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Main Results

• First quantum algorithm with a quadratic speed-up for sampling from 
any probability distribution over states of a Markov chain

• Generalizes controlled quantum walk framework [DH17]

• Emulates a generalized version of the quantum interpolated walk 
[KMOR16]
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DH17: Dohotaru and Høyer 2017
KMOR16: Krovi, Magniez, Ozols, Roland 2016



Classical Sampling Problem

Given:

• Reversible random walk represented by its transition matrix P

• A sample of its unique stationary distribution 𝜋

• A desired target distribution Ԧ𝜏

Goal:

• Generate a sample according to Ԧ𝜏
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Stopping Rules

Definition: A stopping rule consists of a function which maps finite paths on the 
graph to a stopping probability.

• Examples:
• Stopping after 5 steps

• Stopping upon hitting a set of marked vertices

• Stopping with a specified probability for each vertex
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Access Time
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• An optimal stopping rule generates Ԧ𝜏 from 𝜋 using P in the smallest expected 
number of steps

Definition: The access time of a walk P from 𝜋 → Ԧ𝜏 equals the cost of this optimal 
stopping rule, and we denote it as

HT P, 𝜋 → Ԧ𝜏
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Exit Frequencies
Definition: The exit frequencies of a walk P starting in 𝜋 and ending in 
Ԧ𝜏, denoted as the vector Ԧ𝑥, give the expected number of times the 
random walk exits each vertex during execution of the stopping rule.

Ԧ𝑥 1 = HT P, 𝜋 → Ԧ𝜏

Ԧ𝜏 = 𝜋 + P Ԧ𝑥 − Ԧ𝑥
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Controlled Quantum Walk

• Quantum walks [Amb04, Sze04] consist of G which reflects marked vertices and 
W which reflects superpositions of outgoing edges

• The controlled quantum walk [DH17] finds a marked vertex 
• Parametrized by angle 𝜃
• Finds a marked vertex quadratically faster than the extended hitting time
• Vertex sampled according to 𝜋ℳ
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= U(𝜃)෨0 = cos 𝜃 0 + sin 𝜃 1

Amb04: Ambainis 2004
Sze04: Szegedy 2004
DH17: Dohotaru and Høyer 2017



Adding Multiple Angles

• Only need local computations for 𝜃𝑖
• Sample from any distribution Ԧ𝜏 over the vertices
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U Ԧ𝜃 =

෨0𝑖 = cos 𝜃𝑖 0 + sin 𝜃𝑖 1

cos 𝜃𝑖 =
𝜏𝑖

𝜋𝑖 + 𝜏𝑖
=
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𝜏𝑖
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Algorithm to generate target state

|0, init⟩

| 𝑇 ⟩ | 𝑇 ⟩

≈
0, init − |1, 𝜏⟩
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init =෍

𝑖

𝜋𝑖 𝑣𝑖

𝜏 =෍

𝑖

𝜏𝑖|𝑣𝑖⟩

𝑇 =
1

𝑇
෍

𝑖=0

𝑇−1

|𝑖⟩

1. Compute angles 0 ≤ 𝜃𝑖 ≤ 𝜋/2 such that cos 𝜃𝑖 =
𝜏𝑖

𝜋𝑖+𝜏𝑖

2. Prepare the state 𝑇 |0, init⟩

3. Apply σ𝑖=0
𝑇−1 |𝑖⟩⟨𝑖| ⊗ U Ԧ𝜃

𝑖

4. Apply the measurement Π0, 1 − Π0 where Π0 = | 𝑇 ⟩⟨ 𝑇 | ⊗ |1⟩⟨1| ⊗ 1

5. If we measure Π0, output “success” and we have an approximation of the state 
|𝜏⟩ in the third register. Otherwise, output “failure”



Main Theorems

Theorem 1: The complexity of phase estimation to run U Ԧ𝜃 starting from |0, init⟩, which 
we measure by the quantum hitting time, equals

QHT U Ԧ𝜃 , |0, init⟩ =
1

2
HT P, 𝜋 → Ԧ𝜏 −

Ԧ𝜏

𝜋
⋅ Ԧ𝑥

1

Theorem 2: The complexity of phase estimation to run U Ԧ𝜃 starting from |0, init⟩, which 
corresponds to 𝜋 limited to a set of unmarked vertices and renormalized (denoted ത𝜋) and 
where Ԧ𝜏 has support only on marked vertices, equals

QHT U Ԧ𝜃 , |0, init⟩ =
1

2
HT P, ത𝜋 → Ԧǁ𝜏 − 𝛿

where

Ԧǁ𝜏 =
1

1 − 𝜀
1 − 2𝜀 Ԧ𝜏 + 𝜋ℳ , 𝛿 = 1 − 𝜀

Ԧǁ𝜏

𝜋
⋅ Ԧ෤𝑥

1
+ Ԧ෤𝑥ℳ 1

+ 1, 𝜀 = 𝜋ℳ 1
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Quantum Analogue of Exit Frequencies

𝑥 = I − S T
Ԧ𝑥

𝜋
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Projects to anti-
symmetric subspace
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Entry-wise division changes 
basis to discriminant matrix
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• The key insight to our proof used a quantum 

analogue of the classical exit frequencies

Isometry T = σ𝑖 |𝑣𝑖⟩⟨𝑖| = σ𝑖 σ𝑗 𝑃𝑗←𝑖 𝑖, 𝑗 ⟨𝑖|

• Embeds from vertex to edge space

Swap S = σ𝑖,𝑗 |𝑗, 𝑖⟩⟨𝑖, 𝑗|

• Swaps directions of edges



Quantum Rejection Sampling

Problem Statement: Given access to sample of a distribution 𝜋, 
produce a sample from a distribution Ԧ𝜏 over the same space

• Optimal classical algorithm: rejection sampling [vN51]

• Involves a global computation to find a parameter 𝛾 = min
𝑖

𝜋𝑖

𝜏𝑖

• Embedding rejection sampling into amplitude amplification [ORR13] 
gives a quantum algorithm with a quadratic speed-up
• Uses the parameter 𝛾

• Our algorithm also samples quadratically faster than rejection 
sampling, without any global computation
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vN51: von Neumann 1951
ORR13: Ozols, Roetteler, Roland 2013



A

Emulation of Quantum Interpolated Walk
• The [DH17] controlled quantum walk can emulate the quantum 

interpolated walk [KMOR16]
• [KMOR16] use a single interpolation parameter s

• Our walk emulates a generalized quantum interpolated walk
• Uses different self-loop 𝑠𝑖 for each vertex

𝜋𝑠 =
𝜋 + Ԧ𝜏

2
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Comparison Table
Algorithm Reference Highlights Complexity

Rejection sampling vN51 Classical sampling,
global pre-computation

𝛾−1

Stopping rules Pit77, LW95 Classical sampling from walk,
global pre-computation

HT P, 𝜋 → Ԧ𝜏

Quantum rejection sampling ORR13 Quantum sampling,
global pre-computation

Θ 𝛾−1

Quantum interpolated walk KMOR16* Quantum finding

O HT P, 𝜋 →
1

𝜀
𝜋ℳ

Controlled quantum walk DH17 Quantum finding

O HT P, 𝜋 →
1

𝜀
𝜋ℳ

Generalized controlled 
quantum walk

This work Quantum sampling from walk,
local pre-computation

O HT P, 𝜋 → Ԧ𝜏
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* Newly generalized



Summary

• First quantum algorithm that gives a quadratic speed-up over the 
classical access time to sample from a desired distribution over states 
of a Markov chain after starting in the stationary distribution
• Generalizes controlled quantum walks using multiple angles

• Quantum analogue of rejection sampling without global 
computations

• Emulation of generalized quantum interpolated walks

Thank you!
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