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Introduction

Random quantum circuits (RQCs) are a crucial model for understanding a diverse set of phenom-
ena in both quantum information and quantum many-body physics. They have been used to study
the onset of quantum chaos and dynamical spread of entanglement in strongly interacting quantum
systems, including information processing in black holes. They are also optimal decouplers, good
error-correcting codes, rapid scramblers of quantum information, and efficient generators of quan-
tum pseudorandomness. Moreover, recent benchmarks for demonstrating exponential quantum
computational advantage entail sampling the output distribution of random quantum circuits.

In this submission we rigorously study another important phenomenon exhibited by RQC evolu-
tion: anti-concentration. Measuring the evolved state in the computational basis, anti-concentration
refers to the distribution over measurement outcomes being sufficiently “spread out.” Understand-
ing the circuit depth at which RQCs anti-concentrate is particularly important for knowing when
RQCs are hard to simulate. Anti-concentration is both an essential ingredient in formal arguments
that RQC simulation is hard [1–8] as well as a necessary condition for certain classical algorithms
for noisy circuit simulation [9, 10] or pseudo-simulation [11] to be efficient.

In much of the previous work that relies on anti-concentration, it is often asserted as an im-
plication of the 2-design property, where convergence to an approximate 2-design implies anti-
concentration. For instance, it is known that both n-qubit RQCs on a fully connected architecture
and geometrically local RQCs on a 1D chain form approximate 2-designs after O(n) depth [12,13]
(i.e. circuit size O(n2)). This was later improved to O(n1/D) in D spatial dimensions [14]. Such
results then imply anti-concentration at that circuit depth. As we show, the 2-design property
is far stronger than what is required for anti-concentration. We prove, for a number of circuit
architectures, that anti-concentration occurs in RQCs at exponentially shorter circuit depths.

More precisely, we focus on the collision probability, the probability that two measurement
outcomes from two different circuit realizations are the same. Given some instance of a quantum
circuit U , denote the classical probability distribution over its measurement outcomes as pU (x) =
|〈x|U |1n〉|2, i.e. for the circuit acting on an initial all ones state. For an ensemble of RQCs, we say
that the ensemble is anti-concentrated if the collision probability Z obeys

Z := E
U

[∑
x

pU (x)2
]
≤ 1

α

1

qn
(1)

for some 0 < α ≤ 1 independent of n. That is, the RQCs are anti-concentrated if Z is at most a
constant factor larger than its minimal value.

We show upper and lower bounds on the collision probability Z for random quantum circuits
of different architectures, as a function of the circuit size s (typically a factor of n larger than the
circuit depth) and the qudit local dimension q. These bounds are used to form upper and lower
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bounds on the anti-concentration size sAC , defined as the minimum circuit size required for the
anti-concentration condition to be met. We show general bounds on sAC that apply regardless of
how the gate are arranged, and then give more specific results for a local 1D architecture and also
a “complete-graph” architecture with all-to-all couplings.

Results

For random quantum circuits on n qudits of local dimension q, and for varying circuit architectures,
the circuit size at which the output probabilities anti-concentrate, denoted sAC , obeys:

Architecture sAC upper bound sAC lower bound

general O(n2) Ω(n log(n))

1D c1D n log(n) +O(n) c1D n log(n)−O(n)

complete-graph ccg n log(n) +O(n) ccg n log(n)−O(n)

where we exactly compute the constants which appear in both the upper and lower bounds as a

function of the local dimension q, with c1D :=
(
2 log

( q2+1
2q

))−1
for 1D RQCs and ccg := q2+1

2(q2−1) for

the non-local RQCs defined on a complete graph.

The upper and lower bounds together allow us to conclude that sAC = Θ(n log(n)) for both
the 1D architecture and the complete-graph architecture. (In fact, we have matching upper and
lower bounds on the constant prefactor of the n log(n) in both cases.) Since 1D and complete
graph have the same Θ(n log(n)) scaling despite being opposite extremes of geometric locality,
we conjecture that the Θ(n log(n)) scaling holds more generally assuming only that a natural
connectivity condition is satisfied, but manage only to prove a weaker O(n2) upper bound.

Significance and implications

We emphasize here a few ways in which the above results are impactful. First of all, they are
rigorous bounds that show anti-concentration is achieved much faster than the 2-design property.
The dependence of the anti-concentration size on architecture appears to be confined only to the
value of the constant pre-factors and not the form of the asymptotic scaling. This fact has impor-
tant potential implications for hardness-of-simulation arguments underlying quantum supremacy
experiments based on random circuit sampling. Anti-concentration is a necessary ingredient for
these arguments and our bounds show that the depth needed is much lower than the conventional
wisdom, which has been based on results on 2-designs.

Second of all, there has been some uncertainty and confusion surrounding anti-concentration in
previous literature that our results manage to clarify, settling two statements formally conjectured
in previous work. We explicitly compute the n log(n) constant prefactor ccg for the complete-graph
architecture, which had been conjectured by Harrow & Mehraban [14] (QIP 2019). More recently,
Barak, Chou, & Gao [11] conjectured that 2D circuits anti-concentrate in O(

√
log(n)) circuit

depth, or O(n
√

log(n)) circuit size. Our general Ω(n log(n)) lower bound refutes this conjecture
and implies that their method relying on the collision probability is not sufficient to prove that
their algorithm is able to spoof 2D RQCs in polynomial time.

2



Finally, the fact that we can prove upper and lower bounds that match even up to the constant
prefactor is a testament to the power of the method we use, and suggests a broader utility for it and
the way we apply it. Our approach, discussed further below, follows previous work in mapping RQCs
to classical statistical mechanical models, and goes beyond by performing a successful combinatorial
analysis of the resulting quantities. In the end, this yields not only rigorous bounds, but also an
appealing heuristic picture of the situation for anti-concentration.
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Figure 1: The equivalent ways to interpret the RQC collision probability Z. The RQC collision
probability can be reinterpreted as the partition function of a stat mech model and as a stochastic
process of evolving configurations.

Technical contributions

Our method combines ideas from statistical mechanics and stochastic processes. We utilize a
statistical mechanical mapping for RQCs, where the collision probability can be exactly re-expressed
as the partition function of an Ising-like statistical mechanics model. This mapping has been applied
to RQCs in several other contexts, but in the context of anti-concentration we observe that one can
go further by reinterpreting this description as a Markov chain, where the number of gates needed
for anti-concentration ultimately translates into the time needed for certain expectation values to
converge under the dynamics of the Markov chain. Figure 1 depicts these equivalent descriptions.

Once the general framework for this Markov chain has been derived, it is possible to succinctly
show that Ω(n log(n)) gates are necessary for anti-concentration, no matter how they are arranged.
Then, focusing on the cases of 1D and complete graph architectures, we are able to give more
specific upper and lower bounds on the anti-concentration size. For the 1D upper bound, the
approach builds off the techniques in [15, 16]. The lower bound, on the other hand, requires more
additional ideas specific to the anti-concentration problem. For the complete-graph analysis, our
solution requires application of several techniques in a novel way. The proof idea first involves
reworking the quantity of interest into a sum over all possible paths of a random walker on a line
weighted by the probability that the walker is successfully able to finish the path prior to the end
of the circuit. This probability is bounded with a Chernoff bound, which is combined with a subtle
observation on how to perform the sum over paths.

The method not only yields sharp quantitative bounds, it also produces an appealing qualitative
explanation on how and why the collision probability reaches its limiting value, which allows for
effective heuristic reasoning even in architectures that we have not explicitly considered here. We
further anticipate that our method may be used to study and improve bounds for other phenomena
exhibited by RQCs, such as thermalization and decoupling.
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