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We consider the problem of sampling from a target distribution ~τ in a Markov chain P.
The random walk starts in a state drawn from the stationary distribution ~π of P, walks
according to P, and eventually stops once some predefined conditions are satisfied. We
want the walk to stop in a state drawn from the target distribution ~τ. If the predefined
conditions ensure that the final state is drawn from ~τ, the conditions are called a stopping
rule from ~π to ~τ [Pit77, LW95]. The minimum expected number of steps required by any
stopping rule from ~π to ~τ is called the access time from ~π to ~τ in P.

The access time is related to, but distinct from, the hitting time. The access time is a
measure of the cost of sampling from a target distribution ~τ, whereas the hitting time is a
measure of the cost of sampling from a marked subset M.

The access time is computed with respect to a given Markov chain P. Related, but distinct,
sampling problems are where the Markov chain is constructed as part of the algorithm,
as in e.g. the Metropolis algorithm [MRR+53, TOV+11, YA12]. Related, but also distinct,
sampling problems are where the input is an oracle providing samples from one distri-
bution, and the aim is to generate a sample from another distribution. Such re-sampling
problems can be solved quantumly by rejection sampling [ORR13].

The goal of this work is to give a quantum algorithm for sampling from a target distri-
bution ~τ in a Markov chain P in a number steps that is quadratically smaller than the
optimal random walk.

Our two main results are two quantum algorithms. Both algorithms produce a quan-
tum state that approximates the quantum state |τ〉 = ∑i

√
τi corresponding to the target

distribution ~τ = (τ1, . . . , τN). Here N is the size of the state space of the random walk.
Our first quantum algorithm starts in the quantum state ∑i

√
πi|i〉 and uses quadratically

fewer steps than the access time from ~π to ~τ. Our second quantum algorithm takes as
input a marked subset M and a target distribution~τ that is non-zero only on states in M.
The algorithm starts in the normalized quantum state corresponding to the states that are
not marked, and it also achieves a quadratic speed-up. Our two quantum algorithms are
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the first general algorithms for sampling quadratically faster from all target distributions
in all reversible Markov chains from the stationary distribution.

Our algorithms are based on quantum walks [Sze04, Amb04]. Quantum walks have been
studied intensively and led to rich and powerful algorithmic techniques, such as those
in [Sze04, Amb04, AKR05, MNRS11, Bel13, BCJ+13, KMOR16, DH17, AS19, AGJK20,
AGJ19] and found a myriad of applications such as those in [Amb04, Amb07, BDH+05,
MSS07, LG14, LGN15, Mon18]. We introduce and use generalizations of controlled quan-
tum walks [DH17].

The proofs of our quantum walks use a new analytical idea. Associated to any stopping
rule is a real-valued non-negative vector ~x called the exit frequencies and whose entries
equal the expected number of times we exit each state before stopping. We introduce a
quantum analogue |x〉 of the exit frequencies ~x, and we use |x〉 to analyze the behavior
and complexity of our quantum walks. We believe that our analytical approach yields
simple, transparent and natural proofs, and that our approach has the potential of both
simplifying other existing proofs as well as leading to new results.

Our proofs also use and generalize a proof idea used in [DH17]. Given a controlled quan-
tum walk, we construct a related quantum circuit and then prove that the complexity of
the original quantum walk can be expressed in terms of the principal eigenvector of this
related circuit. We then prove that this principal eigenvector can be expressed in terms
of the quantum state |x〉, which we then relate to the exit frequencies of a stopping rule,
permitting us to derive a quadratic speed up over the access time.

We give applications of our quantum walk and our analytical approach. We give a new
quantum algorithm for the resampling problem. We prove that controlled quantum walks
can emulate quantum walks derived from random walks with self-loops. We give an
explicit and exact expression of the hitting time as an access time. We give an explicit and
exact expression of the extended hitting time as an access time. We propose self-loops as
a potential alternative to stopping rules in random walks.

Our main result is the first known quantum algorithm for generating any desired distri-
bution over states in a Markov chain using quadratically fewer steps than the optimal
random walk starting from the stationary distribution.
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