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Introduction—Confirmed experimentally [1] via violation of Bell type inequalities [2,3] and used
for insights across disciplinary boundaries [4—6], entanglement is a distinctly non-classical resource.
This resource is believed to play a non-trivial role in quantum computing. When used for com-
munication [7,8] , it can provide unconditional security [9-11] and reduce classical communication
complexity [12-14]. As a result, strong efforts are being made [15-18] for intermediate and large
scale [19,20] use of quantum entanglement. However, these efforts are hindered by the susceptibility
of entanglement to noise. It is critical to devise protocols and find maximum rates for protecting
entanglement from noise.

General set-ups for protecting entanglement from noise described by a quantum channel B can
be roughly described as follows. Suppose one has n copies of a quantum system a, and these systems
are affected by an independent and identically distributed (i.i.d.) noise process, each described by
the channel B : a — b. A general task to protect an unknown pure state g4, entangled between a k
qubit system A and an inaccessible reference R, can allow an arbitrary input encoding &, : A — a®"
and output decoding D,, : b®" — B across n joint channel uses B®". These encoding-decoding
maps are to ensure that the state ¢rp = D, o B®" o £,(¢ra) protects entanglement with R, i.e,
it is €, close to ©pa. This task is said to be achievable at a rate k/n when one can force €, to
vanish as n — oo. The maximum achievable rate of this entanglement protection task is given by
the quantum capacity Q(B) of the channel B.

The quantum capacity is also the highest rate for any quantum error correction code designed
to recover quantum information affected by noise B. Successful quantum error correction does not
leak any information to the channel’s environment. Thus a channel’s private capacity P [21] to send
classical information hidden from the channel’s environment is bounded from below by its quantum
capacity. The private capacity P(B) also equals the maximum rate for distributing a secret key
by sending quantum states over a channel B whose complement C goes to an eavesdropper. Due
to their central importance, computing and understanding quantum capacities is a central task of
quantum information theory.

The best way to understand quantum capacities is rooted in Shannon’s [22] original recipe for
finding the capacity C(NN) of a noisy classical channel N. The recipe’s key ingredient is C")(N),
the maximum mutual information between the channel input variable and its image under the
channel. A random coding argument shows that C(1)(N) is an achievable rate, i.e., C(D(N) <
C(N) and over k joint uses of N, limg,,oo C)(N*¥)/k < C(N). The converse theorem, C(N) <
limg, 0o M (N*F) /k is established using Fano’s inequality to obtain a matching upper and lower
bound on C'(N). Finally, additivity, i.e, for any two channels N and N’ used together C(V) (N’ x N)
is CO(N') + CW(N), reduces these bounds to an elegant one-letter formula C(N) = CM(N).
Given that C'(N) is the ultimate limit for sending classical data across infinitely many uses of N,
this one letter formula is surprising.

Expressions for quantum capacities are found in a similar way. For quantum and private capaci-
ties the respective quantum analogs of the key classical ingredient C')), are the coherent information
QM [23], and private information P(M) [21]. Each quantity Q") and P() gives an achievable rate
for its respective task. Like C(M), each of these quantum analogs comes from random coding ar-
guments, however, unlike C")| all of them are non-additive [24-28]. This non-additivity (see (1)
for a precise definition) is remarkable. It presents an opportunity to find strategies for sending
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information across quantum channels at rates which surpass naive random coding rates. Indeed a
variety of strategies have been explored: structured quantum codes can sometimes improve upon
QM [29,30], and carefully crafted private codes can surpass P() in certain cases [31].

While non-additivity brings new opportunities, it also creates challenges. For instance the
best known formulas for quantum capacities of general channels are multi-letter expressions. Such
expressions are hard to evaluate since they may require an intractable maximization of a non-
convex function over an infinite number of variables. One such non-convex function is the coherent
information of a channel B at an input density operator p, A(B,p) := S(B(p)) — S(C(p)), where
S(p) = —Tr(plog p) is the von-Neumann entropy. The maximum of A(B, p) over p gives the channel
coherent information QM (B). Since QW) is non-additive, i.e., for any two channels B and B’ the
inequality,

QW(B®B) = oW (B) + oM (B), (1)
can be strict, one must regularize the n-letter coherent information to obtain a multi-letter formula
for the quantum capacity: for any channel B, Q(B) = lim, 0o QW (B%")/n [21,32-34]. There
are stunning examples of channels which display non-additivity: for any integer m > 1 there is
a channel B for which QM (B®™) = 0 but QW (B®¥) > 0 for some k > m [26]. Such unusual
non-additivity implies that checking positivity of Q is hard.

Results—Our first main contribution is to construct a simple noisy channel whose quantum and
private capacity can be computed, but then show how a counter-intuitive scheme to allow leakage
of almost all quantum information to the channel’s environment boosts the channel’s quantum and
private capacities. This unexpected boost comes from leveraging non-additivity that has challenged
our understanding of quantum capacities in the past. In the present case, non-additivity is used to
show that strongly engaging a system with its environment increases the system’s ability to protect
entanglement and send private information.

Allowing leakage of information to a channel’s environment is not expected to improve it’s ability
to send quantum information. This expectation is not entirely misplaced, indeed we find no increase
in the channel’s one-letter coherent information. However allowing leakage increases the coherent
information over two uses of the channel. This key observation can be intuitively understood by
constructing a special mixed input state which is entangled across two joint uses of the modified
channel. Since the channel can heavily leaks quantum information, the input entanglement appears
at the joint channel environment but does not appear at the joint channel output. The entangled
environment state can be decomposed as a convex combination of two closely packed quantum
states while the output state can be decomposed as a convex combination of two well separated
states. These well separated states give more entropy to the output than closely packed states give
to the environment. This difference in entropy boosts the coherent information. This boost implies
that random codes in the typical subspace of this entangled input can send quantum information
at larger rates than the original channel. Since this leakage based boost increases the two-letter
coherent but not the one-letter coherent information, it gives rise to a sought after two-letter level
non-additivity.

Despite its central importance, the general origin of non-additivity is obscure. In certain cases
it is possible to transform a channel with additive coherent information into one with non-additive
coherent information. One method, used to great effect in superactivation [35-37], is to place
channels in parallel. Another method is to place channels in series [38,39]. Clarifying when and
how such methods work is a key challenge in quantum information. It is clear that placing channels
in series decreases their capacity. While parallel use can non-additively increase the capacity, it
also increases the channel’s output dimension. A key finding in our work is that allowing leakage
of information to a channel’s environment is an entirely new way to obtain non-additivity. Unlike
previous methods, this non-additivity increases a channel’s quantum and private capacity without



increasing the channel’s output dimension. The amount of non-additivity found this way is an
order of magnitude larger than found earlier.

Our leakage scheme introduces a gap between channel parameter values where Q™) is zero and
where Q can be shown to vanish. To fill this gap, one must either show that Q@ = 0 or show Q > 0
for all parameters in the gap. Filling such gaps [40-44] is crucial to understanding a channel’s
quantum capacities. In most cases, including the well studied case of a qubit depolarizing channel,
such gaps remain unfilled. However, we completely fill ours by showing Q > 0 using an extremely
clean argument based on a new insight into the von-Neumann entropy.

This insight, which is our second key contribution, is that logarithmic singularities (also called
log-singularities) in the von-Neumann entropy S are a novel mechanism that gives rise to positive
quantum capacity. The singularity occurs in the entropy of a density operator whose eigenvalues
increase linearly from zero to leading order in some parameter € of the density operator. As a result,
for small values of € the behaviour of the von-Neumann entropy S(e) is completely dominated by
the singularity, i.e. dS(€)/de ~ —xloge where x > 0 is called the rate or the strength of the
singularity. This singularity shows up as a sharp increase in the entropy of a density operator as
it linearly moves from the boundary of the set of quantum states to a point in the relative interior
of the set.

The main idea that captures how log-singularities give rise to quantum capacity is as follows.
Consider a channel input, whose output and environment state have equal entropy. Next perturb
the input such that a log-singularity occurs at the output which is stronger than the log-singularity
in the environment. This stronger singularity will dominate the behaviour of the coherent infor-
mation, forcing it to become positive and thus giving rise to a strictly positive quantum capacity.

Not only are log-singularities useful in specific cases, they provide very general insights. For
instance given a channel B with input, output, and environment dimensions d,, dp, and d. respec-
tively, one can prove that

Theorem. If d. < dp and B maps some pure state to an output of rank d., then Q(l)([)’) > 0.

This Theorem applies to a large variety of cases, including the complement of experimentally
relevant qubit Pauli channels [45] and generalized erasure channels [39]. It has a particularly elegant
corollary: when d, > 1 and dy > do(d. — 1) then QM (B) > 0. This corollary is a one of a kind
test for quantum capacity. Unlike other tests which either depend on the form of a channel or use
numerics, this tests only uses the dimensions of a channel.

Log-singularities are also a source of non-additivity. This can be seen as follows. Consider two
density operators, each of which optimizes the coherent information of a channel. Next, perturbed
the product of these density operators to cause a singularity at the output entropy of the joint
channel. This singularity will dominate the coherent information of the joint channel, making it
rise above the sum of the coherent information of each channel. Using this idea, one can show a
new instance of non-additivity where a qubit amplitude damping channel B with Q(B) = 0 boosts
the coherent information of a qutrit channel B, i.e., strict inequality holds in (1).

From the point of view of quantum error correction, this is a remarkable result. It states that
there are qubits on which we can’t perform error correction directly, nonetheless using these qubits
as parts of larger quantum circuits boosts rates for quantum error correction. It would be an
extremely interesting future application to design and implement such quantum error correction
schemes.
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