group in some suitable sense. A caveat to this approach is that, in general, it is far from clear what
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group should be associated to the algebraic relations identified and if this is at all possible. In fact, it would
be more natural to associate an algebra rather than a group to these algebraic relations. Moreover, there
are known families of non-local games whose optimal strategies do not have an apparent underlying group
yet an underlying algebra can easily be identified (for example, consider binary constraint system games
[CM14] beyond linear ones, synchronous games [PSS+16, HMPS19], graph homomorphism [MR16] and
isomorphism games [AMR+19]).

One of our main contributions is that we showcase how the above general method for self-testing from
this group-theoretic framework can be lifted to an algebraic-theoretic framework. Instead of seeking an
appropriate group to associate with the algebraic relations, we simply work with the algebra generated by
those relations. To accomplish this, a major step is to obtain some sort of analogue of Gowers–Hatami
theorem for algebras. We showcase how this can be done for a particular algebra but the approach can
be easily generalized. However, our analogue has a non-constructive (ε ,δ)-dependence which is the most
pressing question raised by the current work.

Results

In this work, we prove that certain quantum strategies constructed from projections which sum up to some
particular scalar times identity can be robustly self-tested from the quantum correlations that they induce.
Specifically, we begin with d × d projections P̃1, . . . , P̃n (n ≥ 3) such that P̃1 + · · · + P̃n = xId = (b/d)Id
(where gcd(b, d) = 1) for some specific scalar x ∈ R. The scalar x and the projections P̃1, . . . , P̃n have the
property that whenever P1, . . . , Pn are any other projections such that P1+ · · ·+Pn = xI, then Pi = I ⊗ P̃i for
all 1 ≤ i ≤ n in some basis. In other words, P̃1, . . . , P̃n constitute an irreducible set up to unitary equivalence.
For example,

Example 1. Take any n ≥ 3 and consider n unit vectors ξ1, . . . , ξn in Rn−1 which form the vertices of a
regular n-simplex centered at the origin. Then their corresponding projections P̃i = ξiξ

∗
i form an irreducible

representation of the relation P1 + · · · + Pn =
n

n−1 I [KRS02].

It turns out that for each n ≥ 3 there is a countable set Λn of rationals x for which there exists a unique,
up to unitary equivalence and taking direct sums, set of n finite-dimensional projections whose sum is xI.
In particular, Λ3 = {

3
2 } while for n ≥ 4 we have Λn = {xk}∞k=0 where x0 = 0, and xk = 1 + 1

n−1−xk−1
for all

k ≥ 1. The description of admissible scalars x, construction of projections summing up to scalar x , and
their representation theory is given in [KRS02].

For n ≥ 3 and x ∈ Λn, and P̃1, . . . , P̃n as above, we define a quantum strategy

S̃n,x = (ϕd ∈ C
d ⊗ Cd, {P̃v, Id − P̃v}

n
v=1, {P̃

T
w, Id − P̃T

w}
n
w=1),

where ϕd = 1√
d

∑
i ei ⊗ ei is the maximally entangled state. Let p̃n,x denote the quantum correlation induced

by S̃n,x .
Our main result states that if we have a a quantum strategy S which induces a quantum correlation p

close to the ideal correlation p̃n,x , then the strategy S must be close to the ideal quantum strategy S̃n,x , in
the sense made precise as follows.

Theorem. Let n ≥ 3, x ∈ Λn and let P̃1, . . . , P̃n be projections as above. For any ε ≥ 0, there exists a δ ≥ 0
such that the following holds. Let p be a quantum correlation induced from an arbitrary quantum strategy

S = (ψ ∈ CdA ⊗ CdB,
{
Ev, IdA − Ev

}n
v=1,

{
Fw, IdB − Fw

}n
w=1),

such that ‖ p̃n,x − p‖ ≤ δ. Then S is approximately related to S̃n,x via a local isometry, that is, there
exist isometries VA : CdA → Cd ⊗ CrA and VB : CdB → Cd ⊗ CrB for some rA, rB ∈ N and a quantum state
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ψjunk ∈ C
rA ⊗ CrB such that for all 1 ≤ v,w ≤ n,

(VA ⊗ VB)(Ev ⊗ Fw)ψ ≈ε (P̃v ⊗ P̃T
w)ϕd ⊗ ψjunk,

(VA ⊗ VB)ψ ≈ε ϕd ⊗ ψjunk.

For the proof, we show that Alice’s measurements form an “approximate” representation of the relation
p1 + · · · + pn = xI, that is, the measurements are approximately projective ‖Ev − E2

v ‖ρA ≈ 0, and ‖(E1 +

· · · + En) − xIdA ‖ρA ≈ 0. (Here ‖.‖ρA is the state-dependent norm defined by ‖X ‖2ρA := Tr(X∗XρA) where
ρA := TrB(ψψ∗).) The key ingredient which relates an “approximate” representation to an exact one via an
isometry is the following analogue of Gowers–Hatami. The proof exploits the simple representation theory
of the algebra generated by projections {P̃v}

n
v=1.

Theorem. (Informal) Suppose positive semi-definite matrices E1, . . . , En ∈ MdA are “approximate” projec-
tions and form an “approximate” representation (with respect to ρA) of the relation p1+ · · ·+ pn = xI. Then,
there exists an isometryV : CdA → Cd⊗CrA such that for all 1 ≤ v ≤ n, we have ‖Ev−V∗(P̃v ⊗ Is)V ‖ρA ≈ 0.

Before we discuss the implications of our main theorem, let us take a look at the following special case:

Example 2. Let n = 4. For any k ∈ N, there exists four rank k projections P̃k,1, P̃k,2, P̃k,3, P̃k,4 inM2k+1 such
that P̃k,1 + P̃k,2 + P̃k,3 + P̃k,4 =

4k
2k+1 I2k+1 [KRS02]. By our main theorem, we can robustly self-test each of

the strategies

S̃k = (ϕ2k+1, {P̃k,v, I2k+1 − P̃k,v}
4
v=1, {P̃

T
k,w, I2k+1 − P̃T

k,w}
4
w=1),

from the correlations p̃4,k that each strategy induces.

In comparison tomeasurements, self-testing of quantum states is relativelywell understood. For example,
we know that any (pure) bipartite entangled state in Cd ⊗ Cd can be self-tested from a correlation with 3
inputs and d outputs [CGS17]. For applications, it would be efficient to have small-sized correlations that
robustly self-test states with large dimensions. The only family of constant-size self-tests for states (or
measurements) of arbitrarily large dimension has been reported just last year in [Fu19]. They show that
for each d ∈ D , where D is an infinite subset of the primes, the maximally entangled state ϕ4(d−1) can be
robustly self-tested from correlations with roughly 100 questions per party. Example 2 yields the following
corollary which complements the result in [Fu19], but with correlations of significantly smaller size:

Corollary 3. For each odd dimension d ≥ 3, the maximally entangled state ϕd can be robustly self-tested
by quantum correlations with four inputs and two outputs.

Furthermore, we also robustly self-test the measurements in Example 2. To the best of our knowledge,
this is the first example of self-testing of measurements with rank higher than one. In addition, this is the first
example, where measurements of arbitrarily large dimension are self-tested from constant-size correlations.

Corollary 4. Given any natural number k there exist four projections of rank k which can be robustly
self-tested by quantum correlations with four inputs and two outputs.

Most of the known self-tests for infinite families ofmeasurements are for tensor-products of Pauli matrices
(for example, [NV17, Col17]) or Clifford unitaries [CGJV19]. There are a few results which are different
from these, for instance, [SSKA19]. Our main theorem yields another example of an infinite family of
measurements that goes beyond a tensor-product of Paulis or Clifford unitaries.
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