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e Entanglement is a fundamental non-classical phenomenon

v~ Would be nice to understand and harness in experiments and real-world applications

e Theoretical interest and practical need to protecting entanglement from noise

v~ When, at what rate, and by what means can noisy entanglement be distilled back?

e Fertile ground for exchange of research ideas

v Use and make contributions to Shannon Theory, Error-correction, Optimization theory,...
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e New ideas that help find state-of-the-art rates for protecting entanglement from noise

e Theoretical tool: Singularity in the von-Neumann entropy gives rise to positivity and
non-additivity in rates for protecting entanglement

e Conceptual surprise: Allowing a noisy channel to leak quantum information to its
environment can boosts its ability to protect entanglement.
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£ encodes and D) decodes nS qubits of any ;.4 with vanishing error as n — oo

S is an achievable rate for protecting entanglement

Asymptotic Quantum Capacity Q(B) = max S |
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Achievable rates and quantum capacity are a fundamental quantities

o Information theoretic rates for

v~ Preserving entanglement (read distilling EPR pairs)

v Sending quantum information and performing quantum error-correction

e An achievable lower bound on rates for quantum key distribution
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| Shannon like recipe for finding an achievable rate

1. Classical Channel - N : X — Y i.e. p(y|x)

Shannon entropy: H(X) = — Z p(x) log p(x)
xXEX

Mutual Information: [(X;Y) = H(X)+ H(Y) — H(X,Y)
Channel Mutual Information: CH(N) = m(a;<I(X; Y)
p(x

2. Quantum Channel - B:a— b

von-Neumann entropy: S(a) = —Tr(p, log pa)
Coherent Information: A(B, p,) = S(b) — S(c)
Channel Coherent Information:  QM(B) = max A(B, p,)
Pa
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| Shannon like recipe for finding channel capacity

1. Classical channel

Additivity:  COW x N7) = COWN) + COWN)
Channel Capacity: C(N) = klim COWXRY k= CHN)

Joint Channel Capacity: C(N x N’) = C(N) + C(N)
2. Quantum channel

Non-Additivity: QM(B® B') > QM(B) + QW(B')
Quantum Capacity: Q(B) = klim QW(B®F) /k > QW(B)

Joint Quantum Capacity: Q(B® B') > Q(B) + Q(B')

The inequalities can be strict
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Non-additivity introduces some challenges

Quantum Capacity
Q(B) = lim oW(B®¥) /k.
00

Question : Given a channel B is Q(B) > 07
Answer : Hard to say, for all n > 1 there is some B s.t.

oM(B®) =0 but QW(B®"1) >0

Question : If Q(B) = 0 then is B useless?
Answer : Not really, one can have

Q(B)=Q(B)=0 but QB®B)>0

Question : When and why are 01 and Q non-additive?
Answer : Some examples, but much is unknown
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e Gain conceptual insight about quantum communication

e Leverage non-additivity for quantum error correction
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New theoretical tool: log-singularity in the von-Neumann entropy

Basic Idea: p(e€) has entropy

S(e) :== —Tr(plogp) = —>_; Ailog A

Suppose: \; = ¢, =1—¢

S(€) has an e¢log-singularity

| dS(e)/de = O(log €) for small e

Using log-singularities, we develop

A method to check O > Ol |A method to check if @M non-additive
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C1 qubit amplitude damping with probability 1 — p
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Application 2: General results about positivity of Q)

Quantum Channel Pair

Theorem: If d. < d, and B maps some pure state to an output of rank d., then Q(I)(B) > 0.
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Application 2: General results about positivity of Q)

Quantum Channel Pair

Theorem: If d. < d, and B maps some pure state to an output of rank d., then Q(I)(B) > 0.

Corollary 1: If d, > 1 and dj, > d,(d. — 1) then Q)(B) > 0.

Corollary 2: If B is a qubit channel (d, = dj = 2) then Q)(C) > 0 whenever d. > 2.
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V.Siddhu, arXiv:2003.10367 (2020)
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New type of non-additivity using log-singularity

oM(Be B') > oW(B) + oW(B)

B : Qubit amplitude damping channel with Q(B) =0

B’ : Simple qutrit channel

A simple zero capacity channel boosts error correction rates

V.Siddhu, arXiv:2003.10367 (2020)
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V.Siddhu, arXiv:2011.15116 (2020)
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Non-additivity can give rise to conceptual surprises

Belief: Allowing leakage of quantum information to a channel’s environment is detrimental for

its ability to preserve entanglement.

Result: Quantum capacity can be boosted by allowing leakage of quantum information to a

channel’s environment.

V.Siddhu, arXiv:2011.15116 (2020)
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What is the leakage procedure?

Quantum Channel Pair
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What is the leakage procedure?

Quantum Channel Pair

With Leakage
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Allowing qutrit channel B to leak takes 5 — B,

"
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A: measure of noise in B & B;
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| Contribution of this talk

e Theoretical tool: log-singularities in the von-Neumann entropy
arXiv:2003.10367

e Conceptual surprise: allowing leakage of information can boost quantum communication
arXiv:2011.15116

e Message: Study of quantum capacities/non-additivity is a fundamental and fertile area for
developing new theoretical and conceptual tools
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