

The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size

Leo Zhou (Harvard University)

with Edward Farhi, Jeffrey Goldstone, and Sam Gutmann

QIP – Feb 1, 2021

Combinatorial Optimization Problems

Cost
function

$$C(z) = \sum_{\alpha} C_{\alpha}(z)$$

$$z = (z_1, \dots, z_n) \in \{\pm 1\}^n$$

Want z^* so $C(z^*)$ is maximized

Combinatorial Optimization Problems

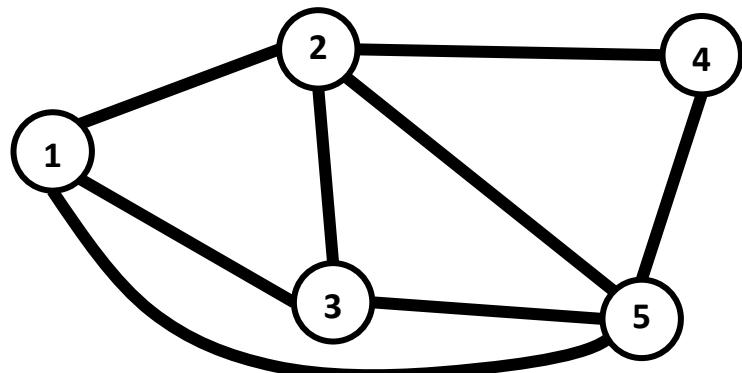
Cost
function

$$C(z) = \sum_{\alpha} C_{\alpha}(z)$$

$$z = (z_1, \dots, z_n) \in \{\pm 1\}^n$$

Want z^* so $C(z^*)$ is maximized

MaxCut



Goal: find a **bipartition** of vertices that cut the maximum # edges

Combinatorial Optimization Problems

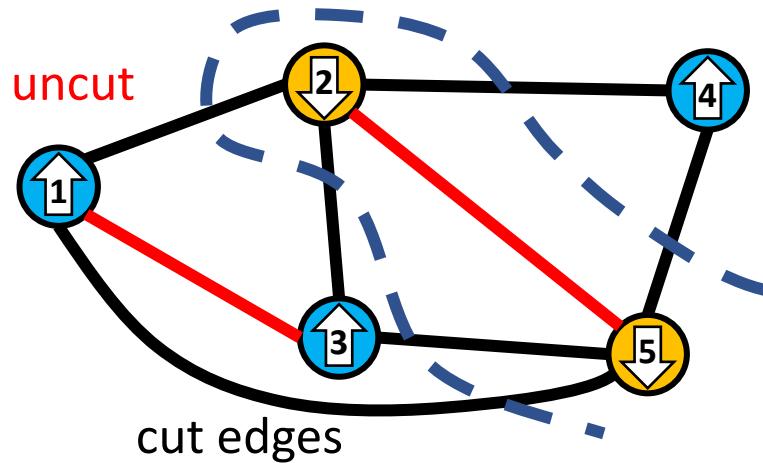
Cost
function

$$C(z) = \sum_{\alpha} C_{\alpha}(z)$$

$$z = (z_1, \dots, z_n) \in \{\pm 1\}^n$$

Want z^* so $C(z^*)$ is maximized

MaxCut



Goal: find a **bipartition** of vertices that cut the maximum # edges

Combinatorial Optimization Problems

Cost
function

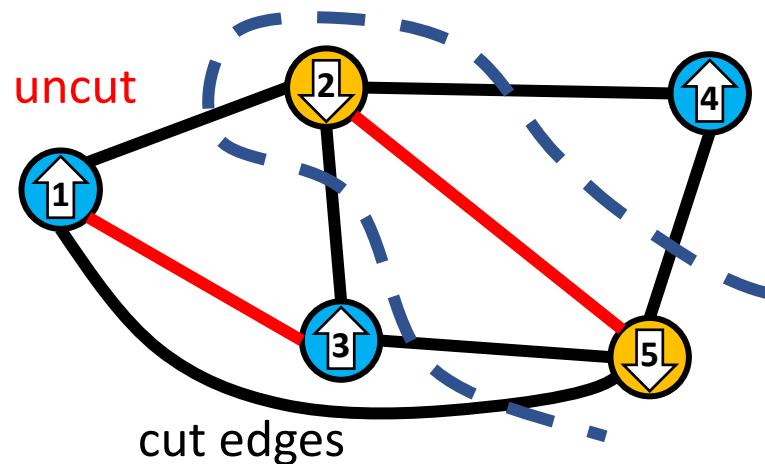
$$C(z) = \sum_{\alpha} C_{\alpha}(z)$$

$$z = (z_1, \dots, z_n) \in \{\pm 1\}^n$$

Want z^* so $C(z^*)$ is maximized

MaxCut

$$C = \sum_{\langle i,j \rangle} \frac{1}{2}(1 - z_i z_j)$$



Goal: find a **bipartition** of vertices that cut the maximum # edges

Combinatorial Optimization Problems

Cost function

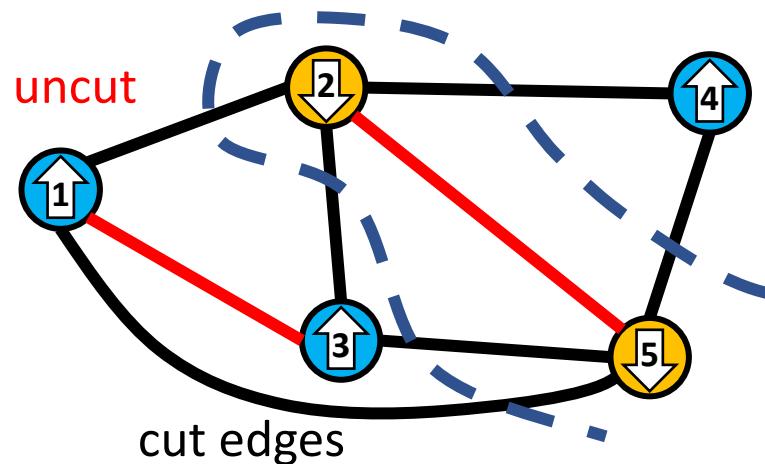
$$C(z) = \sum_{\alpha} C_{\alpha}(z)$$

$$z = (z_1, \dots, z_n) \in \{\pm 1\}^n$$

Want z^* so $C(z^*)$ is maximized

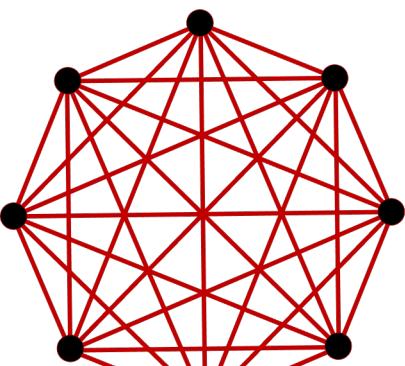
MaxCut

$$C = \sum_{\langle i,j \rangle} \frac{1}{2}(1 - z_i z_j)$$



Goal: find a **bipartition** of vertices that cut the maximum # edges

Sherrington-Kirkpatrick (SK) model



Combinatorial Optimization Problems

Cost function

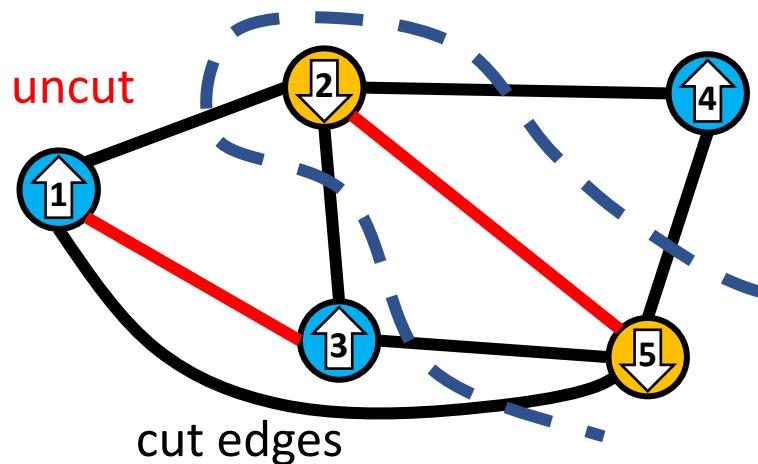
$$C(z) = \sum_{\alpha} C_{\alpha}(z)$$

$$z = (z_1, \dots, z_n) \in \{\pm 1\}^n$$

Want z^* so $C(z^*)$ is maximized

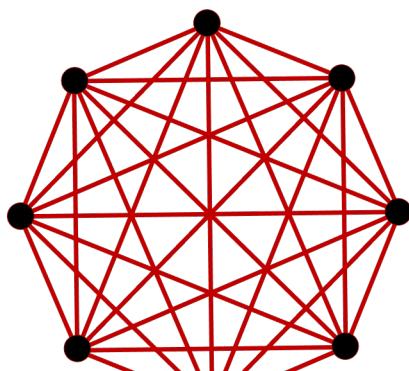
MaxCut

$$C = \sum_{\langle i,j \rangle} \frac{1}{2}(1 - z_i z_j)$$



Goal: find a **bipartition** of vertices that cut the maximum # edges

Sherrington-Kirkpatrick (SK) model



$$C = \frac{1}{\sqrt{n}} \sum_{i < j} J_{ij} z_i z_j$$

$$J_{ij} \sim \text{Normal}(0, 1)$$

$$\text{or } J_{ij} \in \{\pm 1\}$$

Combinatorial Optimization Problems

Cost function

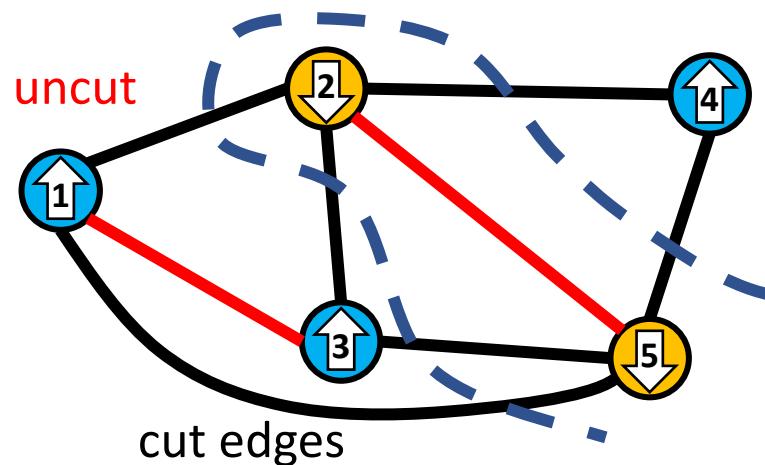
$$C(z) = \sum_{\alpha} C_{\alpha}(z)$$

$$z = (z_1, \dots, z_n) \in \{\pm 1\}^n$$

Want z^* so $C(z^*)$ is maximized

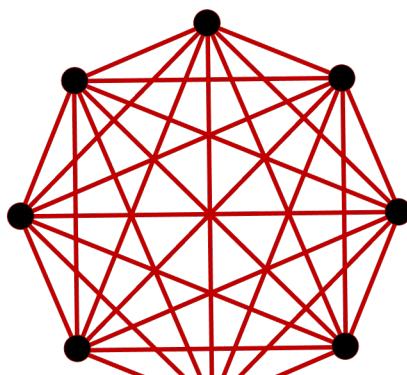
MaxCut

$$C = \sum_{\langle i,j \rangle} \frac{1}{2}(1 - z_i z_j)$$



Goal: find a **bipartition** of vertices that cut the maximum # edges

Sherrington-Kirkpatrick (SK) model



$$C = \frac{1}{\sqrt{n}} \sum_{i < j} J_{ij} z_i z_j$$

$$J_{ij} \sim \text{Normal}(0, 1)$$

$$\text{or } J_{ij} \in \{\pm 1\}$$

MaxCut on Erdős-Rényi graphs = SK
(average case)

Quantum Approximate Optimization Algorithm (QAOA)

[Farhi Goldstone Gutmann 2014]

Quantum Approximate Optimization Algorithm (QAOA)

$|+\rangle$

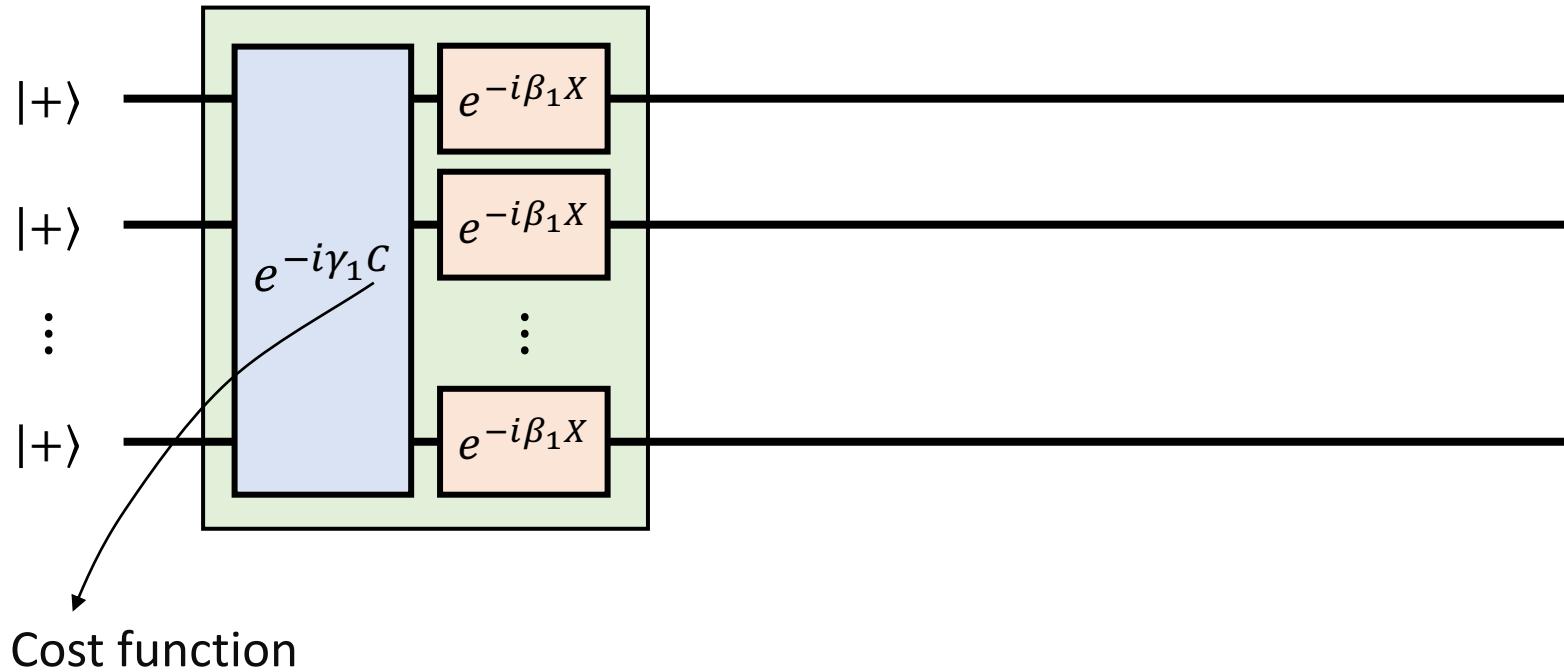
$|+\rangle$

\vdots

$|+\rangle$

$|+\rangle^{\otimes n}$

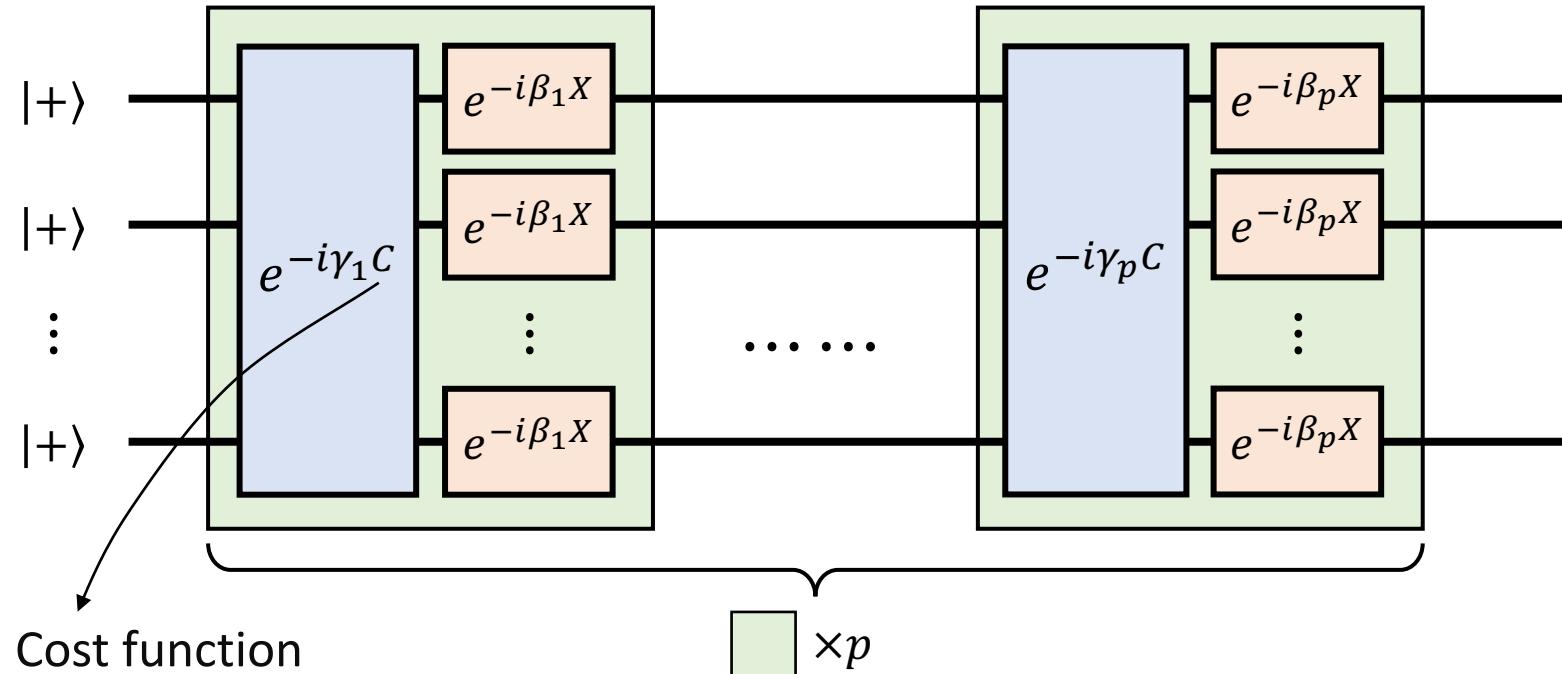
Quantum Approximate Optimization Algorithm (QAOA)



$$e^{-i\beta_1 B} e^{-i\gamma_1 C} |+\rangle^{\otimes n}$$

$$B = \sum_{i=1}^n X_i$$

Quantum Approximate Optimization Algorithm (QAOA)

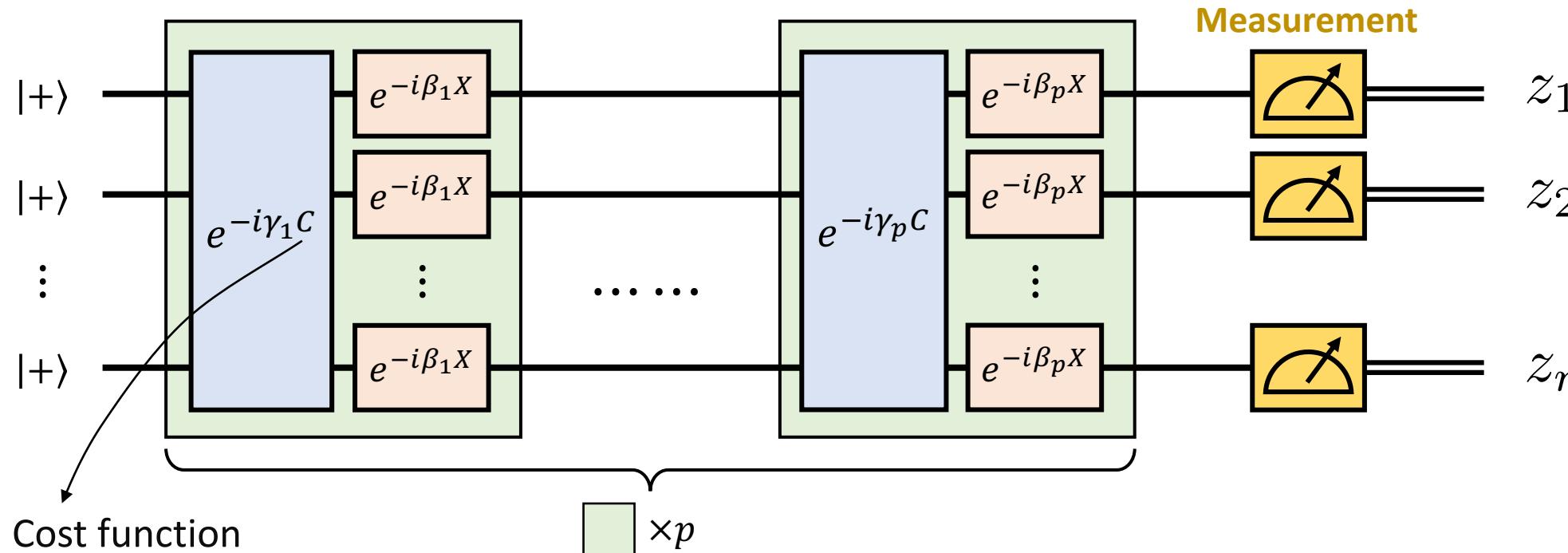


$$|\gamma, \beta\rangle = e^{-i\beta_p B} e^{-i\gamma_p C} \dots e^{-i\beta_1 B} e^{-i\gamma_1 C} |+\rangle^{\otimes n}$$

$$B = \sum_{i=1}^n X_i$$

[Farhi Goldstone Gutmann 2014]

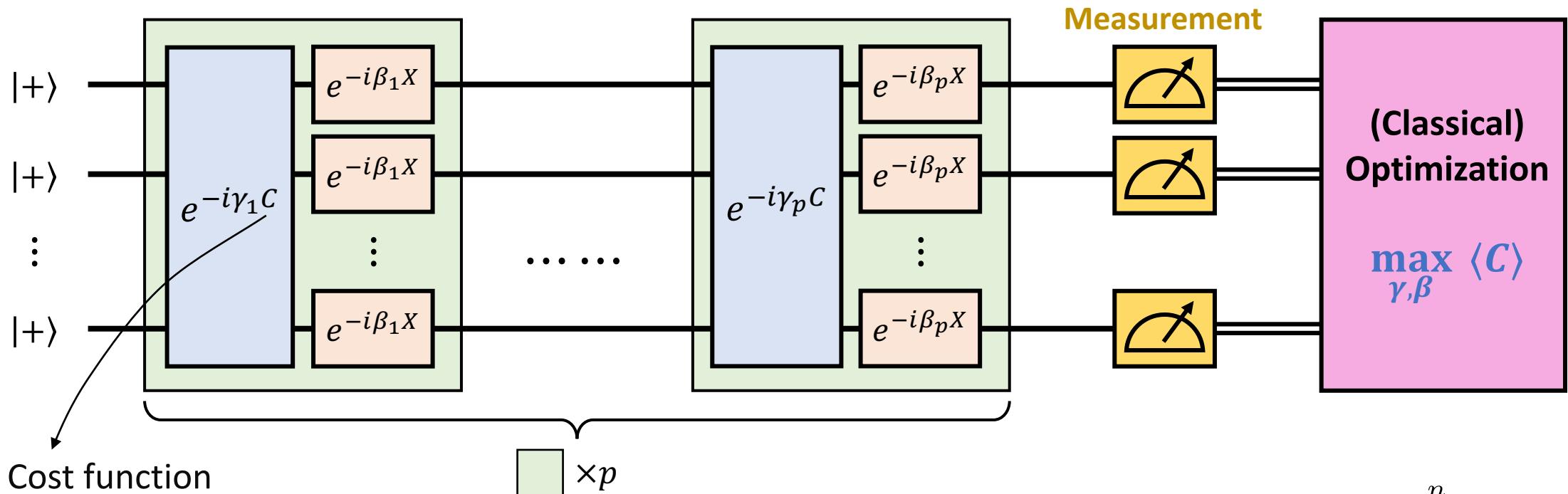
Quantum Approximate Optimization Algorithm (QAOA)



$$|\gamma, \beta\rangle = e^{-i\beta_p B} e^{-i\gamma_p C} \dots e^{-i\beta_1 B} e^{-i\gamma_1 C} |+\rangle^{\otimes n}$$

$$B = \sum_{i=1}^n X_i$$

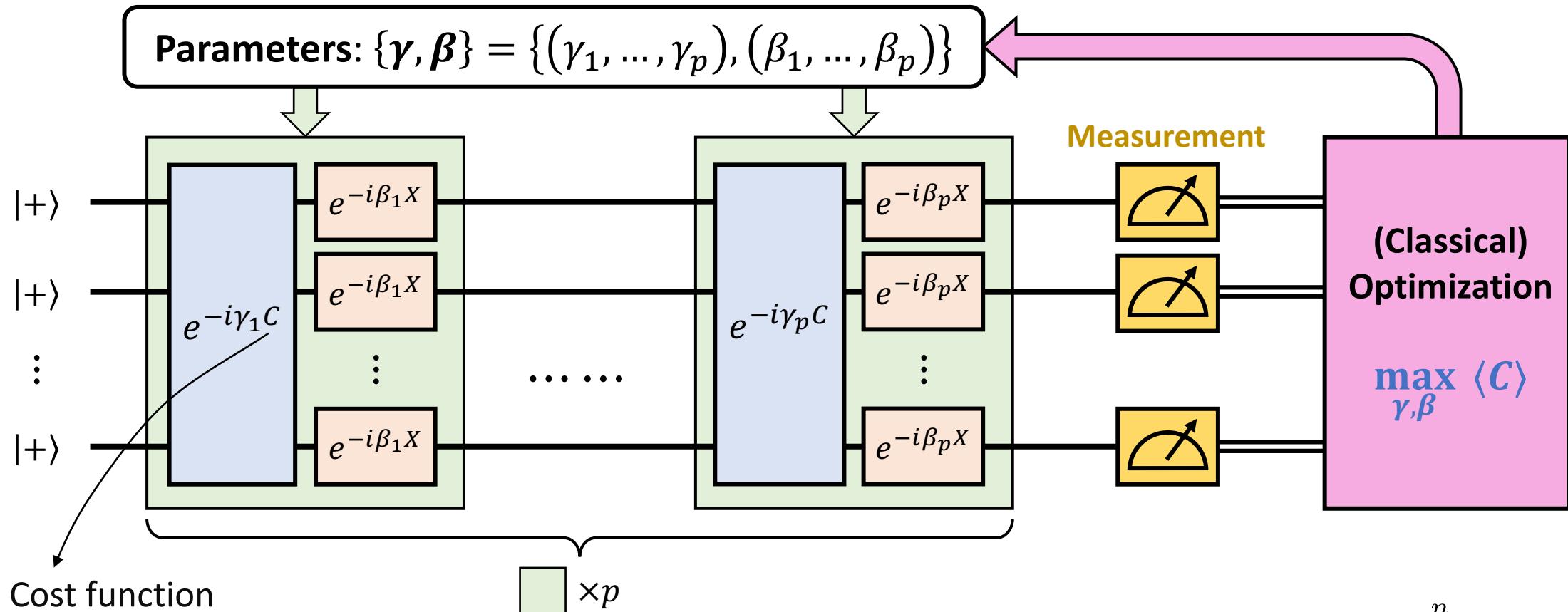
Quantum Approximate Optimization Algorithm (QAOA)



$$|\gamma, \beta\rangle = e^{-i\beta_p B} e^{-i\gamma_p C} \dots e^{-i\beta_1 B} e^{-i\gamma_1 C} |+\rangle^{\otimes n}$$

$$B = \sum_{i=1}^n X_i$$

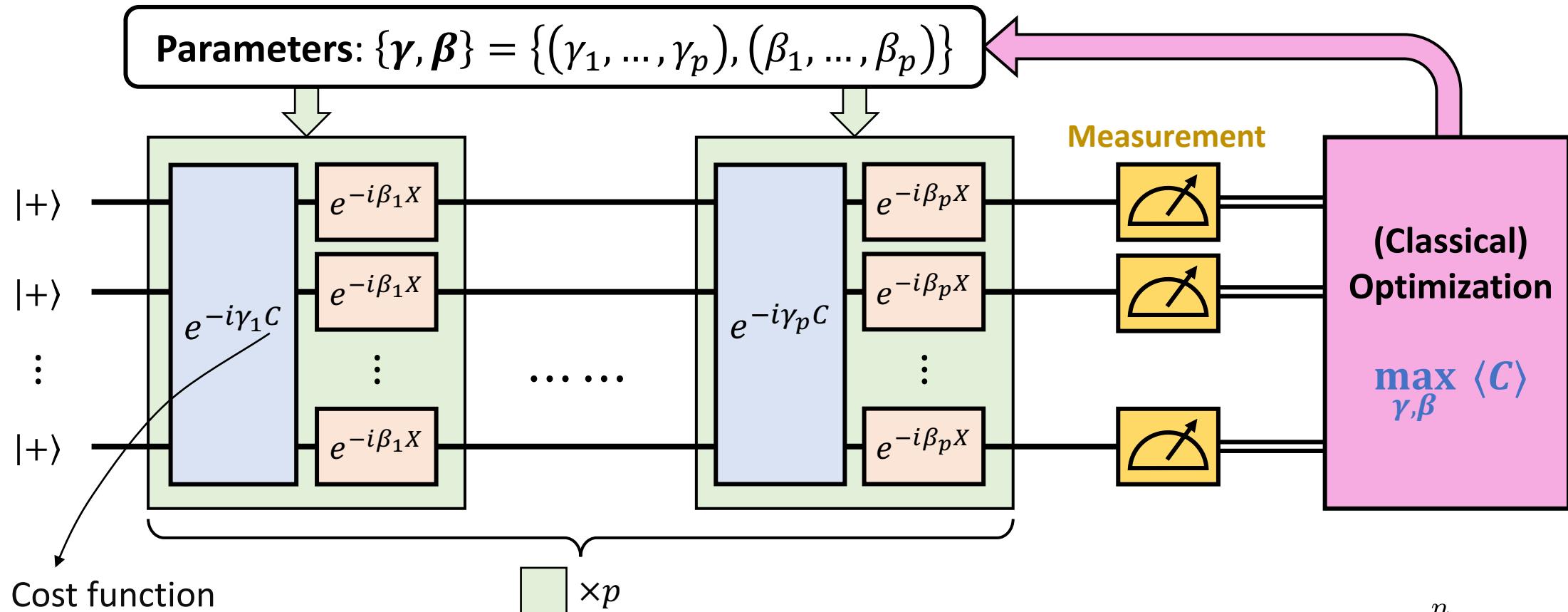
Quantum Approximate Optimization Algorithm (QAOA)



$$|\gamma, \beta\rangle = e^{-i\beta_p B} e^{-i\gamma_p C} \dots e^{-i\beta_1 B} e^{-i\gamma_1 C} |+\rangle^{\otimes n}$$

$$B = \sum_{i=1}^n X_i$$

Quantum Approximate Optimization Algorithm (QAOA)



$$|\gamma, \beta\rangle = e^{-i\beta_p B} e^{-i\gamma_p C} \dots e^{-i\beta_1 B} e^{-i\gamma_1 C} |+\rangle^{\otimes n}$$

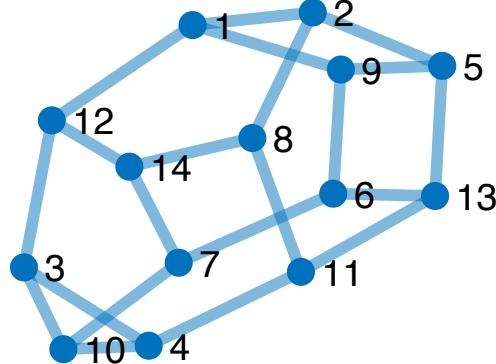
$$B = \sum_{i=1}^n X_i$$

As $p \rightarrow \infty$ QAOA can get the global optimum

Previous Results on the QAOA

- Analyze performance via “subgraphs”

e.g. MaxCut on 3-regular graphs



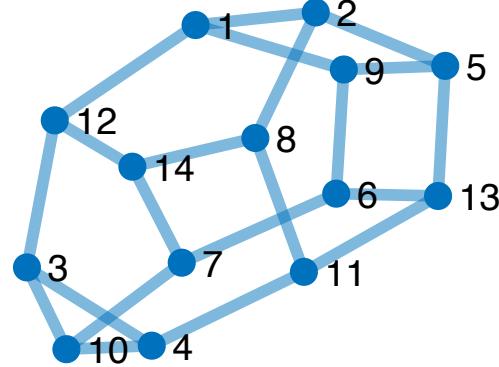
$$C = \sum_{\langle j, k \rangle} \frac{1}{2} (1 - Z_j Z_k)$$

Previous Results on the QAOA

- Analyze performance via “subgraphs”

$$p = 1$$

e.g. MaxCut on 3-regular graphs



$$C = \sum_{\langle j, k \rangle} \frac{1}{2} (1 - Z_j Z_k)$$

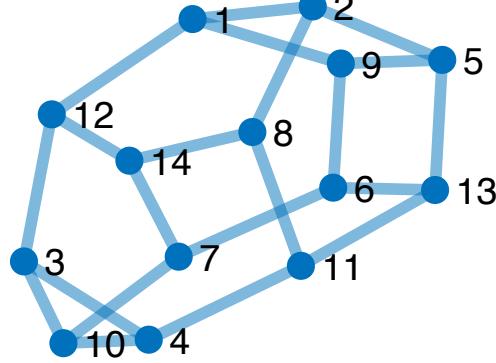
Previous Results on the QAOA

- Analyze performance via “subgraphs”

$$p = 1 \quad |s\rangle = |+\rangle^{\otimes n}$$

e.g. *MaxCut on 3-regular graphs*

$$\langle s | e^{i\gamma C} e^{i\beta B} Z_j Z_k e^{-i\beta B} e^{-i\gamma C} | s \rangle$$



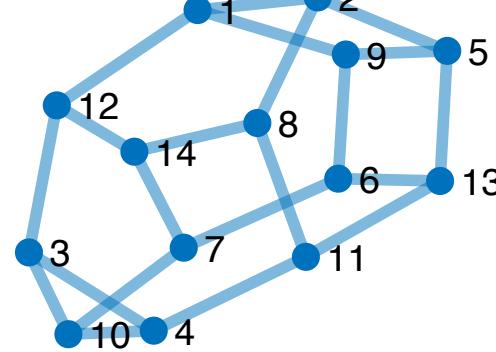
Previous Results on the QAOA

- Analyze performance via “subgraphs”

$$p = 1$$

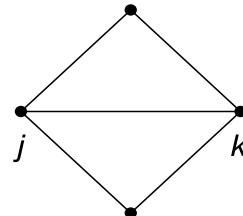
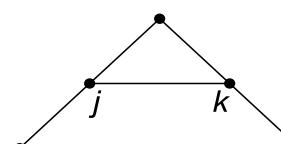
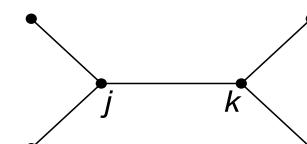
$$|s\rangle = |+\rangle^{\otimes n}$$

e.g. MaxCut on 3-regular graphs



$$\langle s | e^{i\gamma C} e^{i\beta B} Z_j Z_k e^{-i\beta B} e^{-i\gamma C} | s \rangle$$

supported on 3 types of subgraphs



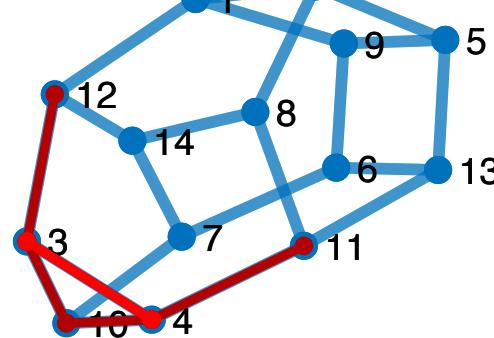
Previous Results on the QAOA

- Analyze performance via “subgraphs”

$$p = 1$$

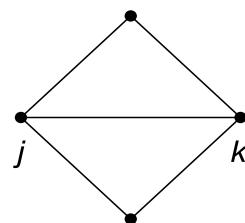
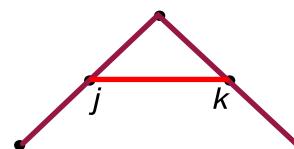
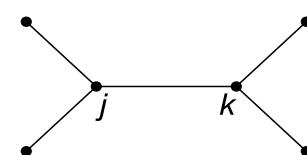
$$|s\rangle = |+\rangle^{\otimes n}$$

e.g. MaxCut on 3-regular graphs



$$\langle s | e^{i\gamma C} e^{i\beta B} Z_j Z_k e^{-i\beta B} e^{-i\gamma C} | s \rangle$$

supported on 3 types of subgraphs



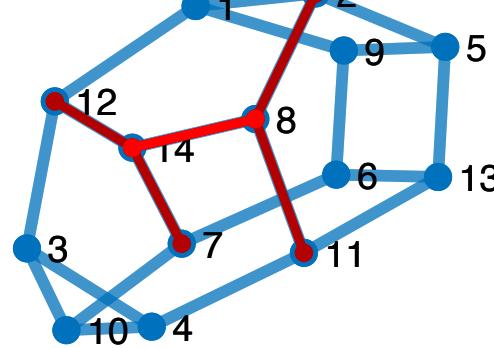
Previous Results on the QAOA

- Analyze performance via “subgraphs”

$$p = 1$$

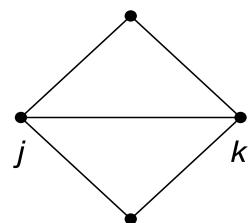
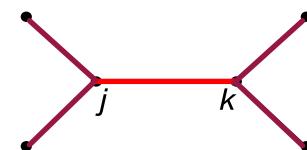
$$|s\rangle = |+\rangle^{\otimes n}$$

e.g. MaxCut on 3-regular graphs



$$\langle s | e^{i\gamma C} e^{i\beta B} Z_j Z_k e^{-i\beta B} e^{-i\gamma C} | s \rangle$$

supported on 3 types of subgraphs



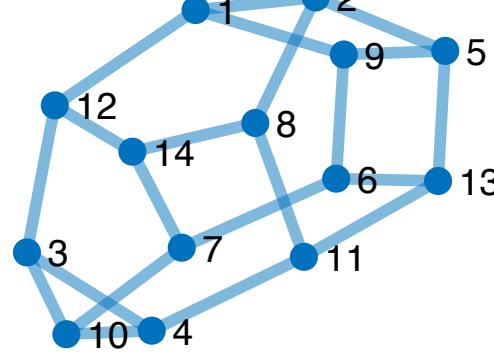
Previous Results on the QAOA

- Analyze performance via “subgraphs”

$$p = 1$$

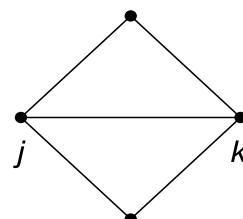
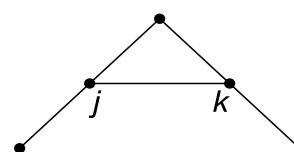
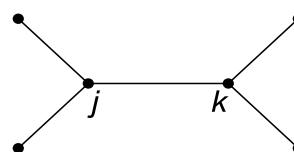
$$|s\rangle = |+\rangle^{\otimes n}$$

e.g. MaxCut on 3-regular graphs



$$\langle s | e^{i\gamma C} e^{i\beta B} Z_j Z_k e^{-i\beta B} e^{-i\gamma C} | s \rangle$$

supported on 3 types of subgraphs



Worst case guarantee:

$$\langle C \rangle / C_{\max} \geq 0.6924 @ p = 1$$

[Farhi Goldstone Gutmann 2014]

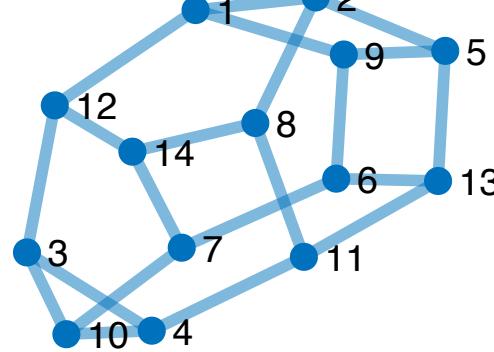
Previous Results on the QAOA

- Analyze performance via “subgraphs”

$$p = 1$$

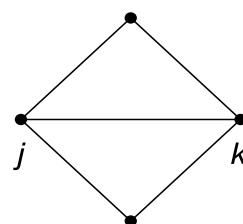
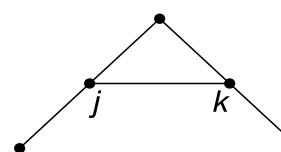
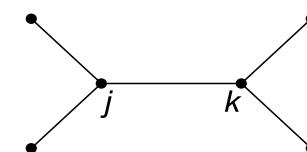
$$|s\rangle = |+\rangle^{\otimes n}$$

e.g. MaxCut on 3-regular graphs



$$\langle s | e^{i\gamma C} e^{i\beta B} Z_j Z_k e^{-i\beta B} e^{-i\gamma C} | s \rangle$$

supported on 3 types of subgraphs



Worst case guarantee:

$$\langle C \rangle / C_{\max} \geq 0.6924 @ p = 1$$

[Farhi Goldstone Gutmann 2014]

Difficult for higher p as the complexity of classical simulation grow as $O(2^{2^p})$!

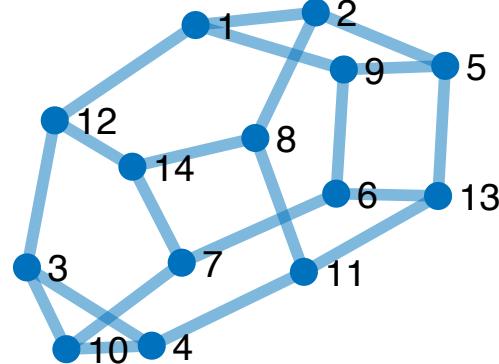
Previous Results on the QAOA

- Analyze performance via “subgraphs”

e.g. MaxCut on 3-regular graphs

“Landscape-Independence”

$$F_G(\gamma, \beta) = \langle \gamma, \beta |_G C_G | \gamma, \beta \rangle_G$$

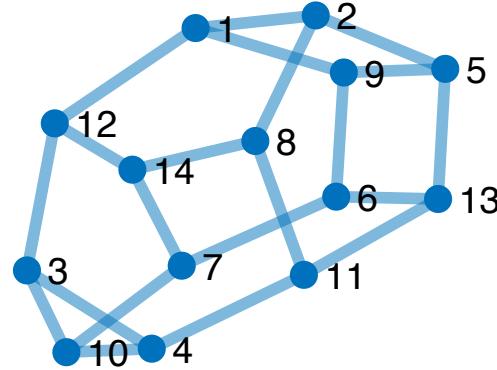


[LZ et al. 2018]
[Brandão et al. 2018]

Previous Results on the QAOA

- Analyze performance via “subgraphs”

e.g. MaxCut on 3-regular graphs



“Landscape-Independence”

$$F_G(\gamma, \beta) = \langle \gamma, \beta |_G C_G | \gamma, \beta \rangle_G$$

$$\xrightarrow{n \rightarrow \infty} F(\gamma, \beta) \times \left[1 + O\left(\frac{1}{\sqrt{n}}\right) \right]$$

[LZ et al. 2018]

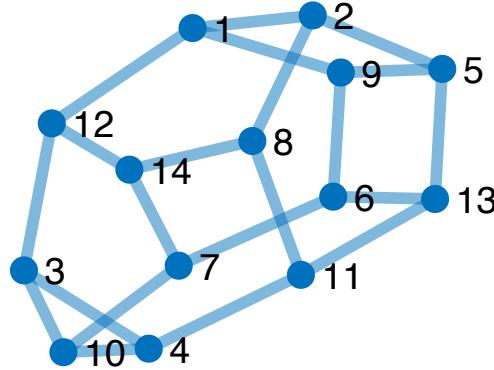
[Brandão et al. 2018]



Previous Results on the QAOA

- Analyze performance via “subgraphs”

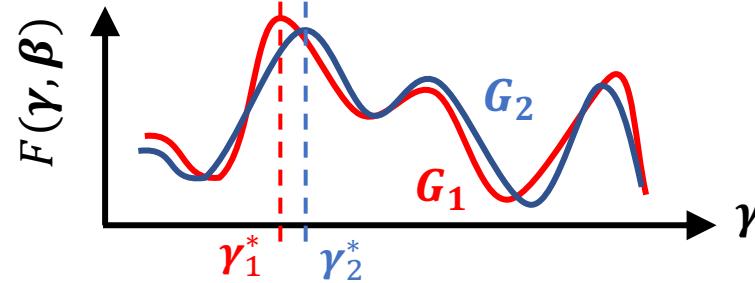
e.g. MaxCut on 3-regular graphs



“Landscape-Independence”

$$F_G(\gamma, \beta) = \langle \gamma, \beta |_G C_G | \gamma, \beta \rangle_G$$

$$\xrightarrow{n \rightarrow \infty} F(\gamma, \beta) \times \left[1 + O\left(\frac{1}{\sqrt{n}}\right) \right]$$



[LZ et al. 2018]

[Brandão et al. 2018]

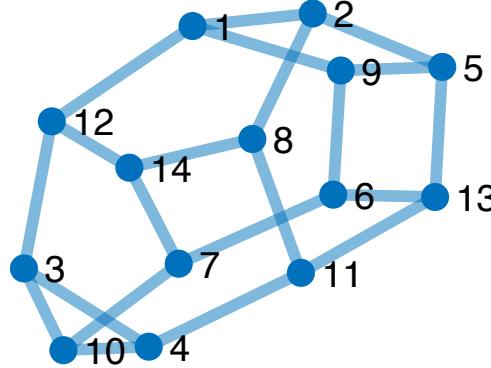
- Low-depth QAOA don't see the whole graph → limited performance

[Bravyi Kliesch Koenig Tang 2019]
[Farhi Gamarnik Gutmann 2020]

Previous Results on the QAOA

- Analyze performance via “subgraphs”

e.g. MaxCut on 3-regular graphs



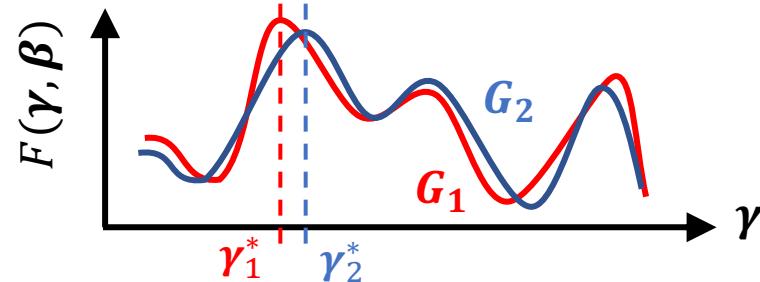
“Landscape-Independence”

$$F_G(\gamma, \beta) = \langle \gamma, \beta |_G C_G | \gamma, \beta \rangle_G$$

$$\xrightarrow{n \rightarrow \infty} F(\gamma, \beta) \times \left[1 + O\left(\frac{1}{\sqrt{n}}\right) \right]$$

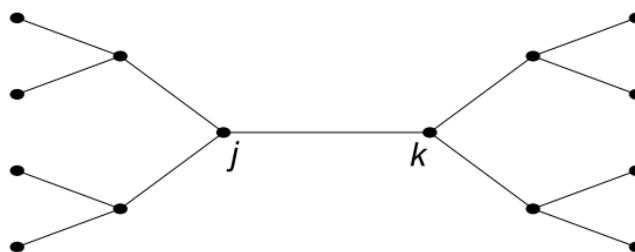
[LZ et al. 2018]

[Brandão et al. 2018]



- Low-depth QAOA don’t see the whole graph → limited performance

On d -regular graphs,
mostly see trees when
 $p \ll \log_{d-1} n$

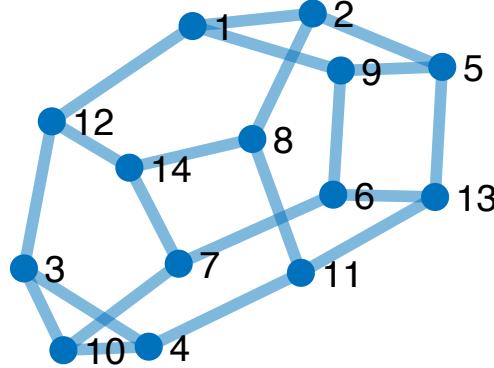


[Bravyi Kliesch Koenig Tang 2019]
[Farhi Gamarnik Gutmann 2020]

Previous Results on the QAOA

- Analyze performance via “subgraphs”

e.g. MaxCut on 3-regular graphs



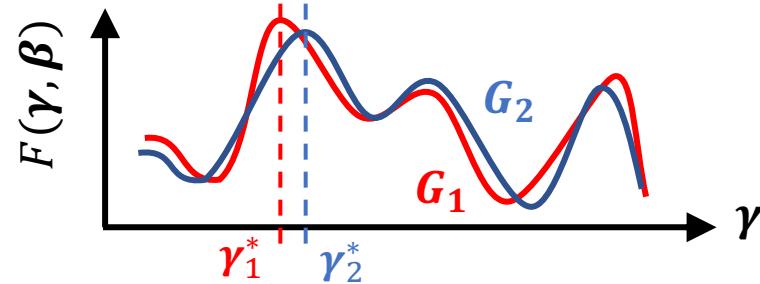
“Landscape-Independence”

$$F_G(\gamma, \beta) = \langle \gamma, \beta |_G C_G | \gamma, \beta \rangle_G$$

$$\xrightarrow{n \rightarrow \infty} F(\gamma, \beta) \times \left[1 + O\left(\frac{1}{\sqrt{n}}\right) \right]$$

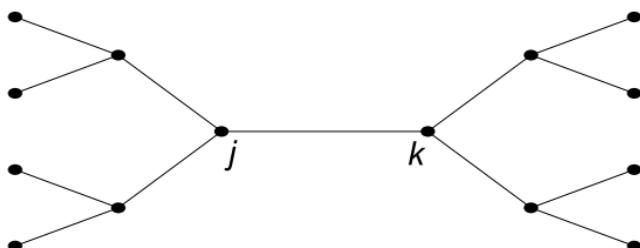
[LZ et al. 2018]

[Brandão et al. 2018]



- Low-depth QAOA don’t see the whole graph → limited performance

On d -regular graphs,
mostly see trees when
 $p \ll \log_{d-1} n$

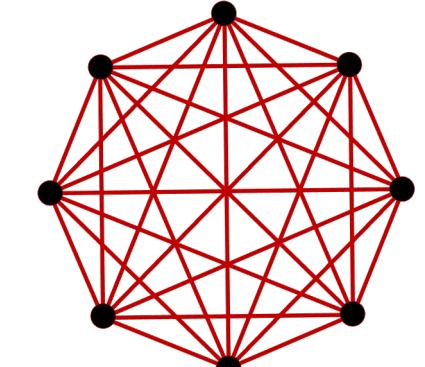


[Bravyi Kliesch Koenig Tang 2019]
[Farhi Gamarnik Gutmann 2020]

Cannot distinguish bipartite vs.
typical (frustrated) graphs

The Sherrington-Kirkpatrick model

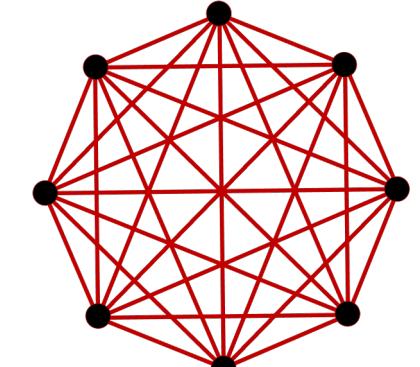
$$C_J = \frac{1}{\sqrt{n}} \sum_{i < j} J_{ij} Z_i Z_j \quad J_{ij} \sim \text{Normal}(0, 1)$$



The Sherrington-Kirkpatrick model

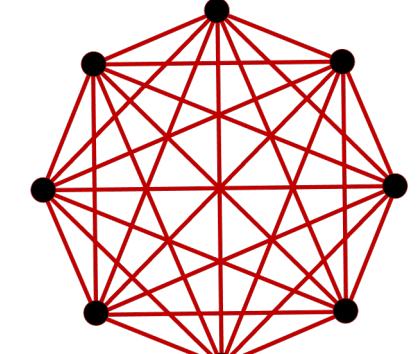
$$C_J = \frac{1}{\sqrt{n}} \sum_{i < j} J_{ij} Z_i Z_j \quad J_{ij} \sim \text{Normal}(0, 1)$$

- Unbounded vertex degree \rightarrow QAOA sees the whole graph at $p = 2$



The Sherrington-Kirkpatrick model

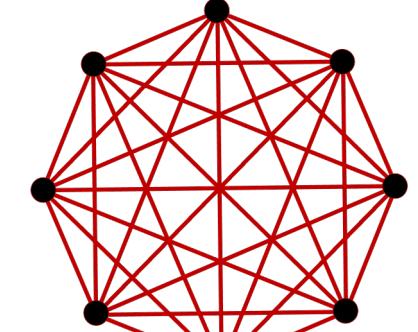
$$C_J = \frac{1}{\sqrt{n}} \sum_{i < j} J_{ij} Z_i Z_j \quad J_{ij} \sim \text{Normal}(0, 1)$$



- Unbounded vertex degree \rightarrow QAOA sees the whole graph at $p = 2$
- **Worst case:** NP-hard to approximate within $O(1/\log^c(n))$ factor [Arora *et al.* 2005]

The Sherrington-Kirkpatrick model

$$C_J = \frac{1}{\sqrt{n}} \sum_{i < j} J_{ij} Z_i Z_j \quad J_{ij} \sim \text{Normal}(0, 1)$$



- Unbounded vertex degree \rightarrow QAOA sees the whole graph at $p = 2$
- **Worst case:** NP-hard to approximate within $O(1/\log^c(n))$ factor [Arora *et al.* 2005]
- **Typical case:** Famously, Parisi (1979) predicted and Talagrand (2006) proved that

$$\lim_{n \rightarrow \infty} \frac{1}{n} \max_z C_J(z) = \Pi_* = 0.763166\dots$$

Complexity of solving a typical SK instance?

- Parisi *et al.*'s result does not construct the solution!

$$\Pi_* = 0.763166 \dots$$

Complexity of solving a typical SK instance?

- Parisi *et al.*'s result does not construct the solution!

$$\Pi_* = 0.763166 \dots$$

- Known results of typical-case complexity:
 1. Simulated Annealing is believed to fail for this problem [Parisi]
 2. Semi-Definite Programming obtains $C/n = 2/\pi \approx 0.6366$ [Montanari Sen 2016]
 3. Assuming the conjecture that the SK model has no “**overlap gap property**” (OGP), Andrea Montanari’s algorithm (2018) outputs $\hat{\mathbf{z}}$ with

$$C/n \geq (1 - \epsilon)\Pi_* \quad \text{in time } O(n^2/\epsilon^k)$$

Main Result 1: Performance of the QAOA applied to the SK model

We give an $O(16^p)$ -time method to evaluate

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J [\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

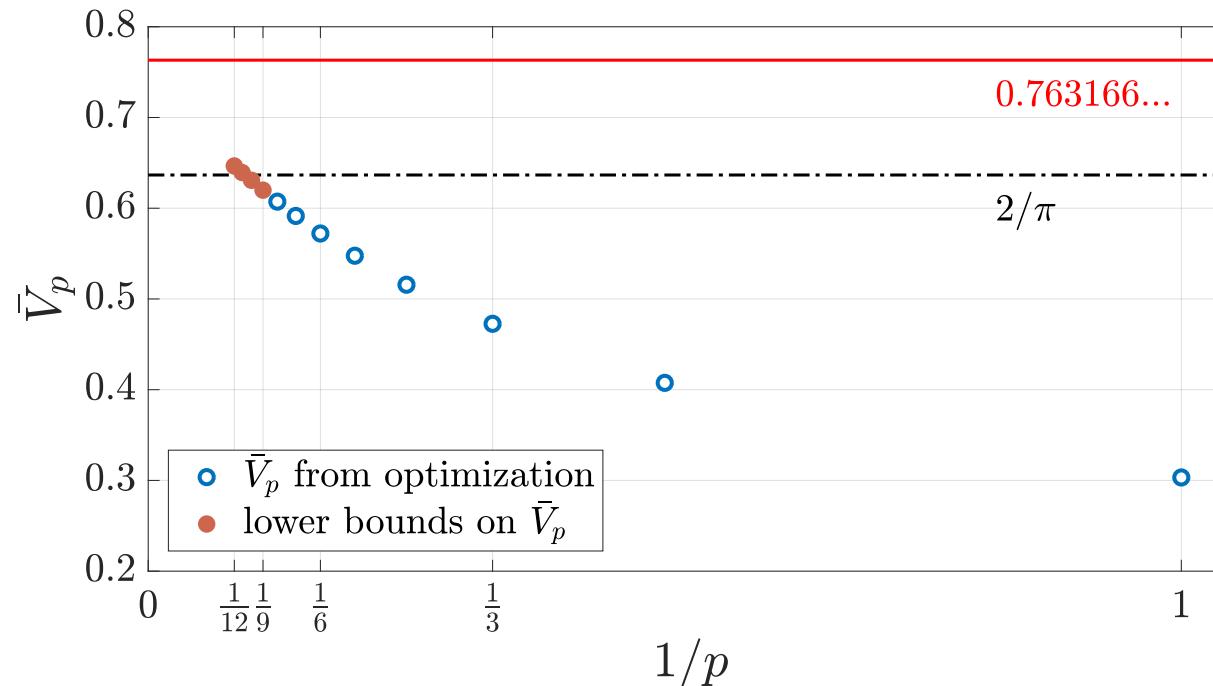
Much better than $O(2^{2^p})$ -time subgraph method

Main Result 1: Performance of the QAOA applied to the SK model

We give an $O(16^p)$ -time method to evaluate

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J [\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

Much better than $O(2^{2^p})$ -time subgraph method



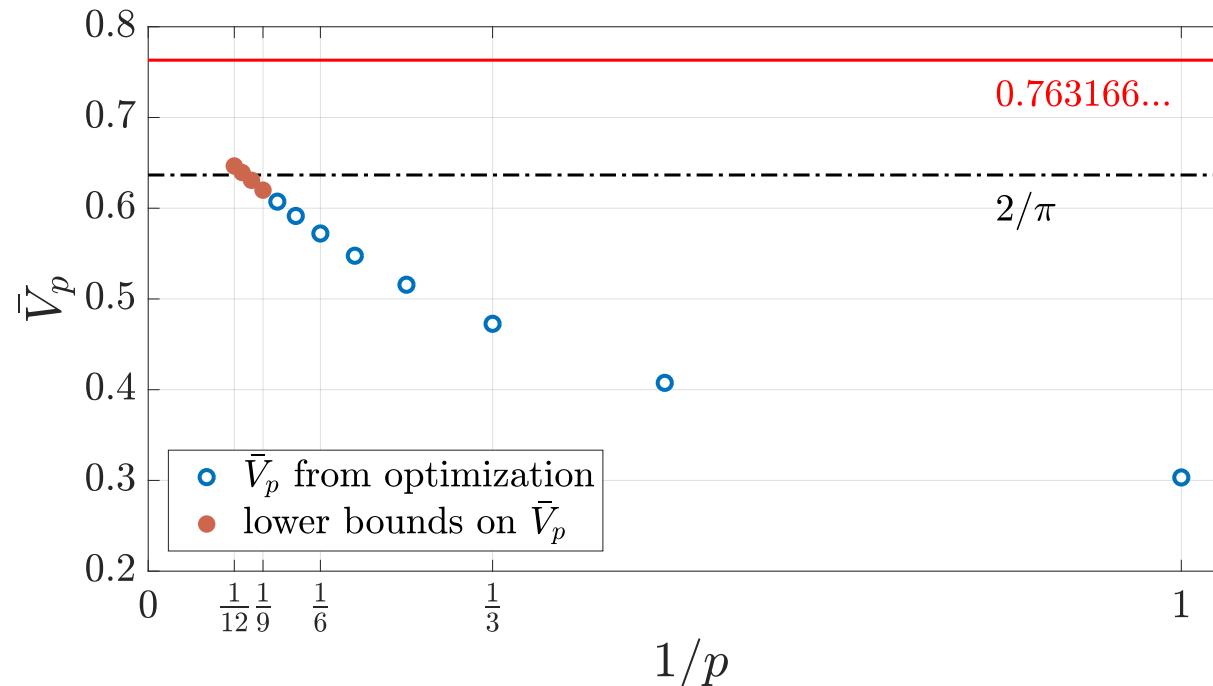
$$\bar{V}_p = \max_{\gamma, \beta} V_p(\gamma, \beta)$$

Main Result 1: Performance of the QAOA applied to the SK model

We give an $O(16^p)$ -time method to evaluate

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J[\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

Much better than $O(2^{2^p})$ -time subgraph method



$$\bar{V}_p = \max_{\gamma, \beta} V_p(\gamma, \beta)$$

**QAOA beats SDP
@ $p=11$**

Main Result 2: Concentration of QAOA on the SK model

- We also prove, for any fixed depth p :

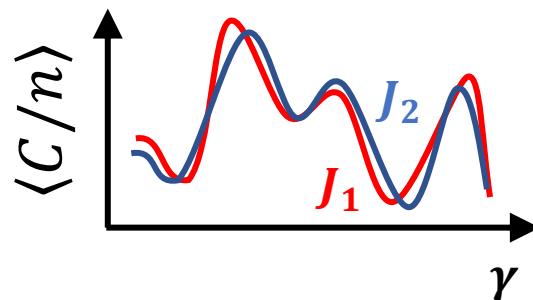
$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

Main Result 2: Concentration of QAOA on the SK model

- We also prove, for any fixed depth p :

$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

Concentration over instances
("Landscape-Independence")

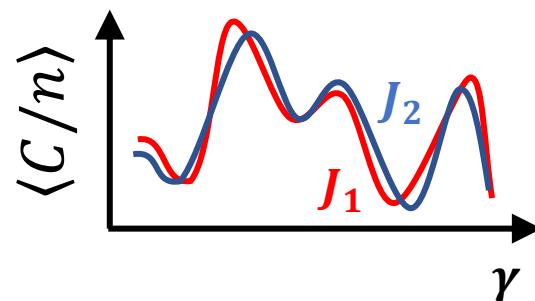


Main Result 2: Concentration of QAOA on the SK model

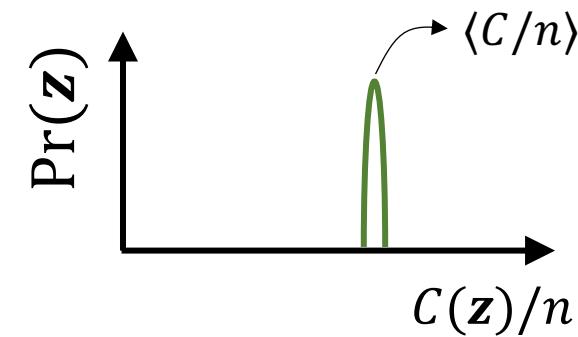
- We also prove, for any fixed depth p :

$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

Concentration over instances
("Landscape-Independence")



Concentration over measurements

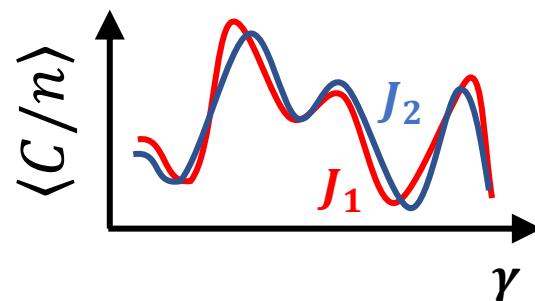


Main Result 2: Concentration of QAOA on the SK model

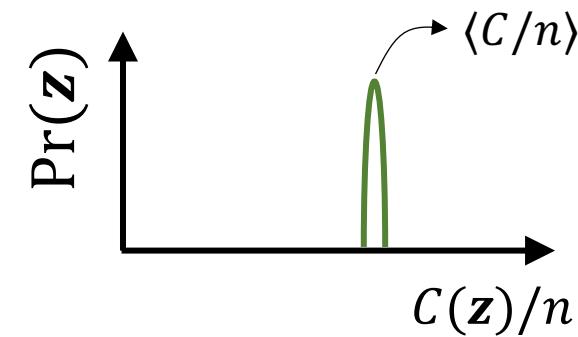
- We also prove, for any fixed depth p :

$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

Concentration over instances
("Landscape-Independence")



Concentration over measurements



- With probability $\rightarrow 1$ as $n \rightarrow \infty$, applying QAOA and measuring will give us a bit string \mathbf{z} which has

$$C(\mathbf{z})/n \approx \langle C/n \rangle \approx V_p$$

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J]$$

$$Z_J(T) = \text{tr}(e^{C_J/T})$$

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J] \neq \log \mathbb{E}_J[Z_J] \quad Z_J(T) = \text{tr}(e^{C_J/T})$$

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J] = \lim_{k \rightarrow 0} \frac{1}{k} \log \mathbb{E}[Z_J^k] \qquad \qquad Z_J(T) = \text{tr}(e^{C_J/T})$$

\curvearrowleft *k replicas of J*

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J] = \lim_{k \rightarrow 0} \frac{1}{k} \log \mathbb{E}[Z_J^k] \qquad \qquad Z_J(T) = \text{tr}(e^{C_J/T})$$

\curvearrowleft k replicas of J

- For QAOA, averaging over J is easier

$$\frac{1}{n} \mathbb{E}_J[\langle C \rangle] = \mathbb{E}_J \left[\langle s | e^{i\gamma C} e^{i\beta B} \frac{C}{n} e^{-i\beta B} e^{-i\gamma C} | s \rangle \right]$$

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J] = \lim_{k \rightarrow 0} \frac{1}{k} \log \mathbb{E}[Z_J^k] \quad Z_J(T) = \text{tr}(e^{C_J/T})$$

\curvearrowleft k replicas of J

- For QAOA, averaging over J is easier

$$\begin{aligned} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] &= \mathbb{E}_J \left[\langle s | e^{i\gamma C} e^{i\beta B} \frac{C}{n} e^{-i\beta B} e^{-i\gamma C} | s \rangle \right] \\ &= \frac{1}{2^n} \sum_{z^1 z^m z^2} \mathbb{E}_J \left[e^{i\gamma C(z^1)} \langle z^1 | e^{i\beta B} | z^m \rangle \frac{C(z^m)}{n} \langle z^m | e^{-i\beta B} | z^2 \rangle e^{-i\gamma C(z^2)} \right] \end{aligned}$$

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J] = \lim_{k \rightarrow 0} \frac{1}{k} \log \mathbb{E}[Z_J^k] \quad Z_J(T) = \text{tr}(e^{C_J/T})$$

\curvearrowleft k replicas of J

- For QAOA, averaging over J is easier

$$\begin{aligned} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] &= \mathbb{E}_J \left[\langle s | e^{i\gamma C} e^{i\beta B} \frac{C}{n} e^{-i\beta B} e^{-i\gamma C} | s \rangle \right] \\ &= \frac{1}{2^n} \sum_{z^1 z^m z^2} \mathbb{E}_J \left[e^{i\gamma C(z^1)} \langle z^1 | e^{i\beta B} | z^m \rangle \frac{C(z^m)}{n} \langle z^m | e^{-i\beta B} | z^2 \rangle e^{-i\gamma C(z^2)} \right] \end{aligned}$$

$$C = \frac{1}{\sqrt{n}} \sum_{i < j} \textcolor{red}{J_{ij}} Z_i Z_j$$

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J] = \lim_{k \rightarrow 0} \frac{1}{k} \log \mathbb{E}[Z_J^k] \quad Z_J(T) = \text{tr}(e^{C_J/T})$$

\curvearrowleft k replicas of J

- For QAOA, averaging over J is easier

$$\begin{aligned} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] &= \mathbb{E}_J \left[\langle s | e^{i\gamma C} e^{i\beta B} \frac{C}{n} e^{-i\beta B} e^{-i\gamma C} | s \rangle \right] \\ &= \frac{1}{2^n} \sum_{z^1 z^m z^2} \mathbb{E}_J \left[e^{i\gamma \mathbf{C}(z^1)} \langle z^1 | e^{i\beta B} | z^m \rangle \frac{\mathbf{C}(z^m)}{n} \langle z^m | e^{-i\beta B} | z^2 \rangle e^{-i\gamma \mathbf{C}(z^2)} \right] \end{aligned}$$

$$C = \frac{1}{\sqrt{n}} \sum_{i < j} \mathbf{J}_{ij} Z_i Z_j$$

Key Idea: Average over instances

- Parisi's formalism requires delicate tricks
 - A replica-symmetry-breaking ansatz for the free energy:

$$\mathbb{E}_J[\log Z_J] = \lim_{k \rightarrow 0} \frac{1}{k} \log \mathbb{E}[Z_J^k] \quad Z_J(T) = \text{tr}(e^{C_J/T})$$

\curvearrowleft *k replicas of J*

- For QAOA, averaging over J is easier

$$\begin{aligned} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] &= \mathbb{E}_J \left[\langle s | e^{i\gamma C} e^{i\beta B} \frac{C}{n} e^{-i\beta B} e^{-i\gamma C} | s \rangle \right] \\ &= \frac{1}{2^n} \sum_{z^1 z^m z^2} \mathbb{E}_J \left[e^{i\gamma \mathbf{C}(z^1)} \langle z^1 | e^{i\beta B} | z^m \rangle \frac{\mathbf{C}(z^m)}{n} \langle z^m | e^{-i\beta B} | z^2 \rangle e^{-i\gamma \mathbf{C}(z^2)} \right] \end{aligned}$$

$$C = \frac{1}{\sqrt{n}} \sum_{i < j} \mathbf{J}_{ij} Z_i Z_j$$

For ϕ small, use $\mathbb{E}_J[e^{iJ\phi}] = 1 - \frac{1}{2}\phi^2 + \dots$ $\mathbb{E}_J[Je^{iJ\phi}] = i\phi + \dots$

Key Idea: Average over instances

$$\frac{1}{n} \mathbb{E}_J[\langle C \rangle] \approx \frac{i}{n^{3/2}} \sum_{\mathbf{z}^1, \mathbf{z}^2} \left[\langle \mathbf{z}^1 | e^{i\beta B} | \mathbf{1} \rangle \langle \mathbf{1} | e^{-i\beta B} | \mathbf{z}^2 \rangle \sum_{k < \ell} \phi_{k\ell} \prod_{i < j} \left(1 - \frac{1}{2} \phi_{ij}^2\right) \right]$$

$$\phi_{ab} = \frac{\gamma}{\sqrt{n}} (z_a^1 z_b^1 - z_a^2 z_b^2)$$

Key Idea: Average over instances

$$\frac{1}{n} \mathbb{E}_J[\langle C \rangle] \approx \frac{i}{n^{3/2}} \sum_{\mathbf{z}^1, \mathbf{z}^2} \left[\langle \mathbf{z}^1 | e^{i\beta B} | \mathbf{1} \rangle \langle \mathbf{1} | e^{-i\beta B} | \mathbf{z}^2 \rangle \sum_{k < \ell} \phi_{k\ell} \prod_{i < j} \left(1 - \frac{1}{2} \phi_{ij}^2\right) \right]$$

Permutation symmetry → configuration basis

$$\phi_{ab} = \frac{\gamma}{\sqrt{n}} (z_a^1 z_b^1 - z_a^2 z_b^2)$$

\mathbf{z}^1 + + + + + + + - - - - - - -

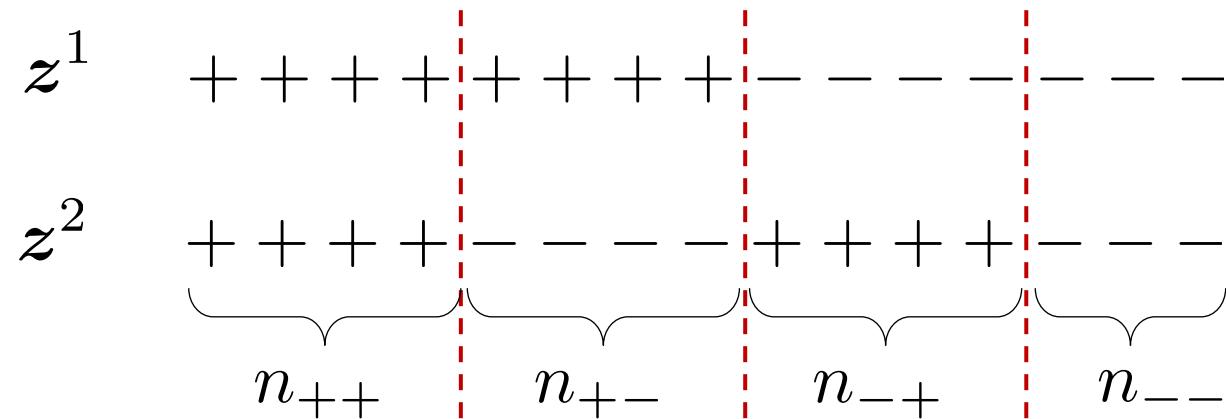
\mathbf{z}^2 + + + + - - - - + + + + - - -

Key Idea: Average over instances

$$\frac{1}{n} \mathbb{E}_J[\langle C \rangle] \approx \frac{i}{n^{3/2}} \sum_{\mathbf{z}^1, \mathbf{z}^2} \left[\langle \mathbf{z}^1 | e^{i\beta B} | \mathbf{1} \rangle \langle \mathbf{1} | e^{-i\beta B} | \mathbf{z}^2 \rangle \sum_{k < \ell} \phi_{k\ell} \prod_{i < j} \left(1 - \frac{1}{2} \phi_{ij}^2\right) \right]$$

Permutation symmetry → configuration basis

$$\phi_{ab} = \frac{\gamma}{\sqrt{n}} (z_a^1 z_b^1 - z_a^2 z_b^2)$$



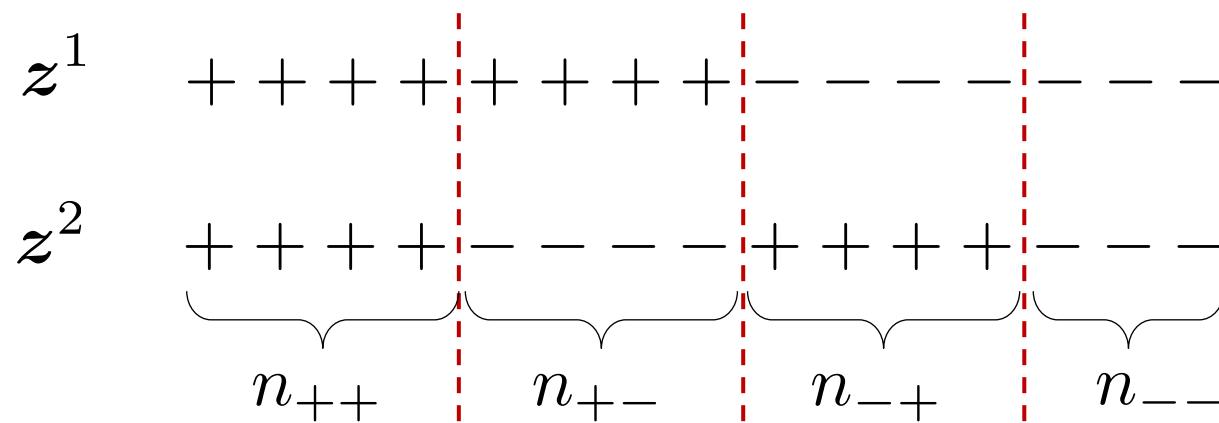
$$\sum_a n_a = n$$

Key Idea: Average over instances

$$\frac{1}{n} \mathbb{E}_J[\langle C \rangle] \approx \frac{i}{n^{3/2}} \sum_{z^1, z^2} \left[\langle z^1 | e^{i\beta B} | 1 \rangle \langle 1 | e^{-i\beta B} | z^2 \rangle \sum_{k < \ell} \phi_{k\ell} \prod_{i < j} \left(1 - \frac{1}{2} \phi_{ij}^2\right) \right]$$

Permutation symmetry → configuration basis

$$\phi_{ab} = \frac{\gamma}{\sqrt{n}} (z_a^1 z_b^1 - z_a^2 z_b^2)$$



$$\sum_{\mathbf{a}} n_{\mathbf{a}} = n$$

$$\sum_{z^1, z^2} = \sum_{\{n_{\mathbf{a}}\}} \binom{n}{n_{++}, n_{+-}, n_{-+}, n_{--}}$$

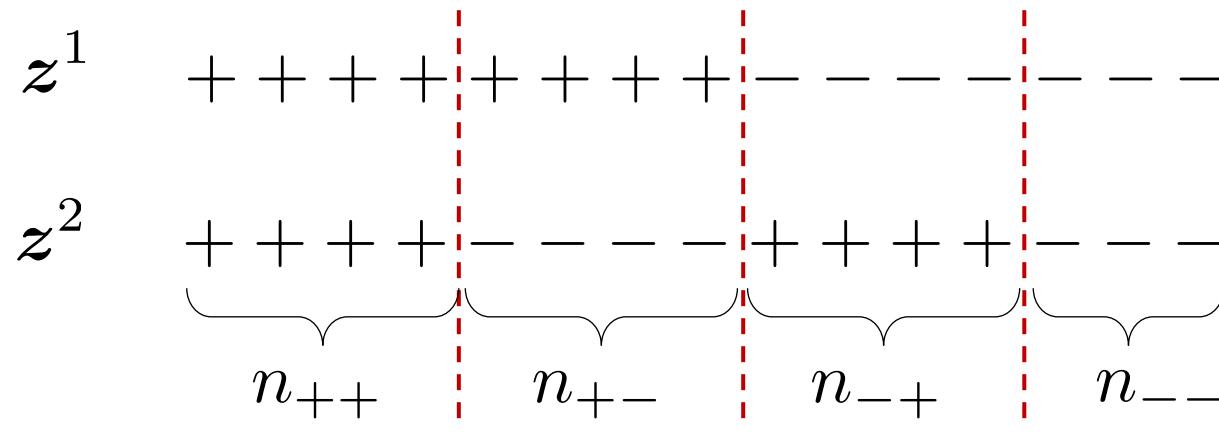
n-bit strings *configurations*

Key Idea: Average over instances

$$\frac{1}{n} \mathbb{E}_J[\langle C \rangle] \approx \frac{i}{n^{3/2}} \sum_{z^1, z^2} \left[\langle z^1 | e^{i\beta B} | 1 \rangle \langle 1 | e^{-i\beta B} | z^2 \rangle \sum_{k < \ell} \phi_{k\ell} \prod_{i < j} \left(1 - \frac{1}{2} \phi_{ij}^2\right) \right]$$

Permutation symmetry → configuration basis

$$\phi_{ab} = \frac{\gamma}{\sqrt{n}} (z_a^1 z_b^1 - z_a^2 z_b^2)$$



$$\sum_a n_a = n$$

For general p , there are 2^{2p} configurations

$$\sum_{z^1, z^2} = \sum_{\{n_a\}} \binom{n}{n_{++}, n_{+-}, n_{-+}, n_{--}}$$

n -bit strings configurations

$\exp(O(p))$ complexity

Performance of the QAOA on the SK model

- Turn the crank, we get at $p = 1$

$$V_1 = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] = \gamma e^{-2\gamma^2} \sin 4\beta$$

Optimum @ $\beta = \frac{\pi}{8}, \gamma = \frac{1}{2}$

$$\Rightarrow \max_{\gamma, \beta} V_1 = \frac{1}{\sqrt{4e}} \approx 0.303$$

Performance of the QAOA on the SK model

- Turn the crank, we get at $p = 1$

$$V_1 = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] = \gamma e^{-2\gamma^2} \sin 4\beta$$

Optimum @ $\beta = \frac{\pi}{8}, \gamma = \frac{1}{2}$

$$\Rightarrow \max_{\gamma, \beta} V_1 = \frac{1}{\sqrt{4e}} \approx 0.303$$

- Can also show **concentration**

$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

Performance of the QAOA on the SK model

- Turn the crank, we get at $p = 1$

$$V_1 = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] = \gamma e^{-2\gamma^2} \sin 4\beta$$

Optimum @ $\beta = \frac{\pi}{8}, \gamma = \frac{1}{2}$

$$\Rightarrow \max_{\gamma, \beta} V_1 = \frac{1}{\sqrt{4e}} \approx 0.303$$

- Can also show **concentration**

$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

- Generic vs. optimized QAOA

Performance of the QAOA on the SK model

- Turn the crank, we get at $p = 1$

$$V_1 = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] = \gamma e^{-2\gamma^2} \sin 4\beta$$

Optimum @ $\beta = \frac{\pi}{8}, \gamma = \frac{1}{2}$

$$\Rightarrow \max_{\gamma, \beta} V_1 = \frac{1}{\sqrt{4e}} \approx 0.303$$

- Can also show **concentration**

$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

- Generic vs. optimized QAOA

Suppose $J_{ij} \in \{\pm 1\}$

Then γ is periodic on $[0, \sqrt{n}\pi)$

β is periodic on $[0, \pi/2)$

Performance of the QAOA on the SK model

- Turn the crank, we get at $p = 1$

$$V_1 = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J[\langle C \rangle] = \gamma e^{-2\gamma^2} \sin 4\beta$$

Optimum @ $\beta = \frac{\pi}{8}, \gamma = \frac{1}{2}$

$$\Rightarrow \max_{\gamma, \beta} V_1 = \frac{1}{\sqrt{4e}} \approx 0.303$$

- Can also show **concentration**

$$\lim_{n \rightarrow \infty} \mathbb{E}_J[\langle (C/n)^2 \rangle] = \lim_{n \rightarrow \infty} \mathbb{E}_J^2[\langle C/n \rangle]$$

- Generic vs. optimized QAOA

Suppose $J_{ij} \in \{\pm 1\}$

Then γ is periodic on $[0, \sqrt{n}\pi)$

β is periodic on $[0, \pi/2)$

Generic QAOA state has
 $\langle C \rangle = e^{-O(n)}$!!

Performance of the QAOA on the SK model

- Higher p : our current method uses $O(4^p)$ memory and $O(16^p)$ time

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J [\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

Performance of the QAOA on the SK model

- Higher p : our current method uses $O(4^p)$ memory and $O(16^p)$ time

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J [\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

p	Best known V_p
1	0.303265
2	0.407545
...	...
8	0.607266
11 [†]	0.639311 beats SDP!
12 [†]	0.646557

[†]unoptimized

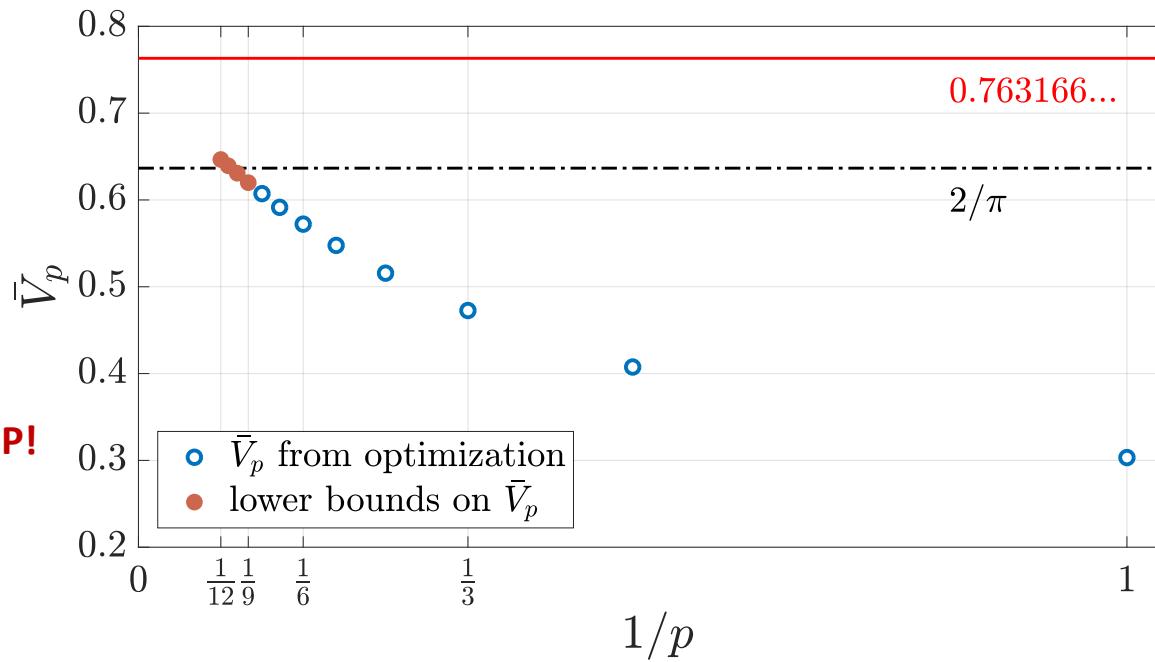
Performance of the QAOA on the SK model

- Higher p : our current method uses $O(4^p)$ memory and $O(16^p)$ time

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J [\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

p	Best known V_p
1	0.303265
2	0.407545
...	...
8	0.607266
11 [†]	0.639311 beats SDP!
12 [†]	0.646557

[†]unoptimized



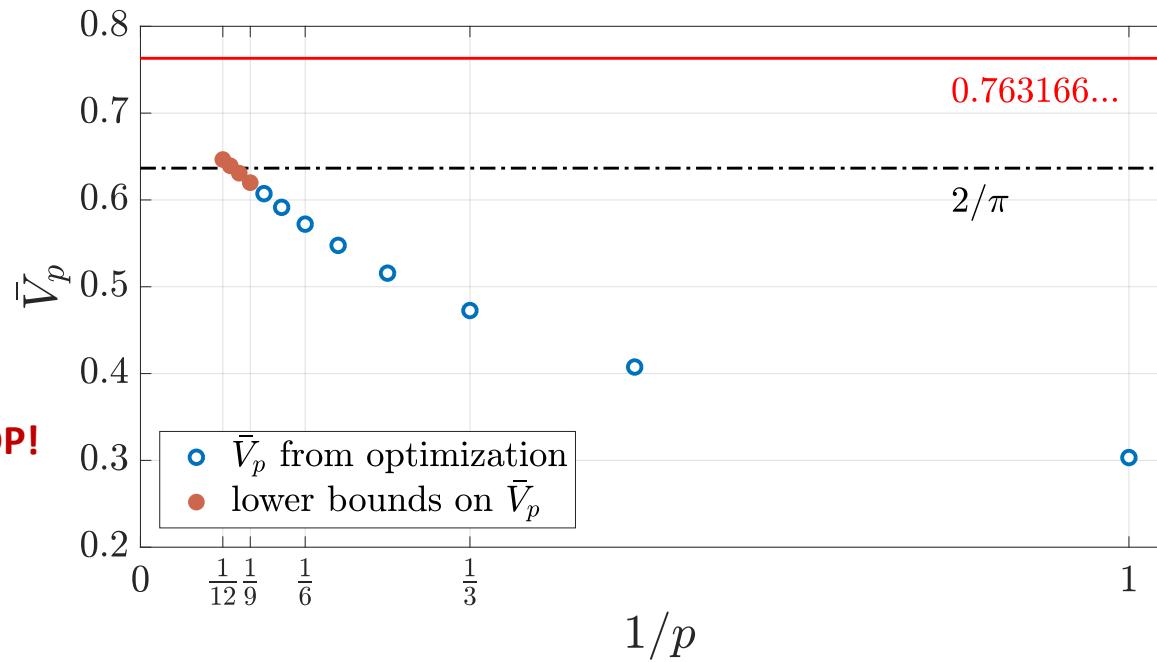
Performance of the QAOA on the SK model

- Higher p : our current method uses $O(4^p)$ memory and $O(16^p)$ time

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J [\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

p	Best known V_p
1	0.303265
2	0.407545
...	...
8	0.607266
11 [†]	0.639311 beats SDP!
12 [†]	0.646557

[†]unoptimized



$$\lim_{p \rightarrow \infty} \lim_{n \rightarrow \infty} = ? \lim_{n \rightarrow \infty} \lim_{p \rightarrow \infty}$$

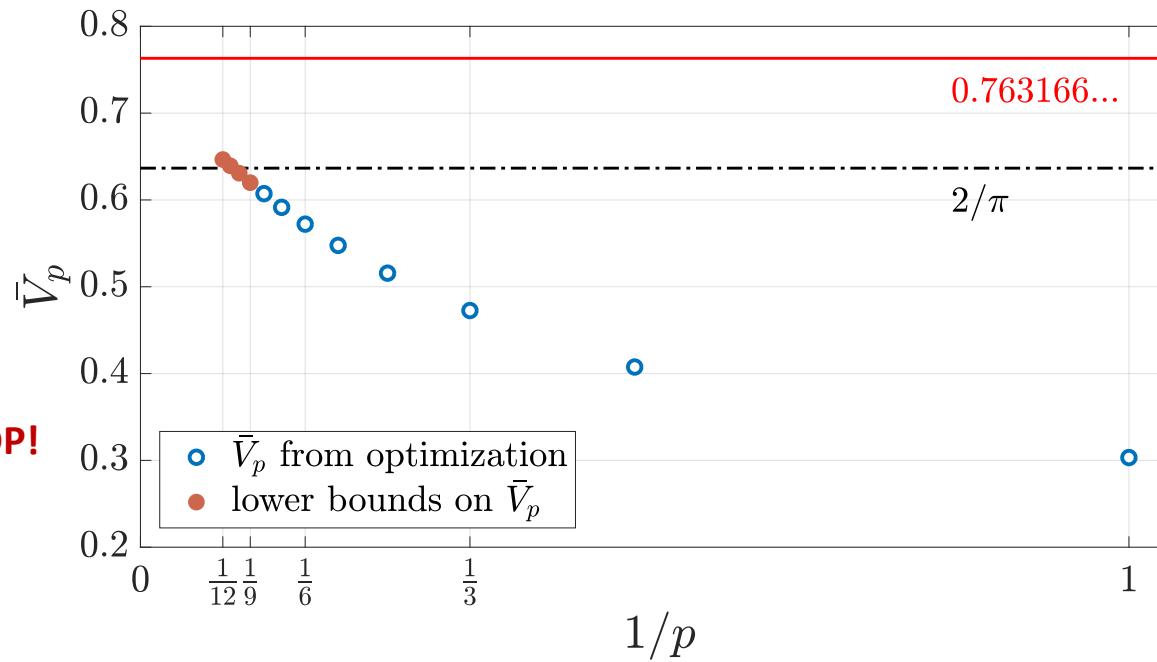
Performance of the QAOA on the SK model

- Higher p : our current method uses $O(4^p)$ memory and $O(16^p)$ time

$$V_p(\gamma, \beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_J [\langle \gamma, \beta | C | \gamma, \beta \rangle]$$

p	Best known V_p
1	0.303265
2	0.407545
...	...
8	0.607266
11 [†]	0.639311 beats SDP!
12 [†]	0.646557

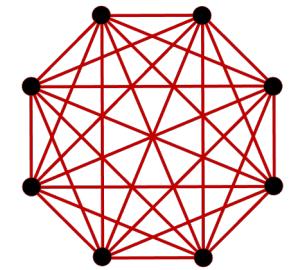
[†]unoptimized



If $\lim_{p \rightarrow \infty} \bar{V}_p = \Pi_*$, then a power law fit of optimized V_p yields

$$\bar{V}_p \approx \Pi_* - \frac{1.2}{(p+2)^{0.9}}$$

Summary



- We *analytically* obtain a formula for **typical case performance** of the QAOA on the SK model at high p
 - Evaluation takes $O(16^p)$ currently but may be improvable
- QAOA **beats** Semi-Definite Programming at $p = 11$
- **Concentration** over instances and measurements

[Farhi Goldstone Gutmann LZ, arXiv:1910.08187]
<https://github.com/leologist/QAOA-SK>

Outlook

- Show **convergence** of QAOA as $p \rightarrow \infty$? $\lim_{p \rightarrow \infty} \lim_{n \rightarrow \infty} \stackrel{?}{=} \lim_{n \rightarrow \infty} \lim_{p \rightarrow \infty}$

Outlook

- Show **convergence** of QAOA as $p \rightarrow \infty$? $\lim_{p \rightarrow \infty} \lim_{n \rightarrow \infty} \stackrel{?}{=} \lim_{n \rightarrow \infty} \lim_{p \rightarrow \infty}$
- **Average over instances** for harder problems for provable speedup?

q-spin model

$$C = \sum_{i_1 < \dots < i_q} J_{i_1 \dots i_q} Z_{i_1} \cdots Z_{i_q}$$

Provably hard for classical algorithms
due to their **“Overlap Gap Property”**

[Gamarnik Jagannath 2019]

[Gamarnik Jagannath Wein 2020]

Montanari's algorithm stuck at 98.4%
approximation ratio for $q=3$
[Alaoui Montanari 2020]

QAOA @ $p=1$
gets 33% for $q=3$