

Random quantum circuits anti-concentrate in log depth

Alexander Dalzell ¹

QIP 2021 February 1, 2021

Based on joint work with **Nicholas Hunter-Jones** ² & **Fernando Brandão** ^{1,3}

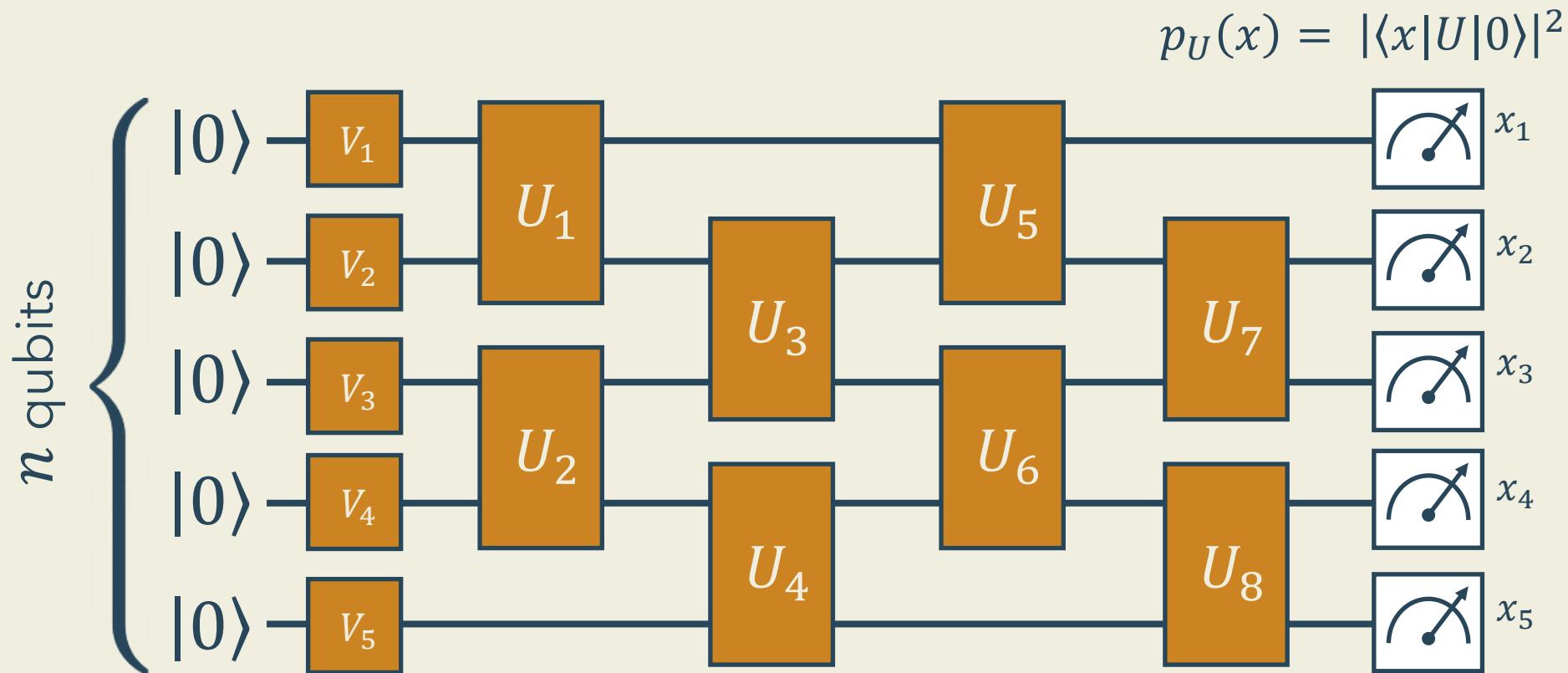
¹ Caltech ² Perimeter Institute ³ Amazon Web Services

arXiv:2011.12277

Outline

- **Definition** of anti-concentration
- **Applications** of anti-concentration for classical simulation
- Statement of **results** & interpretation
- Proof method: Mapping to a **stat mech** partition function

Random quantum circuits (RQCs)



Haar-random gates $V_j \sim \mathcal{U}(2)$, $U_t \sim \mathcal{U}(4)$
(sometimes consider other ensembles)

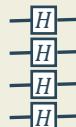
Definition of anti-concentration (AC)

Expected Collision Probability

$$\begin{aligned} Z &:= \mathbb{E}_U [\sum_x p_U(x)^2] \text{ with } \mathbb{E}_U \text{ the average over RQC} \\ &= 2^n \mathbb{E}_U [p_U(0)^2] \\ &= 2^n \text{Tr} \left[|0\rangle\langle 0|^{\otimes 2} \mathbb{E}_U \left[U^{\otimes 2} |0\rangle\langle 0|^{\otimes 2} U^{+\otimes 2} \right] \right] \end{aligned}$$

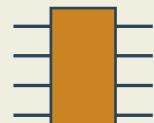
An RQC family is *anti-concentrated* if $Z \leq 2Z_H$ for sufficiently large n

Uniform



$$Z = \frac{1}{2^n}$$

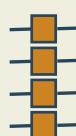
Global Haar



$$Z_H := Z = \frac{2}{2^n + 1}$$

Note: If RQCs are ε -approximate 2-design, then
 $Z = Z_H(1 + \varepsilon/2)$

Single-qubit
Haar

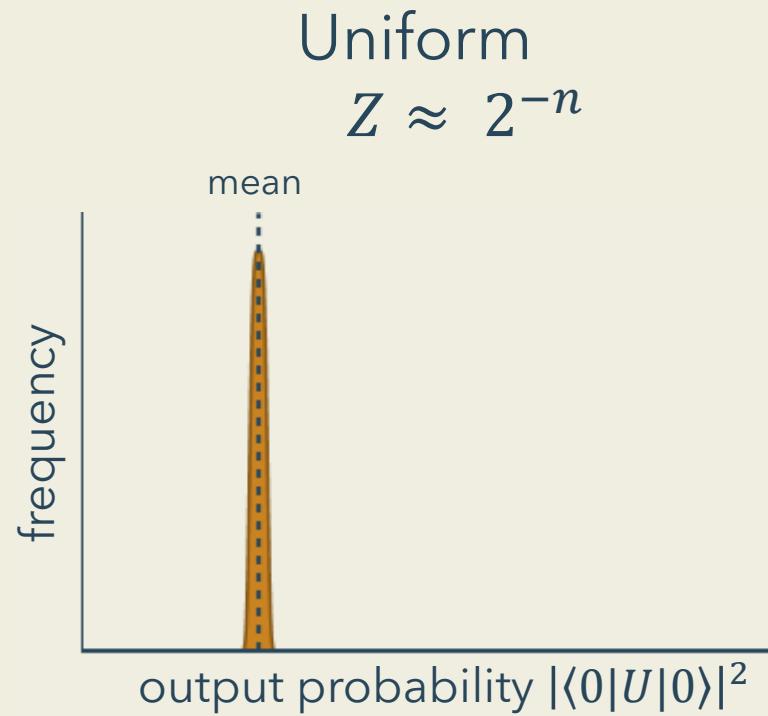
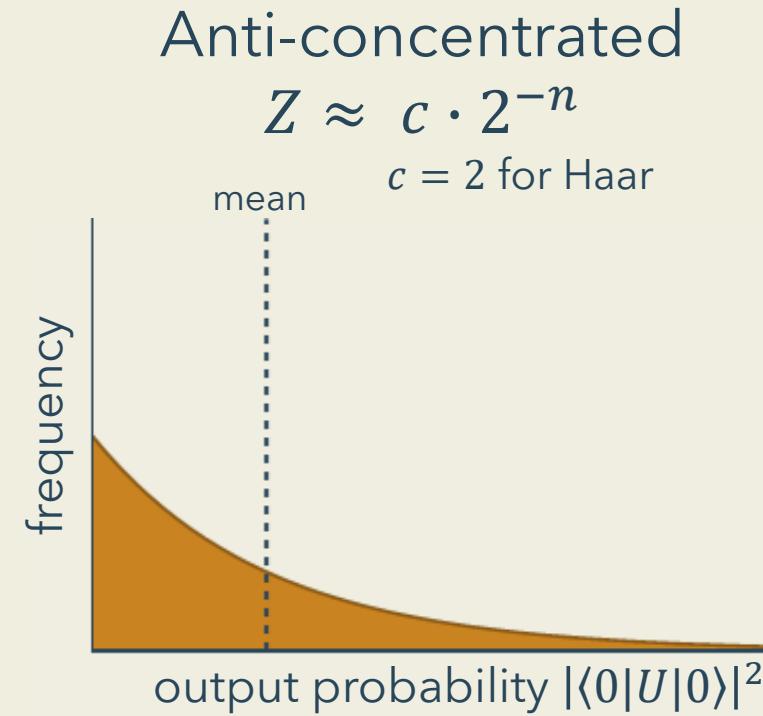
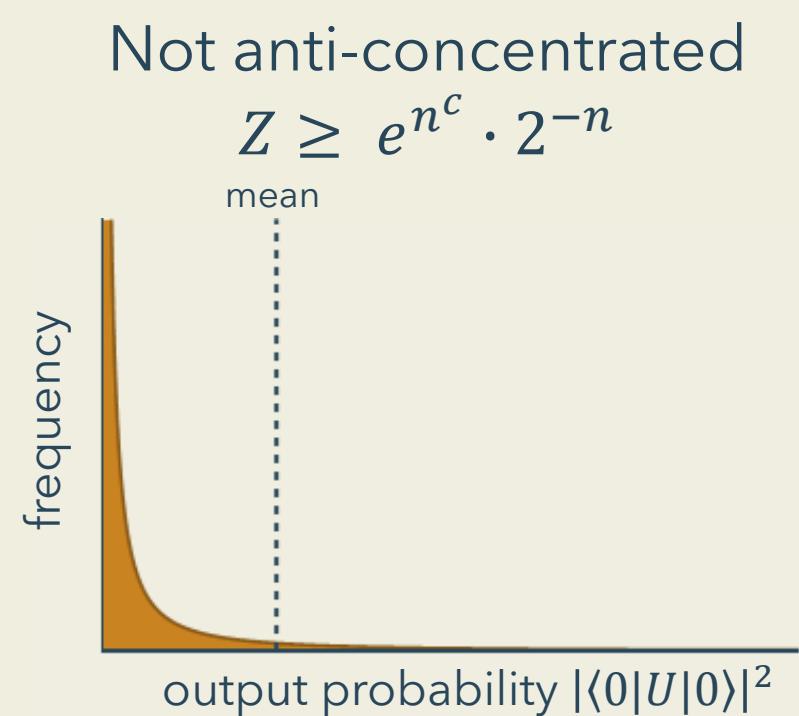


$$Z = \frac{2^n}{3^n}$$

Anti-concentration means bounded variance in output probability

$$Z = 2^n \mathbb{E}_U[p_U(0)^2]$$

$$\text{var}(p_U(0)) = 2^{-n}Z - 2^{-2n}$$



Application: When are quantum circuits hard to simulate classically?

- **Anti-concentration implies hard-to-simulate:** AC is an ingredient for some mathematical arguments underlying “quantum computational supremacy” proposals
 - Idea: To connect approximately sampling from p_U to #P-hard computational problems, need most outputs to be close to the mean
[Aaronson, Arkhipov '11] [Bremner, Montanaro, Shepherd '15] [Bouland, Fefferman, Nirkhe, Vazirani '18]
- **Anti-concentration implies easy-to-simulate:** In certain situations, there are efficient simulation algorithms assuming AC
 - Classical simulation of IQP circuits with depolarizing noise
[Bremner, Montanaro, Shepherd '16]
 - Random ensembles of circuits with local depolarizing noise of strength ϵ approach uniform distribution allowing for easy simulation
[Gao, Duan '18]

Anti-concentration and “spoofing” RQC experiments

- Google implemented 2D RQCs on a superconducting device and verified its outputs had non-negligible score on the Linear Cross-Entropy Benchmarking (Linear XEB) metric
- Can “spoof” Linear XEB on shallow RQCs if output is anti-concentrated
 - Depth- d circuits in D spatial dimensions can achieve ε score in time $(2^n Z) \exp(\varepsilon 15^{-d}) \text{poly}(n, 2^{d^D})$
 - For $D = 1$, polynomial time if AC in $\log(n)$ -depth (proved)
 - For $D = 2$, polynomial time if AC in $\sqrt{\log(n)}$ -depth (conjectured)

[Barak, Chou, Gao '20]

Definition: RQC architectures

- An “RQC architecture” is a method of choosing circuit layout
- We develop a general framework that applies to any architecture
- 1D architecture: gates act on nearest-neighbor qubits arranged on a ring
- Complete-graph architecture: each gate is chosen to act on a random pair of qubits
- Higher dimensional local architectures are harder to analyze rigorously

Results: Sharp bounds on circuit size for anti-concentration

- We show upper and lower bounds on Z as a function of circuit size s
- In 1D, depth $d = 2s/n$, for complete-graph, $d = O(s \ln(n)/n)$ whp
- Using bounds on Z , we compute bounds on the "AC size" s_{AC}

Definition: s_{AC} is the minimum circuit size for which $Z \leq 2Z_H$ holds

Architecture	Upper bound on s_{AC}	Lower bound on s_{AC}
1D on a ring	$\frac{1}{2 \ln(5/4)} n \ln(n) + O(n)$ [Barak, Chou, Gao '20]	$\frac{1}{2 \ln(5/4)} n \ln(n) - O(n)$
Complete graph	$\frac{5}{6} n \ln(n) + O(n)$	$\frac{5}{6} n \ln(n) - O(n)$
General	$O(n^2)$ <small>conj. $O(n \log(n))$</small>	$\Omega(n \log(n))$

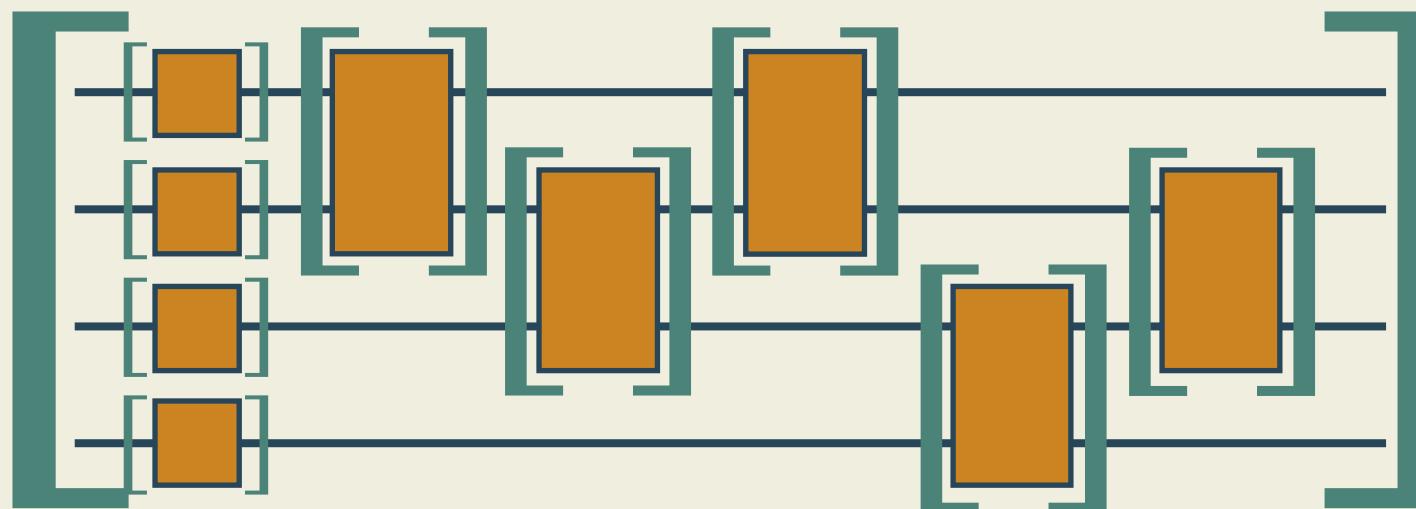
Takeaways: Anti-concentration occurs before approximate 2-design

- Upper and lower bounds match up to subleading correction, indicates power of method based on stat mech map
- Anti-concentration achieved much faster than approximate 2-design property
- Hard regime for quantum computational supremacy potentially attainable at smaller depth than previously thought
- Conjectures settled
 - [Harrow, Mehraban '18]: Constant pre-factor for AC in complete-graph is $5/6$
 - [Barak, Chou, Gao '20]: 2D circuits reach AC in $\mathcal{O}(\sqrt{\log(n)})$ depth --- We show $\Omega(\log(n))$

Method: Perform Haar expectation over each gate individually

$$\text{Recall: } Z = 2^n \text{Tr} \left[|0\rangle\langle 0|^{\otimes 2} \mathbb{E}_U \left[U^{\otimes 2} |0\rangle\langle 0|^{\otimes 2} U^{+\otimes 2} \right] \right]$$

Each gate is chosen independently so the expectation factorizes



Above: $[\mathcal{U}]$ denotes $\mathbb{E}_U[U^{\otimes 2} \otimes U^{+\otimes 2}]$

Method: Second-moment Haar formula

Key idea: Expectation formula for a single Haar-random $q^2 \times q^2$ unitary U_t expresses action of $U_t^{\otimes 2}$ as linear combination of identity \mathbb{I} and swap \mathbb{S} operations on two copies of the system

$$\mathbb{E}_{U_t} [U_t^{\otimes 2} \rho U_t^{+\otimes 2}] = \left(\frac{\text{Tr}(\rho) - \text{Tr}(\rho S)/q^2}{q^4 - 1} \right) \mathbb{I} + \left(\frac{\text{Tr}(\rho S) - \text{Tr}(\rho)/q^2}{q^4 - 1} \right) \mathbb{S}$$

$$\mathbb{E}_{U_t} \left[\begin{array}{c} U_t^+ \quad \rho \quad U_t \\ \hline U_t^+ \quad \rho \quad U_t \end{array} \right] = \frac{\left[\begin{array}{c} \text{---} \quad \rho \quad \text{---} \\ \hline \text{---} \quad \rho \quad \text{---} \end{array} \right] - \frac{1}{q^2} \left[\begin{array}{c} \text{---} \quad \rho \quad \text{---} \\ \hline \text{---} \quad \rho \quad \text{---} \end{array} \right]}{q^4 - 1} + \frac{\left[\begin{array}{c} \text{---} \quad \rho \quad \text{---} \\ \hline \text{---} \quad \rho \quad \text{---} \end{array} \right] - \frac{1}{q^2} \left[\begin{array}{c} \text{---} \quad \rho \quad \text{---} \\ \hline \text{---} \quad \rho \quad \text{---} \end{array} \right]}{q^4 - 1}$$

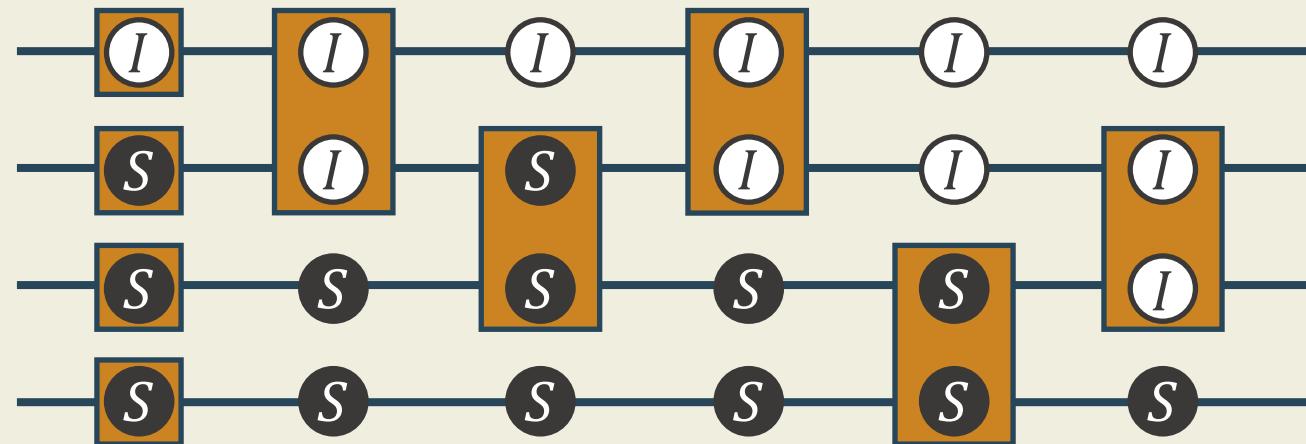
Example of a trajectory

Expectation over each gate yields linear combination of I and S .

Z is given by weighted sum over I/S assignments. These assignments are organized into **trajectories** of length- n bit strings.

Rules for each gate

1. Both locations must agree
2. At most one flip
3. No gate, no flip
4. Each flip decreases weight by $2/5$



$$\text{Weight} = \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} \times 1 \times \frac{2}{5} = \frac{16}{625}$$

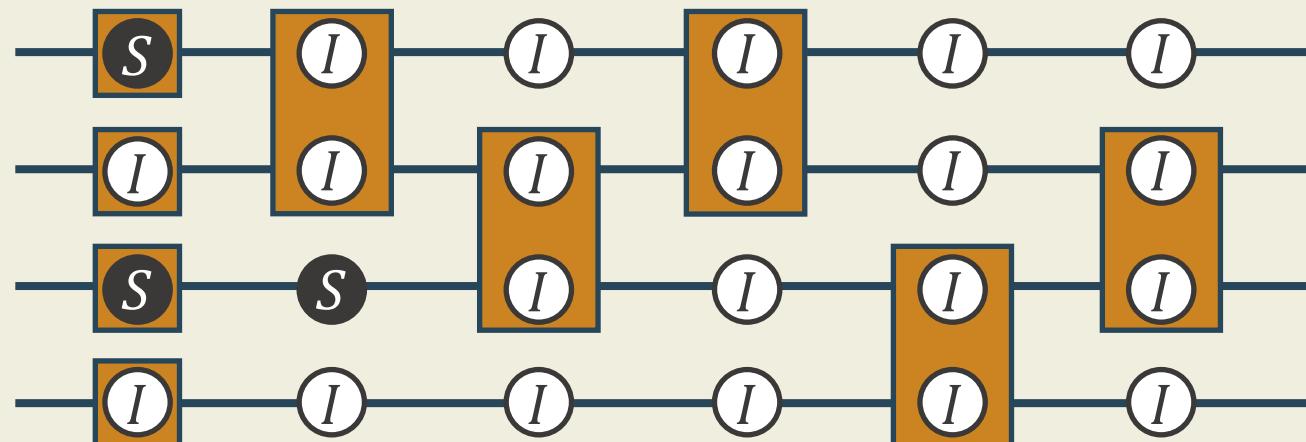
Example of a trajectory that reaches a fixed point

Expectation over each gate yields linear combination of I and S .

Z is given by weighted sum over I/S assignments. These assignments are organized into **trajectories** of length- n bit strings.

Rules for each gate

1. Both locations must agree
2. At most one flip
3. No gate, no flip
4. Each flip decreases weight by $2/5$



$$\text{Weight} = \frac{2}{5} \times \frac{2}{5} \times 1 \times 1 \times 1 = \frac{4}{25}$$

Collision probability as a partition function

$$Z = \left(\frac{1}{3}\right)^n \sum_{\text{trajectories}} \left[\frac{2}{5}\right]^{\text{\# of bits flipped during trajectory}}$$

$$= \sum_{\sigma \in \{I,S\}^{n(s+1)}} \exp(-H(\sigma))$$

where $H(\sigma)$ is the sum of local interaction terms

Summing over trajectories

Lemma: A Sanity Check

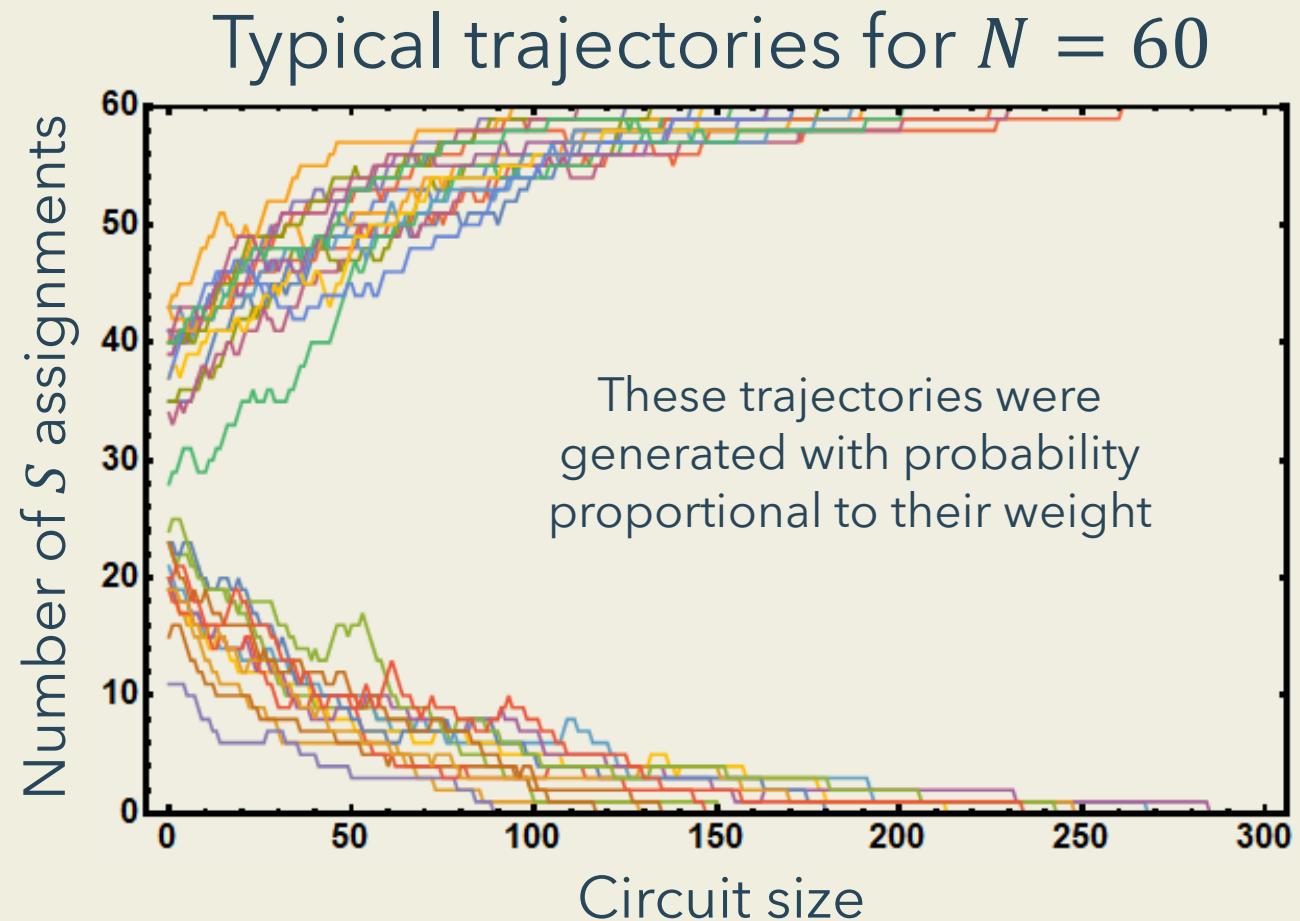
Let \mathcal{T} be the set of all trajectories (of any finite length) that reach a fixed point. Then, regardless of architecture

$$Z = \left(\frac{1}{3}\right)^n \sum_{\gamma \in \mathcal{T}} \text{weight}(\gamma) = Z_H = \frac{2}{2^n + 1}$$

- Local RQCs of infinite size converge to global Haar
- Local RQCs of finite size have $Z > Z_H$ because some trajectories have not reached a fixed point and are overweighted

Complete graph: Typical trajectories and convergence of Z

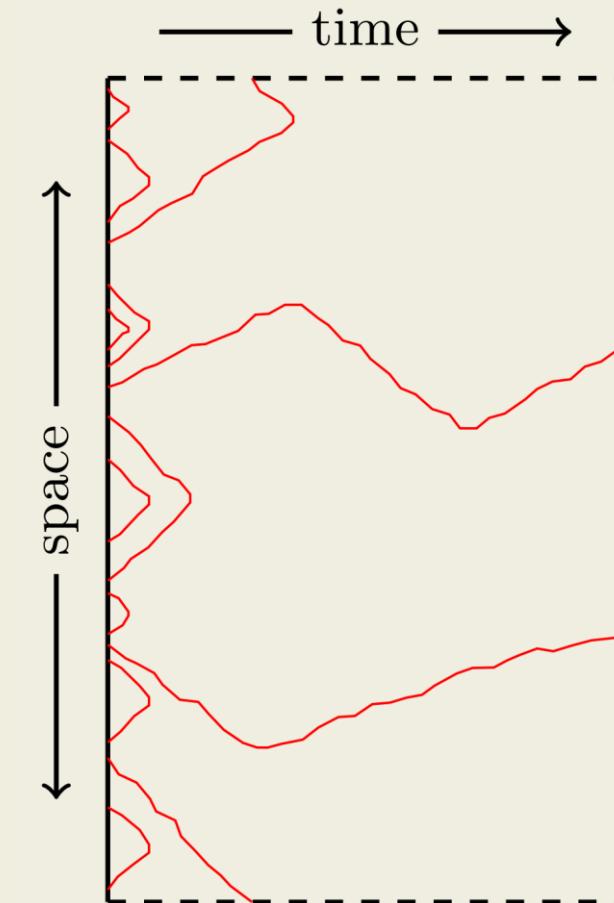
- Weight decreases with each disagreeing pair
- Typical evolutions quickly move toward fixed points I^n or S^n
- Each interval of n steps
→ constant fraction closer to fixed point
→ AC after $O(n \log(n))$ steps



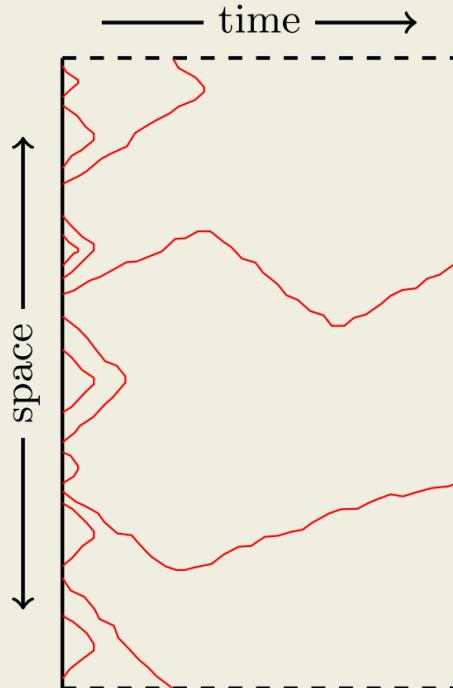
1D analysis: Focus on domain walls

- In 1D, configurations have I and S domains
- Gates cause domain walls to move one way or the other
- Domain wall pairs can annihilate but cannot be created
- Energy penalty for each domain wall

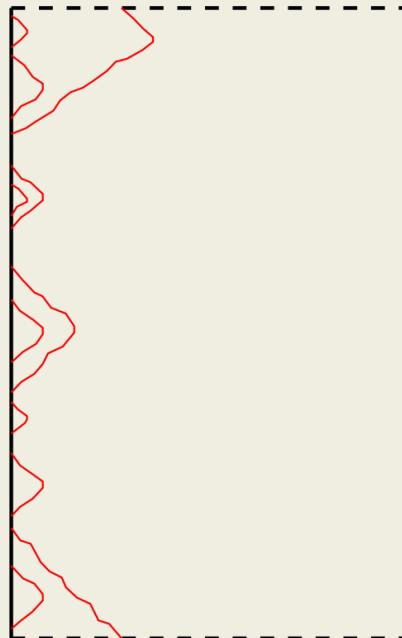
Approach builds off [Hunter-Jones '19] study of 1D 2-design time



1D analysis: Decomposing trajectories



=



Contribution from
trajectories where
everything annihilates is
at most Z_H

□

Contribution decays
exponentially in kt

k domain
walls survive
until the end

Note: [Barak, Chou, Gao '20] showed 1D upper bound using the same method. We also use it to show lower bound.

Conclusions and open problems

Conclusions

- $\Theta(n \log(n))$ gates is necessary & sufficient for AC in both geometrically local and non-local architectures
- Anti-concentration faster to achieve than appr. 2-design
- Stat mech map effective for second moment calculation

Open problems

- Prove $\Theta(n \log(n))$ scaling for 2 and higher dimensional RQCs
- Study approximate 2-design time for complete-graph architecture using stat mech map
- What can stat mech map say about RQCs with noise?