

Constant-sized robust self-tests for states and measurements of unbounded dimension

Jitendra Prakash
University of Copenhagen

(Jointly with Laura Mančinska and Christopher Schafhauser)

February 1, 2021

- **Self-testing:** Techniques in QIT to infer the quantum-mechanical description of a device from classical observations

- **Self-testing:** Techniques in QIT to infer the quantum-mechanical description of a device from classical observations
- **Applications:** device-independent quantum cryptography, entanglement detection, investigating the structure of the quantum correlation set, quantum complexity theory

- **Self-testing:** Techniques in QIT to infer the quantum-mechanical description of a device from classical observations
- **Applications:** device-independent quantum cryptography, entanglement detection, investigating the structure of the quantum correlation set, quantum complexity theory
- Has been used in the recent breakthrough: $\text{MIP}^* = \text{RE}$ [JNV⁺20]. Implication: Negative resolution of the Connes' embedding problem – open since 70s

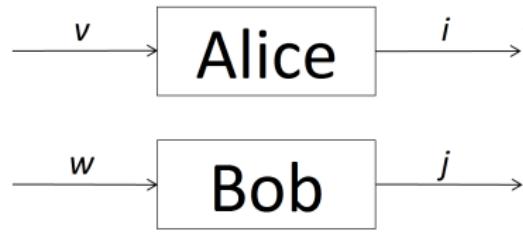
General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has a quantum device.

General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has a quantum device.

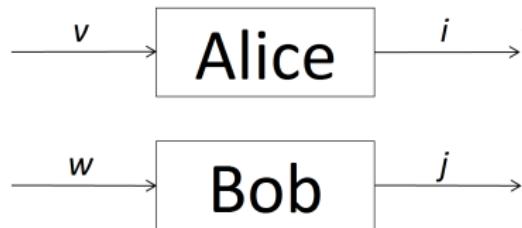
Quantum device: n measurement settings $\{1, \dots, n\}$, each setting has k outcomes $\{1, \dots, k\}$.



General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has a quantum device.

Quantum device: n measurement settings $\{1, \dots, n\}$, each setting has k outcomes $\{1, \dots, k\}$.

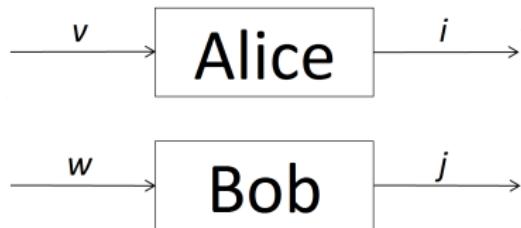


$p(i, j|v, w)$ - joint conditional probability that Alice gets outcome i and Bob gets j , provided that they performed measurements v and w , respectively.

General scenario

Suppose Alice and Bob (spatially separated) share a quantum state and each of them has a quantum device.

Quantum device: n measurement settings $\{1, \dots, n\}$, each setting has k outcomes $\{1, \dots, k\}$.



$p(i, j | v, w)$ - joint conditional probability that Alice gets outcome i and Bob gets j , provided that they performed measurements v and w , respectively.

In certain cases, self-testing allows one to infer what the quantum state and quantum measurements must have been from the statistics $p(i, j | v, w)$.

A quantum strategy is given by a triple

$$\mathcal{S} = \left(\psi \in \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}, \{E_{v,i} : 1 \leq v \leq n, 1 \leq i \leq k\}, \{F_{w,j} : 1 \leq w \leq n, 1 \leq j \leq k\} \right),$$

where

A quantum strategy is given by a triple

$$\mathcal{S} = \left(\psi \in \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}, \{E_{v,i} : 1 \leq v \leq n, 1 \leq i \leq k\}, \{F_{w,j} : 1 \leq w \leq n, 1 \leq j \leq k\} \right),$$

where

- ψ is a unit vector (called a quantum state),
- $E_{v,i} \geq 0$ and $\sum_i E_{v,i} = I_{d_A}$ for each v ,
- $F_{w,j} \geq 0$ and $\sum_j F_{w,j} = I_{d_B}$ for each w .

A quantum strategy is given by a triple

$$\mathcal{S} = \left(\psi \in \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}, \{E_{v,i} : 1 \leq v \leq n, 1 \leq i \leq k\}, \{F_{w,j} : 1 \leq w \leq n, 1 \leq j \leq k\} \right),$$

where

- ψ is a unit vector (called a quantum state),
- $E_{v,i} \geq 0$ and $\sum_i E_{v,i} = I_{d_A}$ for each v ,
- $F_{w,j} \geq 0$ and $\sum_j F_{w,j} = I_{d_B}$ for each w .

The induced **quantum correlation** is given by

$$p(i,j|v,w) = \langle (E_{v,i} \otimes F_{w,j})\psi, \psi \rangle.$$

An example: CHSH game

CHSH game: 2-input, 2-output non-local game

An example: CHSH game

CHSH game: 2-input, 2-output non-local game

Quantum value $\omega_q(CHSH) = \frac{1}{2}(1 + \frac{1}{\sqrt{2}}) \approx 0.85$ (Maximum winning probability using quantum strategies).

Using the (canonical) strategy:

$$(\varphi_2 \in \mathbb{C}^2 \otimes \mathbb{C}^2, \{\tilde{A}_0 = Z, \tilde{A}_1 = X\}, \{\tilde{B}_0 = \frac{Z+X}{\sqrt{2}}, \tilde{B}_1 = \frac{Z-X}{\sqrt{2}}\}).$$

An example: CHSH game

CHSH game: 2-input, 2-output non-local game

Quantum value $\omega_q(CHSH) = \frac{1}{2}(1 + \frac{1}{\sqrt{2}}) \approx 0.85$ (Maximum winning probability using quantum strategies).

Using the (canonical) strategy:

$$(\varphi_2 \in \mathbb{C}^2 \otimes \mathbb{C}^2, \{\tilde{A}_0 = Z, \tilde{A}_1 = X\}, \{\tilde{B}_0 = \frac{Z+X}{\sqrt{2}}, \tilde{B}_1 = \frac{Z-X}{\sqrt{2}}\}).$$

In general, if $\mathcal{S} = (\psi \in \mathbb{C}^d \otimes \mathbb{C}^d, \{A_0, A_1\}, \{B_0, B_1\})$ is any other strategy which achieves the quantum value then there exist isometries $V_A : \mathbb{C}^d \rightarrow \mathbb{C}^2 \otimes \mathcal{K}_A$ and $V_B : \mathbb{C}^d \rightarrow \mathbb{C}^2 \otimes \mathcal{K}_B$ and some junk state $\psi_{junk} \in \mathcal{K}_A \otimes \mathcal{K}_B$ such that

$$(V_A \otimes V_B)(A_i \otimes B_j)\psi = (\tilde{A}_i \otimes \tilde{B}_j)\varphi_2 \otimes \psi_{junk}.$$

This is an example of “self-testing”.

An example: CHSH game

CHSH game: 2-input, 2-output non-local game

Quantum value $\omega_q(CHSH) = \frac{1}{2}(1 + \frac{1}{\sqrt{2}}) \approx 0.85$ (Maximum winning probability using quantum strategies).

Using the (canonical) strategy:

$$(\varphi_2 \in \mathbb{C}^2 \otimes \mathbb{C}^2, \{\tilde{A}_0 = Z, \tilde{A}_1 = X\}, \{\tilde{B}_0 = \frac{Z+X}{\sqrt{2}}, \tilde{B}_1 = \frac{Z-X}{\sqrt{2}}\}).$$

In general, if $\mathcal{S} = (\psi \in \mathbb{C}^d \otimes \mathbb{C}^d, \{A_0, A_1\}, \{B_0, B_1\})$ is any other strategy which achieves the quantum value then there exist isometries $V_A : \mathbb{C}^d \rightarrow \mathbb{C}^2 \otimes \mathcal{K}_A$ and $V_B : \mathbb{C}^d \rightarrow \mathbb{C}^2 \otimes \mathcal{K}_B$ and some junk state $\psi_{junk} \in \mathcal{K}_A \otimes \mathcal{K}_B$ such that

$$(V_A \otimes V_B)(A_i \otimes B_j)\psi = (\tilde{A}_i \otimes \tilde{B}_j)\varphi_2 \otimes \psi_{junk}.$$

This is an example of “self-testing”. Robust self-testing: when $\omega_q(\mathcal{S}) \approx_{\epsilon} \omega_q(CHSH)$, then

$$(V_A \otimes V_B)(A_i \otimes B_j)\psi \approx_{f(\epsilon)} (\tilde{A}_i \otimes \tilde{B}_j)\varphi_2 \otimes \psi_{junk}.$$

An example: CHSH game

Proof technique:

- ① Associate a group (the dihedral group of order 8) with the CHSH game.

Proof technique:

- ① Associate a group (the dihedral group of order 8) with the CHSH game.
- ② Show that perfect strategies lead to a representation of the group; and approximately perfect strategies lead to “approximate” representations of the group.

Proof technique:

- ① Associate a group (the dihedral group of order 8) with the CHSH game.
- ② Show that perfect strategies lead to a representation of the group; and approximately perfect strategies lead to “approximate” representations of the group.
- ③ Use Gowers-Hatami Theorem to find the isometry relating the approximate representation to the canonical one.

Projections summing up to scalar times the identity

We consider $d \times d$ projections $\tilde{P}_1, \dots, \tilde{P}_n$ ($n \geq 3$) with

$$\tilde{P}_1 + \dots + \tilde{P}_n = xI_d = \frac{b}{d}I_d,$$

where $\gcd(b, d) = 1$.

Projections summing up to scalar times the identity

We consider $d \times d$ projections $\tilde{P}_1, \dots, \tilde{P}_n$ ($n \geq 3$) with

$$\tilde{P}_1 + \dots + \tilde{P}_n = xI_d = \frac{b}{d}I_d,$$

where $\gcd(b, d) = 1$.

The scalar x and the projections $\tilde{P}_1, \dots, \tilde{P}_n$ have the property that whenever P_1, \dots, P_n are any other projections such that $P_1 + \dots + P_n = xI$, then $P_i = I \otimes \tilde{P}_i$ for all $1 \leq i \leq n$ in some basis. Λ_n - the set of such scalars x .

Projections summing up to scalar times the identity

We consider $d \times d$ projections $\tilde{P}_1, \dots, \tilde{P}_n$ ($n \geq 3$) with

$$\tilde{P}_1 + \dots + \tilde{P}_n = xI_d = \frac{b}{d}I_d,$$

where $\gcd(b, d) = 1$.

The scalar x and the projections $\tilde{P}_1, \dots, \tilde{P}_n$ have the property that whenever P_1, \dots, P_n are any other projections such that $P_1 + \dots + P_n = xI$, then $P_i = I \otimes \tilde{P}_i$ for all $1 \leq i \leq n$ in some basis. Λ_n - the set of such scalars x .

Example

Take any $n \geq 3$ and consider n unit vectors ξ_1, \dots, ξ_n in \mathbb{R}^{n-1} which form the vertices of a regular n -simplex centered at the origin. Then their corresponding projections $\tilde{P}_i = \xi_i \xi_i^*$ form an irreducible representation of the relation $P_1 + \dots + P_n = \frac{n}{n-1}I$.

More in the paper [KRS02].

For $n \geq 3$ and $x \in \Lambda_n$, and $\tilde{P}_1, \dots, \tilde{P}_n$ as above, we define a quantum strategy

$$\widetilde{\mathcal{S}}_{n,x} = (\varphi_d \in \mathbb{C}^d \otimes \mathbb{C}^d, \{\tilde{P}_v, I_d - \tilde{P}_v\}_{v=1}^n, \{\tilde{P}_w^T, I_d - \tilde{P}_w^T\}_{w=1}^n),$$

where $\varphi_d = \frac{1}{\sqrt{d}} \sum_i e_i \otimes e_i$ is the maximally entangled state.

Let $\tilde{p}_{n,x}$ denote the quantum correlation induced by $\widetilde{\mathcal{S}}_{n,x}$.

Main result

If we have a quantum strategy \mathcal{S} which induces a quantum correlation p close to the ideal correlation $\tilde{p}_{n,x}$, then the strategy \mathcal{S} must be close to the ideal quantum strategy $\widetilde{\mathcal{S}}_{n,x}$.

Main result

If we have a quantum strategy \mathcal{S} which induces a quantum correlation p close to the ideal correlation $\tilde{p}_{n,x}$, then the strategy \mathcal{S} must be close to the ideal quantum strategy $\widetilde{\mathcal{S}}_{n,x}$.

Theorem

Let $n \geq 3, x \in \Lambda_n$ and let $\tilde{P}_1, \dots, \tilde{P}_n$ be projections as above. For any $\epsilon \geq 0$, there exists a $\delta \geq 0$ such that the following holds. Let p be a quantum correlation induced from an arbitrary quantum strategy

$$\mathcal{S} = (\psi \in \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}, \{E_v, I_{d_A} - E_v\}_{v=1}^n, \{F_w, I_{d_B} - F_w\}_{w=1}^n),$$

such that $\|\tilde{p}_{n,x} - p\| \leq \delta$. Then \mathcal{S} is approximately related to $\widetilde{\mathcal{S}}_{n,x}$ via a local isometry, that is, there exist isometries $V_A: \mathbb{C}^{d_A} \rightarrow \mathbb{C}^d \otimes \mathbb{C}^{r_A}$ and $V_B: \mathbb{C}^{d_B} \rightarrow \mathbb{C}^d \otimes \mathbb{C}^{r_B}$ for some $r_A, r_B \in \mathbb{N}$ and a quantum state $\psi_{\text{junk}} \in \mathbb{C}^{r_A} \otimes \mathbb{C}^{r_B}$ such that for all $1 \leq v, w \leq n$,

$$\begin{aligned} (V_A \otimes V_B)(E_v \otimes F_w)\psi &\approx_{\epsilon} (\tilde{P}_v \otimes \tilde{P}_w^T)\varphi_d \otimes \psi_{\text{junk}}, \\ (V_A \otimes V_B)\psi &\approx_{\epsilon} \varphi_d \otimes \psi_{\text{junk}}. \end{aligned}$$

- Associate a C^* -algebra with the relation $p_1 + \cdots + p_n = x1$.
- Show that “approximate” strategies lead to “approximate” representations of the C^* -algebra
- Use the following analogue of Gowers-Hatami Theorem:

Theorem

(Informal) Suppose positive semi-definite matrices $E_1, \dots, E_n \in \mathbb{M}_{d_A}$ are “approximate” projections and form an “approximate” representation (with respect to ρ_A) of the relation $p_1 + \cdots + p_n = xI$. Then, there exists an isometry $V: \mathbb{C}^{d_A} \rightarrow \mathbb{C}^d \otimes \mathbb{C}^{r_A}$ such that for all $1 \leq v \leq n$, we have $\|E_v - V^(\tilde{P}_v \otimes I_s)V\|_{\rho_A} \approx 0$.*

Example ($n = 4$)

For any $k \in \mathbb{N}$, there exists four rank k projections $\tilde{P}_{k,1}, \tilde{P}_{k,2}, \tilde{P}_{k,3}, \tilde{P}_{k,4}$ in \mathbb{M}_{2k+1} such that $\tilde{P}_{k,1} + \tilde{P}_{k,2} + \tilde{P}_{k,3} + \tilde{P}_{k,4} = \frac{4k}{2k+1} I_{2k+1}$. We can robustly self-test each of the strategies

$$\tilde{\mathcal{S}}_k = (\varphi_{2k+1}, \{\tilde{P}_{k,v}, I_{2k+1} - \tilde{P}_{k,v}\}_{v=1}^4, \{\tilde{P}_{k,w}^T, I_{2k+1} - \tilde{P}_{k,w}^T\}_{w=1}^4),$$

from the correlations $\tilde{p}_{4,k}$ that each strategy induces.

Self-testing of quantum states is relatively well understood:

Self-testing of quantum states is relatively well understood:

- ④ Any (pure) bipartite entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$ can be self-tested from a correlation with 3 inputs and d outputs [CGS17].

Self-testing of quantum states is relatively well understood:

- ① Any (pure) bipartite entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$ can be self-tested from a correlation with 3 inputs and d outputs [CGS17].
- ② For each $d \in \mathcal{D}$, where \mathcal{D} is an infinite subset of the primes, the maximally entangled state $\varphi_{4(d-1)}$ can be robustly self-tested from correlations with roughly 100 inputs per party [Fu19].

Self-testing of quantum states is relatively well understood:

- ① Any (pure) bipartite entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$ can be self-tested from a correlation with 3 inputs and d outputs [CGS17].
- ② For each $d \in \mathcal{D}$, where \mathcal{D} is an infinite subset of the primes, the maximally entangled state $\varphi_{4(d-1)}$ can be robustly self-tested from correlations with roughly 100 inputs per party [Fu19].

Corollary

For each odd dimension $d \geq 3$, the maximally entangled state φ_d can be robustly self-tested by quantum correlations with four inputs and two outputs.

Self-testing of quantum states is relatively well understood:

- ① Any (pure) bipartite entangled state in $\mathbb{C}^d \otimes \mathbb{C}^d$ can be self-tested from a correlation with 3 inputs and d outputs [CGS17].
- ② For each $d \in \mathcal{D}$, where \mathcal{D} is an infinite subset of the primes, the maximally entangled state $\varphi_{4(d-1)}$ can be robustly self-tested from correlations with roughly 100 inputs per party [Fu19].

Corollary

For each odd dimension $d \geq 3$, the maximally entangled state φ_d can be robustly self-tested by quantum correlations with four inputs and two outputs.

Corollary

Given any natural number k there exist four projections of rank k which can be robustly self-tested by quantum correlations with four inputs and two outputs.

References

- A. Coladangelo, K. T. Goh, and V. Scarani.
All pure bipartite entangled states can be self-tested.
Nature Communications, 8(1), May 2017.
- H. Fu.
Constant-sized correlations are sufficient to robustly self-test maximally entangled states with unbounded dimension.
arXiv e-prints, page arXiv:1911.01494, November 2019.
- Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen.
MIP* = RE.
arXiv e-prints, page arXiv:2001.04383, January 2020.
- S. A. Kruglyak, V. I. Rabanovich, and Yu. S. Samoilenko.
On sums of projections.
Funktional. Anal. i Prilozhen., 36(3):20–35, 96, 2002.