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Main Results

* First quantum algorithm with a quadratic speed-up for sampling from
any probability distribution over states of a Markov chain

* Generalizes controlled quantum walk framework [DH17]

* Emulates a generalized version of the quantum interpolated walk
[KMOR16]

DH17: Dohotaru and Hgyer 2017
KMOR16: Krovi, Magniez, Ozols, Roland 2016



Classical Sampling Problem

Given:

* Reversible random walk represented by its transition matrix P
* A sample of its unique stationary distribution 7

* A desired target distribution

Goal:
* Generate a sample accordingto 7

0 1/3 0 0 0
1 0 1/2 1/2 0
P=|(0 1/3 0 0 1/2
0 1/3 0 0 1/2
0 0 1/2 1/2 0




Stopping Rules

Definition: A stopping rule consists of a function which maps finite paths on the
graph to a stopping probability.

* Examples:
* Stopping after 5 steps
e Stopping upon hitting a set of marked vertices
* Stopping with a specified probability for each vertex

Pitman 1977
Lovasz and Winkler 1995




Access Time

* An optimal stopping rule generates 7 from 7 using P in the smallest expected
number of steps

Definition: The access time of a walk P from 7 — 7 equals the cost of this optimal
stopping rule, and we denote it as
HT(P,7 - 7)
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Pitman 1977
Lovasz and Winkler 1995




Exit Frequencies

Definition: The exit frequencies of a walk P starting in 77 and ending in
, denoted as the vector x, give the expected number of times the
random walk exits each vertex during execution of the stopping rule.

Ix]l; = HT(P, 7 - 7)

=7 +Px—x

Pitman 1977
Lovasz and Winkler 1995




Controlled Quantum Walk
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 Quantum walks [Amb04, Sze04] consist of G which reflects marked vertices and
W which reflects superpositions of outgoing edges

* The controlled quantum walk [DH17] finds a marked vertex
* Parametrized by angle 6
* Finds a marked vertex quadratically faster than the extended hitting time

* Vertex sampled according to 77,
AmbO04: Ambainis 2004
Sze04: Szegedy 2004
DH17: Dohotaru and Hgyer 2017



Adding Multiple Angles

On

0, H0,
u(6) =
oo

* Only need local computations for 6,
e Sample from any distribution
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Algorithm to generate target state

init) = Z Ne [T]) T |[T])

R , IN1t) — =
=== I V2
Compute angles 0 < 6; < /2 such that cos 6; = |—

Prepare the state [[T])|0, init)

Apply 2723 1i)i] ® U(6)
Apply the measurement {I1,, 1 — 15} where I1y = |[T]){|T]| @ |1X1| ® 1

If we measure II,, output “success” and we have an approximation of the state
in the third register. Otherwise, output “failure”
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Main Theorems
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Theorem 1: The complexity of phase estimation to run U(é) starting from |0, init), which
we measure by the quantum hitting time, equals
S 1
QHT(U(6), |0, init)) = > (HT(P, T—1)— )
2\ 1

Theorem 2: The complexity of phase estimation to run U(é) starting from |0, init), which

corresponds to 77 limited to a set of unmarked vertices and renormalized (denoted 77) and
where 7 has support only on marked vertices, equals

QHT(U(6),|0,init)) = %(HT(PE—> ) —96)
\
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Quantum Analogue of Exit Frequencies

* The key insight to our proof used a quantum &
analogue of the classical exit frequencies )

lsometry T = X [v,)(i| = Xi(Z; /Pieilin )l

 Embeds from vertex to edge space

Swap S = %; i |j, IXi, j
* Swaps directions of edges
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Entry-wise division changes

v
basis to discriminant matrix

Embeds from vertex
space to edge space

Projects to anti-
symmetric subspace
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Quantum Rejection Sampling

Problem Statement: Given access to sample of a distribution 7,
produce a sample from a distribution 7 over the same space

e Optimal classical algorithm: rejection sampling [VN51]

* Involves a global computation to find a parametery = m_inﬂ
l

* Embedding rejection sampling into amplitude amplification [ORR13]
gives a quantum algorithm with a quadratic speed-up

* Uses the parameter y

e OQur algorithm also samples quadratically faster than rejection
sampling, without any global computation

vN51: von Neumann 1951
ORR13: Ozols, Roetteler, Roland 2013



Emulation of Quantum Interpolated Walk

 The [DH17] controlled quantum walk can emulate the quantum
interpolated walk [KMOR16]

« [KMOR16] use a single interpolation parameter s

* Our walk emulates a generalized quantum interpolated walk
* Uses different self-loop s; for each vertex

0-67 0.5 0.33
S; = = cos? 6, A @
T + 0.1
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DH17: Dohotaru and Hgyer 2017
KMOR16: Krovi, Magniez, Ozols, Roland 2016
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Comparison Table

Algorithm Highlights Complexity

Rejection sampling vN51 Classical sampling,
global pre-computation

Stopping rules Pit77, LW95 Classical sampling from walk, HT(P, 7 — 7)
global pre-computation

Quantum rejection sampling ORR13 Quantum sampling, @( /y 1
global pre-computation

Quantum interpolated walk KMOR16* Quantum finding 1

0] HT P T EﬁM)
Controlled quantum walk DH17 Quantum finding

0] H P T - Eﬁm>
Generalized controlled This work Quantum sampling from walk, 0 \/HT(P = T))
guantum walk local pre-computation

* Newly generalized y



summary

* First quantum algorithm that gives a quadratic speed-up over the
classical access time to sample from a desired distribution over states
of a Markov chain after starting in the stationary distribution

* Generalizes controlled quantum walks using multiple angles

* Quantum analogue of rejection sampling without global
computations

* Emulation of generalized quantum interpolated walks

Thank you!



