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MaxCut Sherrington-Kirkpatrick (SK) model

Goal: find a bipartition of vertices that 
cut the maximum # edges

MaxCut on Erdős-Rényi graphs = SK
(average case)

or
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Cannot distinguish bipartite vs. 
typical (frustrated) graphs
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The Sherrington-Kirkpatrick model

• Unbounded vertex degree à QAOA sees the whole graph at 𝑝 = 2

• Worst case: NP-hard to approximate within 𝑂(1/log/(𝑛)) factor [Arora et al. 2005]

• Typical case: Famously, Parisi (1979) predicted and Talagrand (2006) proved that
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Complexity of solving a typical SK instance?
• Parisi et al.’s result does not construct the solution! 

• Known results of typical-case complexity:
1. Simulated Annealing is believed to fail for this problem [Parisi]

2. Semi-Definite Programming obtains 𝐶/𝑛 = 2/𝜋 ≈ 0.6366 [Montanari Sen 2016]

3. Assuming the conjecture that the SK model has no “overlap gap property” 
(OGP), Andrea Montanari’s algorithm (2018) outputs ,𝒛 with

𝐶/𝑛 ≥ 1 − 𝜖 Π∗ in time    𝑂(𝑛-/𝜖.)

Π∗ = 0.763166…
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Main Result 1:
Performance of the QAOA applied to the SK model

We give an 𝑂 161 -time method to evaluate
Much better than 𝑂 2'" -
time subgraph method

QAOA beats SDP 
@ 𝒑=11
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Main Result 2:
Concentration of QAOA on the SK model
• We also prove, for any fixed depth 𝑝:

• With probability → 1 as 𝑛 → ∞, applying QAOA and measuring will give us 
a bit string 𝒛 which has 

𝐶 𝒛 /𝑛 ≈ 𝐶/𝑛 ≈ 𝑉6
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Key Idea: Average over instances
• Parisi’s formalism requires delicate tricks

• A replica-symmetry-breaking ansatz for the free energy: 

• For QAOA, averaging over J is easier

For 𝜙 small, use

𝑘 replicas of J
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Key Idea: Average over instances

Permutation symmetry à configuration basis

For general 𝑝, there are 
271 configurations

exp 𝑂 𝑝 complexity
configurations𝑛-bit strings



• Turn the crank, we get at 𝑝 = 1

Performance of the QAOA on the SK model

Optimum @ 𝛽 = '
(
, 𝛾 = $

)

⇒max
8,9

𝑉: =
:
;< ≈ 0.303



• Turn the crank, we get at 𝑝 = 1

• Can also show concentration

Performance of the QAOA on the SK model

Optimum @ 𝛽 = '
(
, 𝛾 = $

)

⇒max
8,9

𝑉: =
:
;< ≈ 0.303



• Turn the crank, we get at 𝑝 = 1

• Can also show concentration

• Generic vs. optimized QAOA

Performance of the QAOA on the SK model

Optimum @ 𝛽 = '
(
, 𝛾 = $

)

⇒max
8,9

𝑉: =
:
;< ≈ 0.303



• Turn the crank, we get at 𝑝 = 1

• Can also show concentration

• Generic vs. optimized QAOA

Performance of the QAOA on the SK model

Then 𝛾 is periodic on [0, 𝑛𝜋)

Optimum @ 𝛽 = '
(
, 𝛾 = $

)

⇒max
8,9

𝑉: =
:
;< ≈ 0.303

𝛽 is periodic on [0, 𝜋/2)

Suppose



• Turn the crank, we get at 𝑝 = 1

• Can also show concentration

• Generic vs. optimized QAOA

Performance of the QAOA on the SK model

Generic QAOA state has 
𝐶 = 𝑒=> ? !!Then 𝛾 is periodic on [0, 𝑛𝜋)

Optimum @ 𝛽 = '
(
, 𝛾 = $

)
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8,9

𝑉: =
:
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𝛽 is periodic on [0, 𝜋/2)

Suppose
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Performance of the QAOA on the SK model
• Higher 𝑝 : our current method uses 𝑂 46 memory and 𝑂(166) time

!𝑉! ≈ Π∗ −
1.2

𝑝 + 2 #.%

If lim
(→*

:𝑉( = Π∗, then 

a power law fit of 
optimized 𝑉( yields

𝑝 Best known 𝑽𝒑
1 0.303265

2 0.407545

⋯ ⋯
8 0.607266

11( 0.639311

12( 0.646557

!unoptimized

beats SDP!



Summary

•We analytically obtain a formula for typical case 
performance of the QAOA on the SK model at high 𝑝
• Evaluation takes 𝑂(166) currently but may be improvable

• QAOA beats Semi-Definite Programming at 𝑝 = 11

• Concentration over instances and measurements

[Farhi Goldstone Gutmann LZ, arXiv:1910.08187]
https://github.com/leologist/QAOA-SK

https://github.com/leologist/QAOA-SK
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Outlook
• Show convergence of QAOA as 𝑝 → ∞?

• Average over instances for harder problems for provable speedup?

Montanari’s algorithm stuck at 98.4% 
approximation ratio for 𝑞=3
[Alaoui Montanari 2020]

QAOA @ 𝒑=1 
gets 33%  for 𝒒=3

q-spin model Provably hard for classical algorithms 
due to their “Overlap Gap Property” 

[Gamarnik Jagannath 2019]
[Gamarnik Jagannath Wein 2020]


