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I Outline

 Definition of anti-concentration

 Applications of anti-concentration for classical simulation
* Statement of results & interpretation

* Proof method: Mapping to a stat mech partition function



I Random quantum circuits (RQCs)
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I Definition of anti-concentration (AC)
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Anti-concentration means bounded variance
in output probability

Z = 2"Ey[py(0)*] var(py(0)) = 27"Z — 272"
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Application: When are quantum circuits
hard to simulate classically?

 Anti-concentration implies hard-to-simulate: AC is an
ingredient for some mathematical arguments underlying
“quantum computational supremacy” proposals

* |dea: To connect approximately sampling from py to #P-hard

computational problems, need most outputs to be close to the mean
[Aaronson, Arkhipov ‘11] [Bremner, Montanaro, Shepherd '15] [Bouland, Fefferman, Nirkhe, Vazirani ‘18]

 Anti-concentration implies easy-to-simulate: In certain
situations, there are efficient simulation algorithms assuming AC

* Classical simulation of IQP circuits with depolarizing noise
[Bremner, Montanaro, Shepherd '16]
* Random ensembles of circuits with local depolarizing noise of strength €

approach uniform distribution allowing for easy simulation
[Gao, Duan 18]



Anti-concentration and “spoofing” RQC
experiments

* Google implemented 2D RQCs on a superconducting device
and verified its outputs had non-negligible score on the Linear
Cross-Entropy Benchmarking (Linear XEB) metric

» Can “spoof” Linear XEB on shallow RQCs if output is anti-
concentrated
« Depth-d circuits in D spatial dimensions can achieve € score in time
(2""Z) exp(e15~%) poly(n, 247
* For D =1, polynomial time if AC in log(n)-depth (proved)
* For D = 2, polynomial time if AC in ,/log(n)-depth (conjectured)
[Barak, Chou, Gao '20]



I Definition: RQC architectures

* An “RQC architecture” is a method of choosing circuit layout

* We develop a general framework that applies to any
architecture

1D architecture: gates act on nearest-neighbor qubits arranged
on a ring

« Complete-graph architecture: each gate is chosen to act on a
random pair of qubits

* Higher dimensional local architectures are harder to analyze
rigorously



Results: Sharp bounds on circuit size
for anti-concentration

* We show upper and lower bounds on Z as a function of circuit size s
* In 1D, depth d = 2s/n, for complete-graph, d = 0(s In(n)/n) whp
« Using bounds on Z, we compute bounds on the “AC size" s,

Definition: s, is the minimum circuit size for which Z < 2Z, holds

Architecture Upper bound on sy

[Barak, Chou, Gao ‘20]
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Takeaways: Anti-concentration occurs before
approximate 2-design

* Upper and lower bounds match up to subleading correction,
indicates power of method based on stat mech map

 Anti-concentration achieved much faster than approximate 2-
design property

* Hard regime for quantum computational supremacy potentially
attainable at smaller depth than previously thought

« Conjectures settled
* [Harrow, Mehraban ‘18]: Constant pre-factor for AC in complete-graph is 5/6

« [Barak, Chou, Gao '20]: 2D circuits reach AC in 0(y/log(n)) depth --- We show 2(log(n))
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Method: Perform Haar expectation over each
gate individually

Recall: Z = Z"Tr[ 10)0]°% Ey [U®2|O)(O|®2U+®2] ]

Each gate is chosen independently so the expectation factorizes

b o]

Above: [ U ] denotes E;[U®? ® U*®?]
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I Method: Second-moment Haar formula

Key idea: Expectation formula for a single Haar-random g? x g“unitary U,

expresses action of U®? as linear combination of identity 7) and swap @
operations on two copies of the system
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I Example of a trajectory

Expectation over each gate yields linear combination of I and S.
Z is given by weighted sum over I /S assignments. These
assignments are organized into trajectories of length-n bit strings.

Rules for each gate
1. Both locations L o “ (1 (D
() (1) (D

2. At most one ﬂ.lp S S S
3. No gate, no flip
4. Each flip decreases S
weight by 2/5
Weight =



Rules for each gate
1.

2
3
4

. At most one flip

. Each flip decreases —m—@

Example of a trajectory that reaches
a fixed point

Expectation over each gate yields linear combination of I and S.
Z is given by weighted sum over I /S assignments. These
assignments are organized into trajectories of length-n bit strings.

Both locations
must agree

No gate, no flip

weight by 2/5
Weight = %x%xlxlxl = —



I Collision probability as a partition function

’ # of bits flipped during trajectory

3

trajectories

> exp(-H(0))
og€e{l,s}n(s+1)
where H(o) is the sum of local interaction terms
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I Summing over trajectories

Lemma: A Sanity Check

Let T be the set of all trajectories (of any finite length) that reach
a fixed point. Then, regardless of architecture

1\" 2
Z = <§> Zweight(y) = Zy = ]

YET

* Local RQCs of infinite size converge to global Haar

* Local RQCs of finite size have Z > Z, because some
trajectories have not reached a fixed point and are
overweighted
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Complete graph: Typical trajectories and
convergence of Z
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I 1D analysis: Focus on domain walls

* In 1D, configurations have I and S
domains

e Gates cause domain walls to move one
way or the other

* Domain wall pairs can annihilate but
cannot be created

space

* Energy penalty for each domain wall

Approach builds off [Hunter-Jones ‘19] study of 1D 2-design time
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1D analysis: Decomposing trajectories
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I Conclusions and open problems

Conclusions

* O(nlog(n)) ?ates is necessary & sufficient for AC in both
geometrically local and non-local architectures

 Anti-concentration faster to achieve than appr. 2-design
e Stat mech map effective for second moment calculation

Open problems
* Prove O(n log(n)) scaling for 2 and higher dimensional RQCs

* Study approximate 2-design time for complete-graph
architecture using stat mech map

* What can stat mech map say about RQCs with noise?
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