

Quantum Garbled Circuits

Zvika Brakerski

Weizmann

Henry Yuen

Columbia

arxiv.org/abs/2006.01085

European Research Council
Established by the European Commission

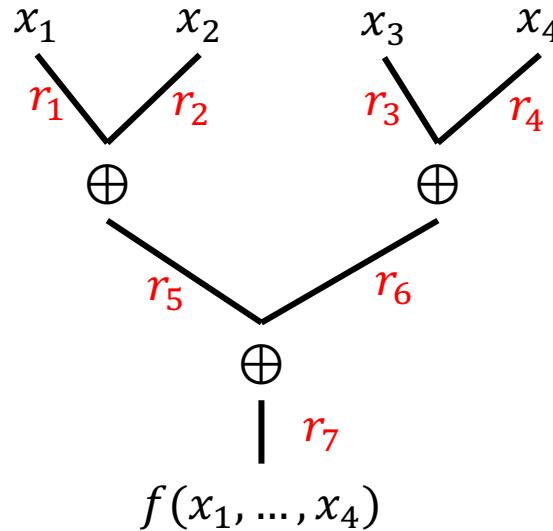
Randomized Encoding (RE) & Garb^{decomposable} each input bit tree

decomposable

each input bit treated separately + offline part

Example: Parity $f(x_1, \dots, x_n) = x_1 \oplus x_2 \oplus \dots \oplus x_n$

depth $\log n$



\hat{f} is a Randomized Encoding (RE) of f [AIK06]:

- Correctness (decodability): $\hat{f}(x_1, \dots, x_4, \textcolor{red}{r_1}, \dots, \textcolor{red}{r_7}) \Rightarrow f(x_1, \dots, x_4)$
- Privacy (simulation): $f(x_1, \dots, x_4) \Rightarrow \text{Sample}(\hat{f}(x_1, \dots, x_4, \textcolor{red}{U}, \dots, \textcolor{red}{U}))$
(or stat/comp indistinguishable)

Why?

One of the most useful notions in crypto

The “essence” of f in low complexity

securely compute $\hat{f} \Rightarrow$ securely compute f

Delegation, non-BB constructions, LBs • • •

[Yao86.BMR90]

Our Results

- Defining Quantum RE

\hat{F} is a QRE of F : (considering auxiliary input)

- Correctness (decodability): $\hat{F}(x, \mathbf{r}, \mathbf{e}) \Rightarrow F(x)$

- Privacy (simulation): $F(x) \Rightarrow \text{Sample}(\hat{F}(x, \mathbf{U}, \mathbf{e}))$ (perfect/stat/comp)

- Construction of quantum garbled circuits (decomposable QRE):

	<u>Perfect Security</u>	<u>Computational Security</u>	
Assumption	- (same)	OWF (same)	(vs. Classical GC [BMR90])
RE Complexity (decoding is linear)	$\mathbf{QNC_f^0}$, size $\text{poly}(s, 2^{2^d})$ $\mathbf{NC^0}$, size $\text{poly}(s, 2^d)$	$\mathbf{QNC_f^0}$, size $\text{poly}(s, \lambda)$ $\mathbf{NC^0}$, size $\text{poly}(s, \lambda)$	QCircuit w/ size s & depth d
classical input bit \Rightarrow encoded classically			

- **Alt. construction:** No shallow encoding, but overall structure is simpler
(used in followup [BCKM20]).

- **Application:** ZK " Σ -Protocol" for QMA w/ favorable properties (comp. to [BG20]).

Warmup: The Group Randomizing QRE

Warmup: Clifford Circuit

$$|x\rangle \xrightarrow{G} |y\rangle = G|x\rangle$$

$G \in \text{Clifford}$

$$|x\rangle \xrightarrow{\text{random Clifford}} |x\rangle \xrightarrow{R} R|x\rangle$$

$$S = GR^{-1}$$

canonical circuit
(classical description)

The Goal (\forall Q circuit):

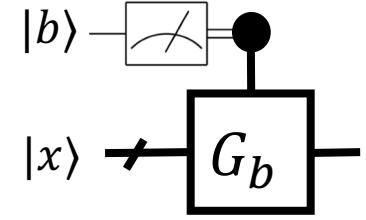
$$|x\rangle|aux\rangle \xrightarrow{\text{random Clifford}} |x\rangle|aux\rangle \xrightarrow{R'} \quad$$

classical side
information

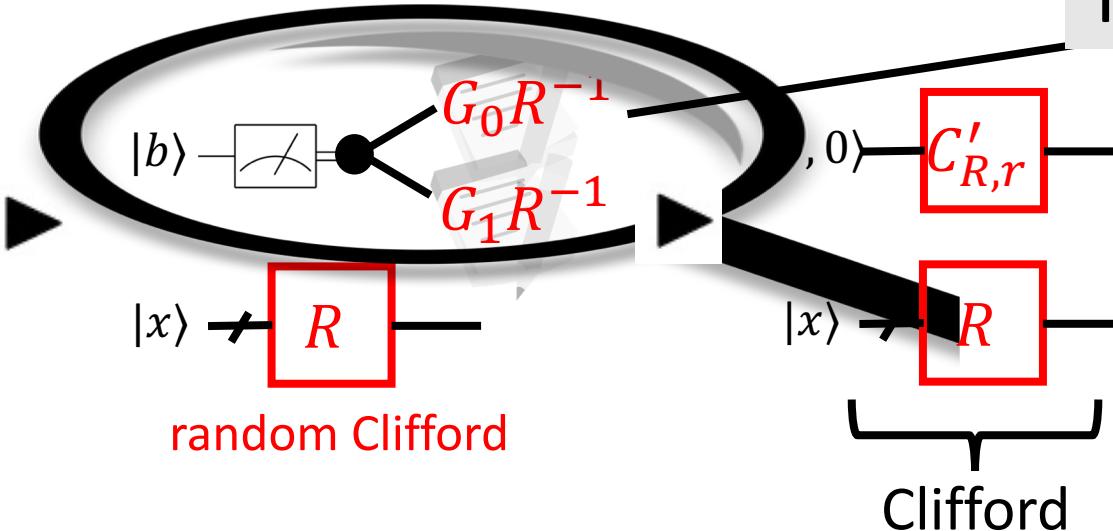
Important feature: Hides G

This Work: Quantum RE (QRE)

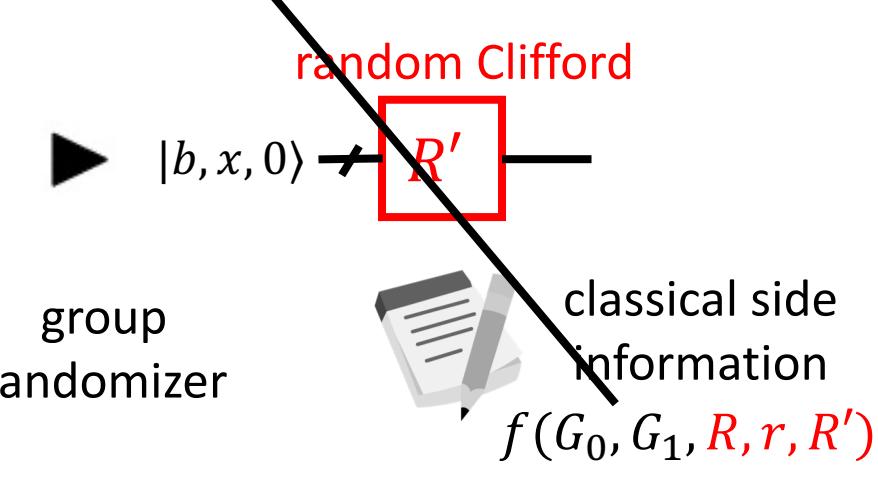
The C+M Encoder:



$G_0, G_1 \in \text{Clifford}$



The Goal (\forall Q circuit):



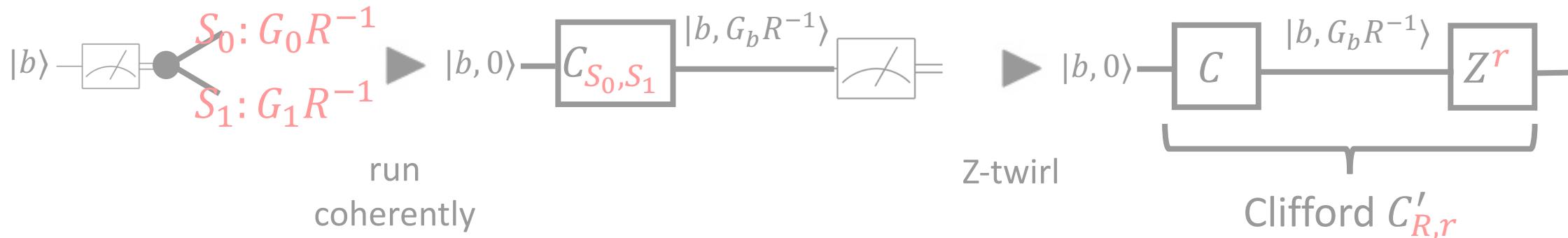
If too complicated, use classical RE to simplify!

random Clifford

classical side information
 $f(G_0, G_1, R, r, R')$

Apply recursively

=> QRE of this form \forall Q circuit via [BK05]



Other Applications

Potential applications are numerous:

- Import classical
- New quantum applications?

We are unaware of a prior solution, even arbitrarily inefficient

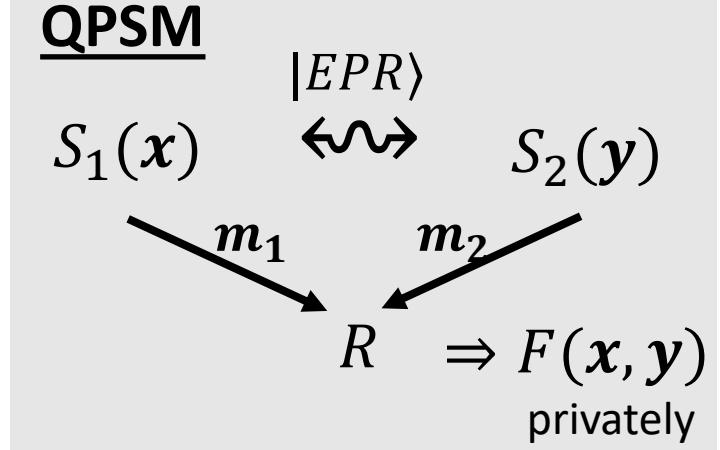
Constant round qMPC?

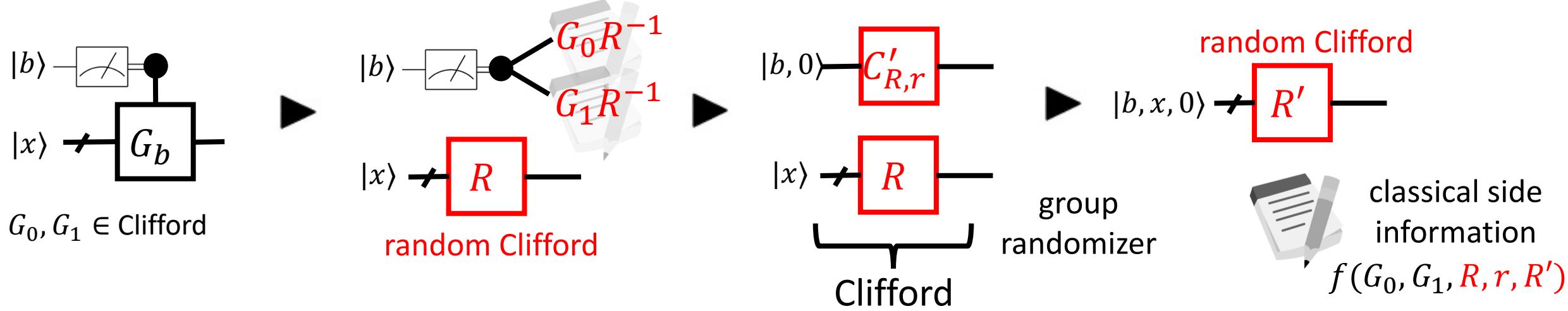
- Quantum PSM follows by definition.
- Semi-honest 2PC seems straightforward a la Yao.
- Malicious 2PC in 3 rounds recently by [BCKM20].

Functional Encryption and Obfuscation?

- Single-key FE seems straightforward a la [ss10] (but need definition first!).
- Classical RE for Q circuits + Classical obfuscation => Q-Obfuscation.

Beware of barriers, e.g. [Morimae20].





Thank you

arxiv.org/abs/2006.01085

