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Combinatorial Optimization Problems

Cost
function

C(z) =Y Culz)

MaxCut  C =37, 5y 5(1 = 2i25)

’_\

cut edges -

Goal: find a bipartition of vertices that
cut the maximum # edges

z=(21,...2n) € {X1}"

Want z* so C(z") is maximized

Sherrington-Kirkpatrick (S§K) model

1
( = % Z JijZZ'Zj

1<J

Ji; ~ Normal(0, 1)
or Jij c {:l:l}

MaxCut on Erd6s-Rényi graphs = SK

(average case)
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Worst case guarantee:

(C)/Crax = 06924 @p =1 [Farhi Goldstone Gutmann 2014]

Difficult for higher p as the complexity of classical simulation grow as O(ZZP)!
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* Analyze performance via “subgraphs”
“Landscape-Independence”

FG(Y}ﬁ) — (yrﬂlG CG h,Iﬁ)G

e.g. MaxCut on 3-regular graphs
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* Low-depth QAOA don’t see the whole graph = limited performance

On d-regular graphs, [Bravyi Kliesch Koenig Tang 2019]
mostly see trees when [Farhi Gamarnik Gutmann 2020]
j K
p Klogg_1n Cannot distinguish bipartite vs.

typical (frustrated) graphs
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The Sherrington-Kirkpatrick model

1
C;= % Z JZ]ZZZJ J;; ~ Normal(0,1)

1<J

* Unbounded vertex degree =2 QAOA sees the whole graph atp = 2

* Worst case: NP-hard to approximate within 0(1/log®(n)) factor [Arora et al. 2005]

» Typical case: Famously, Parisi (1979) predicted and Talagrand (2006) proved that

1
lim —maxCy(z) = I, = 0.763166...

n—oco N =z
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Complexity of solving a typical SK instance?

e Parisi et al.’s result does not construct the solution!

I1, = 0.763166 ...
* Known results of typical-case complexity:

1. Simulated Annealing is believed to fail for this problem [Parisi]

2. Semi-Definite Programming obtains C/n = 2/m = 0.6366 [Montanari Sen 2016]

3. Assuming the conjecture that the SK model has no “overlap gap property”
(OGP), Andrea Montanari’s algorithm (2018) outputs Z with

C/n=(1—-¢e)l, intime 0n?/e")
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Main Result 2:

Concentration of QAOA on the SK model

* We also prove, for any fixed depth p:  lim E;[{(C/n)*)] = lim E3[(C/n)]
n— oo n—oo

Concentration over instances

(“Landscape-Independence”)
A

i J2
Sk

J1

>
14

A

Pr(z)

Concentration over measurements

-+ (C/n)

|

-
C(z)/n

* With probability - 1 as n — oo, applying QAOA and measuring will give us

a bit string z which has

C(2)/n~(C/n) =V
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Key Idea: Average over instances

* Parisi’s formalism requires delicate tricks
* Areplica-symmetry-breaking ansatz for the free energy:

.1 i
4:J[10g ZJ] — lll_)ﬂ%) E lOg t[Z{ﬂ ZJ(T) — tr(ecj/T)

K k replicas of J
* For QAOA, averaging over J is easier

1
1 . . . , C=— J 2.7
(C) =E; [ <S‘6WC’6'LBB ge—zﬁBe—wC‘S> } Jn Z J J

EEJ n 1<)J
1 ‘Hl \C(zm) b
— Z_n E] [ez'yC'(z ) <z1‘6'LBB’Zm>

zlzmz2

.

. 1 ,
For ¢ small, use EJ[GZJ¢] =1 — §¢2 + ... IEJ[JBZM] — i+ -
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Permutation symmetry = configuration basis Gab =
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Performance of the QAOA on the SK model

* Turn the crank, we getatp = 1 Optimum @ ==y = 1
1 )2
— | — — — < ] 1
Vi nh_{go nEJ[<C>] Ve sin 4 = max Vi =—-=~0303

e Can also show concentration { lim E;[((C/n)?)] = lim E3[<C/n>}}

n—oo n— oo

* Generic vs. optimized QAOA

Suppose  J;; € {£1}
Then 1y is periodic on [0,+/nm)
f is periodicon [0, /2)

Generic QAOA state has

—

(C) = e 0M)
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Performance of the QAOA on the SK model

* Higher p : our current method uses 0(4?) memory and 0(16?) time

n Best known Vp

1 0.303265
2 0.407545
8 0.607266

117 0.639311 beats SDP!

121 0.646557

Tunoptimized

Vo(v,8) = lim —E;[(y, BICly,B)

0.8
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1

o ‘_/p from optimization
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0.763166... |

L1 \ \
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0 129 6 3
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If lim V}, = II,, then

pP—00
a power law fit of
optimized 1, yields

1.2

v, =1, —
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Summary

* We analytically obtain a formula for typical case
performance of the QAOA on the SK model at high p
* Evaluation takes O(16?) currently but may be improvable

* QAOA beats Semi-Definite Programming atp = 11

* Concentration over instances and measurements

[Farhi Goldstone Gutmann LZ, arXiv:1910.08187]
https://qithub.com/leologist/QAOA-SK
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* Average over instances for harder problems for provable speedup?

q-spin model Provably hard for classical algorithms
due to their “Overlap Gap Property”

C = Jil. iq Zil . Zz'q [Gamarnik Jagannath 2019]
i< <ig [Gamarnik Jagannath Wein 2020]

Montal.mri’? algor{'thm stuck at 98.4% QAOA @ p=1

approximation ratio for q=3 gets 33% for g=3

[Alaoui Montanari 2020]



