Extended abstract: The membership problem for
constant-sized quantum correlations is undecidable

Honghao Fu, Carl A. Miller, and William Slofstra

In a Bell test scenario, two spatially separated parties, typically called Alice and Bob, make
measurements on their local systems. Their behaviour is captured by the probability P(a, b|x, y)
that they measure outcomes a and b on measurements x and y. Assuming that Alice (resp. Bob)
has n 4 (resp. ng) measurements, each with m 4 (resp. mp) outcomes, the collection

P={P(a,blx,y):0<a<my, 0<b<mp 0<x<nu 0<y<ng} C RS

is called the correlation for their measurements. We are interested in the study of sets of correlations.
We let C.(n4,np,ma, mp) denote the set of classical correlations, although we write C. where we
can to save space. Bell’s theorem states that Alice and Bob can achieve correlations outside of C, if
they share an entangled quantum state [Bel64]. This leads to the question of which correlations can
be achieved in quantum mechanics. To study this question, Tsirelson introduced the set of quantum
correlations [Tsi93]. There are actually several ways to define the set of quantum correlations,
depending on whether we assume that all Hilbert spaces are finite-dimensional, and whether we
use the tensor-product axiom or commuting-operator axiom for joint systems. This leads to four
different choices for the set of quantum correlations: the finite-dimensional quantum correlations
C;, the quantum-spatial correlations Cgs, the quantum-approximate correlations Cy,, and the
commuting-operator correlatons C,.. We use the same convention as for classical correlations, in
that C; refers to C;(n,ng, ma, mp) when the tuple (n4,np, ma, mp) is clear. Tsirelson suggested
that all four sets should be equal, but we now know that all four sets are different, and hence
give a strictly increasing sequence C. C C; C Cys © Cyp C Cyc [Sl019, CS18, JNV20]. The last
inequality Cy; C Cg is a very exciting consequence of the recent proof [JNV"20] that MIP* = RE
by Ji, Natarajan, Vidick, Wright, and Yuen.

As the convex hull of a finite set, C, is a polytope in RN, where N = nngm mg. The sets
Ci, t € {q,9s,9a,qc}, are also convex subsets of RN (in addition, Cya and Cg are closed), but it
follows from a result of Tsirelson [Tsi87] that these sets are not polytopes. Folowing up in [Tsi93],
Tsirelson asks whether the sets of quantum correlations might still have nice geometric descriptions,
specifically by analytic or even polynomial inequalities. This question is significant for two reasons:

(1) (Practical) The quantum correlation set captures what is possible with quantum entanglement,
and thus a description of this set tells us what is theoretically achievable in experiments and
quantum technologies.

(2) (Conceptual) A nice description of the set of quantum correlations could improve our conceptual
understanding of quantum entanglement, similarly to how the description of C. as the convex
hull of deterministic correlations is central to our understanding of classical correlations.

Due to the significance of this question, describing the set of quantum correlations has been a
central question in the field. However, such descriptions have been hard to come by. On the
geometric side, Tsirelson original results show that when m4 = mp = 2, a certain linear slice
of the quantum correlation set is the elliptope, a convex set described by quadratic inequalities



[Tsi87, TVC19]. Other work has focused on the case when ng = ng = ms = mpg = 2, which is
much more tractable then the general case [Lan88, WW01, Mas03, Pit08, GKW18]. A result of
Russell describes another linear slice, the synchronous correlations, in C, (3,3,2,2), but again this
description does not extend to other numbers of measurements and outcomes [Rus20]. In another
line, a number of authors have considered whether it’s possible to give a conceptual, rather than
geometric, description of the quantum correlation sets, but so far these do not give a complete
description of the set of quantum correlations [BBL 06, PPK 09, NW09, FSA ™13, SGAN18].

Because of the apparent difficulty in describing quantum correlation sets, it makes sense to
ask if there are obstacles to having nice descriptions. One way to examine this question is by
looking at the problem of computing the quantum value of a nonlocal game, which amounts to
optimizing a linear functional over the sets Cy, or Cyc. The difficulty of this task is closely related
to the computational complexity class MIP*, and prior to this year there has been series of deep
works showing that even the approximate version of this optimization problem is very difficult
[[V12, RUV13, Jil7, NV18, NV17, FJVY19, NW19]. In the exact (rather than approximate) case,
results of the last author imply that the decision problems

(PerfectStrategy,) Given a tuple (n4,np,m4, mp) and a nonlocal game G with 14 and np
questions and m 4 and mp answers, does G have a perfect strategy in C;?

are undecidable for t € {g,gs,qa,qc} (whether or not a nonlocal game has a perfect strategy
corresponds to asking whether a certain linear functional takes value 1 on the set C;) [Slo19, Slo20].
Ultimately, in the approximate case, the proof that MIP* = RE shows that a gapped version
(GappedPerfectStrategy,) of (PerfectStrategy, ) is also undecidable for t € {g,gs,qa} [[NV*20].

Rather than looking at nonlocal games, a more straightforward way to study the difficulty of
describing quantum correlation sets is to look at the membership problem for these sets. Specifically,
we can look at the decision problems

(Membership, ) Given a tuple (114, np,ma,mp) and a correlation P € K"A"s™A™E,
isP € Ci(na,np,my, mpg)?

for t € {g,9s,qa,qc} and subfields K C R. The point of restricting to correlations in K"A"8"A"5
rather than IR"A"8"4™8 jg that it is not possible to describe all real numbers in a finite fashion. We are
primarily interested in fields, such as Q, where it is practical to work with elements of the field on a
computer. For our results we actually need to take a larger field than Q, so in what follows we’ll set
K = Q N R unless otherwise noted, where Q is the algebraic closure of the rationals.! The questions
(Membership, ;) are a very general way of studying descriptions of the sets C; for t € {q,gs,qa,qc},
since we don’t restrict to any particular form of description, but instead just look at a basic
functionality that we would hope to have from any nice description, namely a way of being able to
distinguish elements inside the set from those outside. The decision problems (Membership, ;)
are not equivalent to the problems (PerfectStrategy,) or (GappedPerfectStrategy, ), since nonlocal
games do not necessarily have unique perfect strategies in C;. Nonetheless, the two families of
decision problems are closely related. Indeed, Coudron and the last author show that the methods
used in [Slo20] to prove the undecidability of (PerfectStratequ .) also imply the undecidability
of (Membership g k) [CS19]. The methods of [Slo19] can be adapted to show the undecidability
of (Membership, ) for t € {q,¢s,qa} in similar fashion (although some work is needed for the
case t = ¢). The undecidability of (GappedPerfectStrategy,) can be used to get the stronger
result that (Membership, ) is undecidable for t € {q,9s,qa} [[NV"20]. Taken together, these

1Since Q is computable, it is possible to work with Qand QNRona computer, and indeed support for this is
included in Mathematica and other computer algebra packages.



undecidability results put very strong restrictions on what descriptions of the quantum correlation
sets are possible. For instance, they imply that there is no Turing machine which takes tuples
(na,npg,ma, mp) as inputs, and output a description of C¢(n4, ng, ms, mp) in terms of a finite list of
polynomial inequalities, since such a Turing machine would allow us to decide (Membership, ).
Similarly, these results also imply that there can be no finite set of principles, independent of
(na,np,my, mp), such that we can decide whether a correlation satisfies every principle, and such
that a correlation satisfies all the principles if and only if it belongs to C;(14,1np, ma, mp).

Although the undecidability results mentioned in the last two paragraphs go a long way
to showing that the quantum correlation sets C; do not have nice descriptions, there is a gap:
they leave open the possibility that every set C(n4,np,ma,mp) has a nice description, but it’s
just not possible to have a Turing machine which outputs these descriptions as a function of
(na,np,my,mp). Of course, without a way to get the descriptions of the sets C;, it would be
difficult to use the existence of such descriptions for a practical purpose. Nonetheless, if we knew
that, for instance, C;(n4,np,ma, mp) had a description by quadratic polynomial inequalities, it
would tell us a lot about the geometry and character of that set, even if we couldn’t find the
inequalities. Our main result is that, for large enough number of measurements and measurement
outcomes, nice descriptions of the sets C;(n4,np, ms, mp) aren’t possible, at least for t € {qa, qc}.
Specifically, we look at the membership problems

(Membership(na, ng,ma, mp)x) Given p € K"A"™AMs is p € Cy(ny,npg, ma, mp)?

for t € {q,4gs,qa,qc} with (nu,ng, my, mg) fixed. We show:

Theorem 0.1. (Informal version) There is an integer wq such that the decision problem
(Membership(n,ng, ma, mp) k) is undecidable for t € {qa,qc} and ny, ng, my, mp > .

This implies that for t € {qa, gqc} and large enough (14, ng, m, mg), there is no description of
Ci(na,npg, my, mp) that would allow us to decide membership in this set. This rules out a large class
of descriptions, including descriptions by a finite list of polynomial inequalities. As mentioned
above, in this theorem K is the intersection Q N R. However, the proof of this theorem does not
rely on writing down very complicated elements of Q. In fact, K could be replaced with Ko N R,
where K| is the subfield of Q generated by roots of unity.

To prove Theorem 0.1, we combine techniques from [Slo19, Slo20] with self-testing methods
from [Ful9]. Specifically, [Ful9] shows that it is possible to self-test a maximally entangled state
of arbitrary dimension, using constant-sized correlations. This is done by self-testing a relation
TP =1 for a certain word T in the observables used in the correlation, and a chosen integer p. The
methods used in [Slo19, Slo20] are group-theoretic, and involve reducing from nonlocal games to
the word problem for groups. We combine these approaches by using families of finitely-presented
groups, where the presentation includes the relation T# = 1, and the outcome of the word problem
for a certain known element depends on the choice of p.

Finally, it is interesting to consider upper bounds on the problems (Membership (1, ng, ma,
mp)ik). When t = qc, this problem is contained in coRE, and Theorem 0.1 actually shows that
this problem is coRE-complete (for large enough n4,ng,m4, mp). Whent = g or t = gs, this
problem is contained in RE, but when t = ga, the best known upper bound on this decision
problem is I1). In this case, Theorem 0.1 only shows that (Membership (14, 1p,m, MB)gaK) is
coRE-hard, so this lower bound is not necessarily tight. Recently, Mousavi, Nezhadi, and Yuen
have shown that the three-player version of (PerfectStratequa) is I13-complete [MNY20], and

it seems reasonable to conjecture that (Membership (114, 1p, 14, 1p)gax) is also I13-complete for
large enough 14, ng, m4, mp. We leave this as an open problem.
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