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Introduction

Self-testing: Techniques in QIT to infer the quantum-mechanical description of a
device from classical observations

Applications: device-independent quantum cryptography, entanglement detection,
investigating the structure of the quantum correlation set, quantum complexity
theory

Has been used in the recent breakthrough: MIP∗ = RE [JNV+20]. Implication:
Negative resolution of the Connes’ embedding problem – open since 70s
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General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has
a quantum device.

Quantum device: n measurement settings {1, . . . , n}, each setting has k outcomes
{1, . . . , k}.

p(i , j |v ,w) - joint conditional probability that Alice gets outcome i and Bob gets j ,
provided that they performed measurements v and w , respectively.

In certain cases, self-testing allows one to infer what the quantum state and quantum
measurements must have been from the statistics p(i , j |v ,w).
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Quantum strategy and quantum correlation

A quantum strategy is given by a triple

S =
(
ψ ∈ CdA ⊗ CdB , {Ev,i : 1 ≤ v ≤ n, 1 ≤ i ≤ k} , {Fw,j : 1 ≤ w ≤ n, 1 ≤ j ≤ k}

)
,

where

ψ is a unit vector (called a quantum state),

Ev,i ≥ 0 and
∑

i Ev,i = IdA for each v ,

Fw,j ≥ 0 and
∑

j Fw,j = IdB for each w .

The induced quantum correlation is given by

p(i , j |v ,w) = 〈(Ev,i ⊗ Fw,j)ψ,ψ〉 .
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An example: CHSH game

CHSH game: 2-input, 2-output non-local game

Quantum value ωq(CHSH) = 1
2
(1 + 1√

2
) ≈ 0.85 (Maximum winning probability using

quantum strategies).

Using the (canonical) strategy:

(ϕ2 ∈ C2 ⊗ C2, {Ã0 = Z , Ã1 = X}, {B̃0 =
Z + X√

2
, B̃1 =

Z − X√
2
}).

In general, if S = (ψ ∈ Cd ⊗ Cd , {A0,A1}, {B0,B1}) is any other strategy which
achieves the quantum value then there exist isometries VA : Cd → C2 ⊗KA and
VB : Cd → C2 ⊗KB and some junk state ψjunk ∈ KA ⊗KB such that

(VA ⊗ VB)(Ai ⊗ Bj)ψ = (Ãi ⊗ B̃j)ϕ2 ⊗ ψjunk .

This is an example of “self-testing”. Robust self-testing: when ωq(S ) ≈ε ωq(CHSH),
then

(VA ⊗ VB)(Ai ⊗ Bj)ψ ≈f (ε) (Ãi ⊗ B̃j)ϕ2 ⊗ ψjunk .
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This is an example of “self-testing”. Robust self-testing: when ωq(S ) ≈ε ωq(CHSH),
then

(VA ⊗ VB)(Ai ⊗ Bj)ψ ≈f (ε) (Ãi ⊗ B̃j)ϕ2 ⊗ ψjunk .
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An example: CHSH game

Proof technique:

1 Associate a group (the dihedral group of order 8) with the CHSH game.

2 Show that perfect strategies lead to a representation of the group; and
approximately perfect strategies lead to “approximate” representations of the group.

3 Use Gowers-Hatami Theorem to find the isometry relating the approximate
representation to the canonical one.
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Projections summing up to scalar times the identity

We consider d × d projections P̃1, . . . , P̃n (n ≥ 3) with

P̃1 + · · ·+ P̃n = xId =
b

d
Id ,

where gcd(b, d) = 1.

The scalar x and the projections P̃1, . . . , P̃n have the property that whenever P1, . . . ,Pn

are any other projections such that P1 + · · ·+ Pn = xI , then Pi = I ⊗ P̃i for all 1 ≤ i ≤ n
in some basis. Λn - the set of such scalars x .

Example

Take any n ≥ 3 and consider n unit vectors ξ1, . . . , ξn in Rn−1 which form the vertices of
a regular n-simplex centered at the origin. Then their corresponding projections P̃i = ξiξ

∗
i

form an irreducible representation of the relation P1 + · · ·+ Pn = n
n−1

I .

More in the paper [KRS02].
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Quantum strategy from projections summing up to scalar times the identity

For n ≥ 3 and x ∈ Λn, and P̃1, . . . , P̃n as above, we define a quantum strategy

S̃n,x = (ϕd ∈ Cd ⊗ Cd , {P̃v , Id − P̃v}nv=1, {P̃T
w , Id − P̃T

w }nw=1),

where ϕd = 1√
d

∑
i ei ⊗ ei is the maximally entangled state.

Let p̃n,x denote the quantum correlation induced by S̃n,x .
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Main result

If we have a a quantum strategy S which induces a quantum correlation p close to the
ideal correlation p̃n,x , then the strategy S must be close to the ideal quantum strategy

S̃n,x .

Theorem

Let n ≥ 3, x ∈ Λn and let P̃1, . . . , P̃n be projections as above. For any ε ≥ 0, there exists
a δ ≥ 0 such that the following holds. Let p be a quantum correlation induced from an
arbitrary quantum strategy

S = (ψ ∈ CdA ⊗ CdB , {Ev , IdA − Ev}nv=1 , {Fw , IdB − Fw}nw=1),

such that ‖p̃n,x − p‖ ≤ δ. Then S is approximately related to S̃n,x via a local isometry,
that is, there exist isometries VA : CdA → Cd ⊗ CrA and VB : CdB → Cd ⊗ CrB for some
rA, rB ∈ N and a quantum state ψjunk ∈ CrA ⊗ CrB such that for all 1 ≤ v ,w ≤ n,

(VA ⊗ VB)(Ev ⊗ Fw )ψ ≈ε (P̃v ⊗ P̃T
w )ϕd ⊗ ψjunk,

(VA ⊗ VB)ψ ≈ε ϕd ⊗ ψjunk.
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Proof outline

Associate a C∗-algebra with the relation p1 + · · ·+ pn = x1.

Show that “approximate” strategies lead to “approximate” representations of the
C∗-algebra

Use the following analogue of Gowers-Hatami Theorem:

Theorem

(Informal) Suppose positive semi-definite matrices E1, . . . ,En ∈ MdA are “approximate”
projections and form an “approximate” representation (with respect to ρA) of the relation
p1 + · · ·+ pn = xI . Then, there exists an isometry V : CdA → Cd ⊗ CrA such that for all

1 ≤ v ≤ n, we have
∥∥∥Ev − V ∗(P̃v ⊗ Is)V

∥∥∥
ρA

≈ 0.
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Corollaries

Example (n = 4)

For any k ∈ N, there exists four rank k projections P̃k,1, P̃k,2, P̃k,3, P̃k,4 in M2k+1 such

that P̃k,1 + P̃k,2 + P̃k,3 + P̃k,4 = 4k
2k+1

I2k+1. We can robustly self-test each of the strategies

S̃k = (ϕ2k+1, {P̃k,v , I2k+1 − P̃k,v}4v=1, {P̃T
k,w , I2k+1 − P̃T

k,w}4w=1),

from the correlations p̃4,k that each strategy induces.
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Corollaries (cotd.)

Self-testing of quantum states is relatively well understood:

1 Any (pure) bipartite entangled state in Cd ⊗Cd can be self-tested from a correlation
with 3 inputs and d outputs [CGS17].

2 For each d ∈ D , where D is an infinite subset of the primes, the maximally
entangled state ϕ4(d−1) can be robustly self-tested from correlations with roughly
100 inputs per party [Fu19].

Corollary

For each odd dimension d ≥ 3, the maximally entangled state ϕd can be robustly
self-tested by quantum correlations with four inputs and two outputs.

Corollary

Given any natural number k there exist four projections of rank k which can be robustly
self-tested by quantum correlations with four inputs and two outputs.
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