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Introduction

o Self-testing: Techniques in QIT to infer the quantum-mechanical description of a
device from classical observations

o Applications: device-independent quantum cryptography, entanglement detection,

investigating the structure of the quantum correlation set, quantum complexity
theory

@ Has been used in the recent breakthrough: MIP* = RE [JNV*20]. Implication:
Negative resolution of the Connes’ embedding problem — open since 70s
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General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has
a quantum device.
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General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has
a quantum device.

Quantum device: n measurement settings {1,...,n}, each setting has k outcomes

1,... k).

v A“CG I

—— Bob ——

p(i,jlv, w) - joint conditional probability that Alice gets outcome i and Bob gets j,
provided that they performed measurements v and w, respectively.
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General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has
a quantum device.

Quantum device: n measurement settings {1,...,n}, each setting has k outcomes

1,... k).

“— Alice ——

“— Bob ——

p(i,jlv, w) - joint conditional probability that Alice gets outcome i and Bob gets j,
provided that they performed measurements v and w, respectively.

In certain cases, self-testing allows one to infer what the quantum state and quantum
measurements must have been from the statistics p(i,j|v, w).
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Quantum strategy and quantum correlation

A quantum strategy is given by a triple
7= (weCdA®<c°’B,{Ev,,-:1§vgn,1gigk},{FW,j:1gwgn,1 gjgk}),

where
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Quantum strategy and quantum correlation

A quantum strategy is given by a triple
7= (weCdA®<c°’B,{Ev,,-:1§vgn,1gigk},{FW,j:1gwgn,1 gjgk}),

where
@ 1) is a unit vector (called a quantum state),
e £, >0and Y, E, ;= ly, for each v,
® Fuj>0and 37 Fu,; = lg, for each w.

The induced quantum correlation is given by

p(l',_j"V7 W) = <(EV»f ® FW»])¢7¢> .
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An example: CHSH game

CHSH game: 2-input, 2-output non-local game
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CHSH game: 2-input, 2-output non-local game

Quantum value wq(CHSH) = 3(1 + J5) ~ 0.85 (Maximum winning probability using
quantum strategies).

Using the (canonical) strategy:

(p2 € CP @ C* {A)=Z,A1 = X},{Bo =
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An example: CHSH game

CHSH game: 2-input, 2-output non-local game

Quantum value wq(CHSH) = 3(1 + J5) ~ 0.85 (Maximum winning probability using

quantum strategies).

Using the (canonical) strategy:

Z+X 5 Z-X
BV I e

In general, if & = (v € C? @ CY, {Ao, A1}, {Bo, B1}) is any other strategy which
achieves the quantum value then there exist isometries V4 : C?! 5 C?®Ka and
Vs : C¢ — C? ® K and some junk state Yjunk € Ka ® Kp such that

(p2 € CP @ C* {A)=Z,A1 = X},{Bo =

(Va® VB)(Ai ® B)v = (/Z, ® Ej)goz ® Vjunk-

This is an example of “self-testing”.
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An example: CHSH game

CHSH game: 2-input, 2-output non-local game

Quantum value wq(CHSH) = 3(1 + J5) ~ 0.85 (Maximum winning probability using

quantum strategies).

Using the (canonical) strategy:

Z+X 5 Z-X
BV I e

In general, if & = (v € C? @ CY, {Ao, A1}, {Bo, B1}) is any other strategy which
achieves the quantum value then there exist isometries V4 : C?! 5 C?®Ka and
Vs : C¢ — C? ® K and some junk state Yjunk € Ka ® Kp such that

(p2 € CP @ C* {A)=Z,A1 = X},{Bo =

(Va® VB)(Ai ® B)v = (/Z, ® Ej)goz ® Vjunk-

This is an example of “self-testing”. Robust self-testing: when wq(.¥) ~. wq( CHSH),
then

(Va ® VB)(Ai @ B)Y ~¢(e) (Ai @ Bj)p2 @ Wjunk.
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An example: CHSH game

Proof technique:

@ Associate a group (the dihedral group of order 8) with the CHSH game.
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An example: CHSH game

Proof technique:
@ Associate a group (the dihedral group of order 8) with the CHSH game.

@ Show that perfect strategies lead to a representation of the group; and
approximately perfect strategies lead to “approximate” representations of the group.
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An example: CHSH game

Proof technique:

@ Associate a group (the dihedral group of order 8) with the CHSH game.

@ Show that perfect strategies lead to a representation of the group; and
approximately perfect strategies lead to “approximate” representations of the group.

© Use Gowers-Hatami Theorem to find the isometry relating the approximate
representation to the canonical one.

18/32



Projections summing up to scalar times the identity

We consider d x d projections 51, R P, (n > 3) with

:‘31+---+/3n:X/d=§/d,

where ged(b, d) = 1.
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Projections summing up to scalar times the identity

We consider d x d projections 51, R P, (n > 3) with

Pig- ot Po=xly= S/d,
where ged(b, d) = 1.
The scalar x and the projections I31, . P, have the property that whenever Py, ..., P,

are any other projections such that P14+ ---4+ P, = xl, then P, =1 ®@ P; forall 1 <i<n
in some basis. A, - the set of such scalars x.
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Projections summing up to scalar times the identity

We consider d x d projections 51, R P, (n > 3) with

Pig- ot Po=xly= S/d7
where ged(b, d) = 1.
The scalar x and the projections I31, . P, have the property that whenever Py, ..., P,

are any other projections such that P14+ ---4+ P, = xl, then P, =1 ®@ P; forall 1 <i<n
in some basis. A, - the set of such scalars x.

Example

Take any n > 3 and consider n unit vectors &, . .., &, in R"~! which form the vertices of
a regular n-simplex centered at the origin. Then their corresponding projections P; = &£/
form an irreducible representation of the relation Py + .-+ P, = 2= /.

More in the paper [KRS02].
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Quantum strategy from projections summing up to scalar times the identity

For n >3 and x € A, and 51, ey 5,, as above, we define a quantum strategy
'?ILX = (‘Pd € (cd ®Cd7{ﬁ\/7 /d - ﬁv},\;:h {ﬁvzv ld - ﬁv?/’}’v’v:l%
where pq = % > € ® e is the maximally entangled state.

Let pn,x denote the quantum correlation induced by .7 x.
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Main result

If we have a a quantum strategy .¥ which induces a quantum correlation p close to the
ideal correlation pnx, then the strategy .¥ must be close to the ideal quantum strategy

T nx-

B
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Main result

If we have a a quantum strategy .¥ which induces a quantum correlation p close to the
ideal correlation p, «, then the strategy . must be close to the ideal quantum strategy

T

Theorem

Let n > 3,x € A\, and let ﬁl, el P, be projections as above. For any € > 0, there exists
a § > 0 such that the following holds. Let p be a quantum correlation induced from an
arbitrary quantum strategy

S = (d) € c ® (Cd87 {E‘/v IdA - EV}’\::I ) {FW7 IdB - FW}:/:I)’

such that ||pnx — p|| < 6. Then .7 is approximately related to :57; x Via a local isometry,
that is, there exist isometries Va: C% — C? ® C™ and Vg: C% — C? ® C™ for some
ra, re € N and a quantum state junx € C"* ® C'® such that for all1 < v,w < n,

(Va® VB)(E, ® Fu)t ~. (ﬁv ® ﬁv‘\’/—)@d ® Yjunk,
(VA ® VB)d) e Pd ® ’d)junk«
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Proof outline

@ Associate a C*-algebra with the relation p; + - - - + p, = x1.

@ Show that “approximate” strategies lead to “approximate” representations of the
C*-algebra

@ Use the following analogue of Gowers-Hatami Theorem:

(Informal) Suppose positive semi-definite matrices Ei, ..., E, € M4, are “approximate”
projections and form an “approximate” representation (with respect to pa) of the relation
p1+ -+ pn = xI. Then, there exists an isometry V: C% — C? ® C™ such that for all

E, - V*(P, ® IS)VHPA ~ 0.

1<v<n, Wehave‘
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Corollaries

Example (n = 4)

For any k € N, there exists four rank k projections Pk 1, Pk 2, Pk 3 Pk 4 in Miaky1 such
that Pk 1+ Py 2+ Py 3+ Pk 4= 2k+1 bi+1. We can robustly self-test each of the strategies

S = (2641, {'Ek,w bky1 — ﬁk,v}‘lv:l» {’SkT,w, hky1 — ﬁ[,w}ﬁml),

from the correlations ps « that each strategy induces.
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Corollaries (cotd.)

Self-testing of quantum states is relatively well understood:
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@ Any (pure) bipartite entangled state in C¢ ® C can be self-tested from a correlation
with 3 inputs and d outputs [CGS17].
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Corollaries (cotd.)

Self-testing of quantum states is relatively well understood:
@ Any (pure) bipartite entangled state in C¢ ® C can be self-tested from a correlation
with 3 inputs and d outputs [CGS17].

@ For each d € 2, where Z is an infinite subset of the primes, the maximally
entangled state ¢4y—1) can be robustly self-tested from correlations with roughly
100 inputs per party [Ful9].

Corollary

For each odd dimension d > 3, the maximally entangled state pq4 can be robustly
self-tested by quantum correlations with four inputs and two outputs.

30/32



Corollaries (cotd.)

Self-testing of quantum states is relatively well understood:

@ Any (pure) bipartite entangled state in C¢ ® C can be self-tested from a correlation
with 3 inputs and d outputs [CGS17].
@ For each d € 2, where Z is an infinite subset of the primes, the maximally

entangled state ¢4y—1) can be robustly self-tested from correlations with roughly
100 inputs per party [Ful9].

Corollary

For each odd dimension d > 3, the maximally entangled state pq4 can be robustly

self-tested by quantum correlations with four inputs and two outputs. )

Corollary

Given any natural number k there exist four projections of rank k which can be robustly
self-tested by quantum correlations with four inputs and two outputs.
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