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What care about it?

• Entanglement is a fundamental non-classical phenomenon

Would be nice to understand and harness in experiments and real-world applications

• Theoretical interest and practical need to protecting entanglement from noise

When, at what rate, and by what means can noisy entanglement be distilled back?

• Fertile ground for exchange of research ideas

Use and make contributions to Shannon Theory, Error-correction, Optimization theory,...
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What we found

• New ideas that help find state-of-the-art rates for protecting entanglement from noise

• Theoretical tool: Singularity in the von-Neumann entropy gives rise to positivity and

non-additivity in rates for protecting entanglement

• Conceptual surprise: Allowing a noisy channel to leak quantum information to its

environment can boosts its ability to protect entanglement.
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Protection of entanglement can be quantified

HA E (n) n

B

B

D(n) HA

HR HR

ψRA φRA

E(n) encodes and D(k) decodes nS qubits of any ψRA with vanishing error as n 7→ ∞

S is an achievable rate for protecting entanglement

Asymptotic Quantum Capacity Q(B) = maxS

3



Protection of entanglement can be quantified

HA E (n) n

B

B

D(n) HA

HR HR

ψRA φRA

E(n) encodes and D(k) decodes nS qubits of any ψRA with vanishing error as n 7→ ∞

S is an achievable rate for protecting entanglement

Asymptotic Quantum Capacity Q(B) = maxS
3



Achievable rates and quantum capacity are a fundamental quantities

• Information theoretic rates for

Preserving entanglement (read distilling EPR pairs)

Sending quantum information and performing quantum error-correction

• An achievable lower bound on rates for quantum key distribution
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Shannon like recipe for finding an achievable rate

1. Classical Channel - N : X 7→ Y i.e. p(y |x)

Shannon entropy: H(X ) = −
∑
x∈X

p(x) log p(x)

Mutual Information: I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

Channel Mutual Information: C (1)(N ) = max
p(x)

I (X ;Y )

2. Quantum Channel - B : a 7→ b

von-Neumann entropy: S(a) = −Tr(ρa log ρa)

Coherent Information: ∆(B, ρa) = S(b)− S(c)

Channel Coherent Information: Q(1)(B) = max
ρa

∆(B, ρa)
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Shannon like recipe for finding channel capacity

1. Classical channel

Additivity: C (1)(N ×N ′) = C (1)(N ) + C (1)(N ′)
Channel Capacity: C (N ) = lim

k 7→∞
C (1)(N×k)/k = C (1)(N )

Joint Channel Capacity: C (N ×N ′) = C (N ) + C (N ′)

2. Quantum channel

Non-Additivity: Q(1)(B ⊗ B′) ≥ Q(1)(B) + Q(1)(B′)
Quantum Capacity: Q(B) = lim

k 7→∞
Q(1)(B⊗k)/k ≥ Q(1)(B)

Joint Quantum Capacity: Q(B ⊗ B′) ≥ Q(B) + Q(B′)

The inequalities can be strict
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Non-additivity introduces some challenges

Quantum Capacity

Q(B) = lim
k 7→∞

Q(1)(B⊗k)/k.

Question : Given a channel B is Q(B) > 0?

Answer : Hard to say, for all n > 1 there is some B s.t.

Q(1)(B⊗n) = 0 but Q(1)(B⊗n+1) > 0

Question : If Q(B) = 0 then is B useless?

Answer : Not really, one can have

Q(B) = Q(B′) = 0 but Q(B ⊗ B′) > 0

Question : When and why are Q(1) and Q non-additive?

Answer : Some examples, but much is unknown
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Non-additivity brings new opportunities

• Develop new theoretical tools to understand quantum communication

• Gain conceptual insight about quantum communication

• Leverage non-additivity for quantum error correction
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New theoretical tool: log-singularity in the von-Neumann entropy

Basic Idea: ρ(ε) has entropy

S(ε) := −Tr(ρ log ρ) = −∑
i λi log λi

Suppose: λ1 = ε, λ2 = 1− ε

S(ε) has an ε log-singularity

dS(ε)/dε = O(log ε) for small ε

Using log-singularities, we develop

A method to check Q(1) > 0 A method to check if Q(1) non-additive
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Application 1: incomplete erasure Cg (ρ) = (1− λ)C1(ρ)⊕ λρ

C1 qubit amplitude damping with probability 1− p

Surprisingly Q(C1) = 0, p ≤ 1/2 but Q(1)(Cg ) > 0 p, λ > 0
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Application 2: General results about positivity of Q(1)

Quantum Channel Pair

ρda B db

C

dc

Theorem: If dc < db and B maps some pure state to an output of rank dc , then Q(1)(B) > 0.

Corollary 1: If da > 1 and db > da(dc − 1) then Q(1)(B) > 0.

Corollary 2: If B is a qubit channel (da = db = 2) then Q(1)(C) > 0 whenever dc > 2.
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New type of non-additivity using log-singularity

Q(1)(B ⊗ B′) > Q(1)(B) +Q(1)(B′)

B : Qubit amplitude damping channel with Q(B) = 0

B′ : Simple qutrit channel

A simple zero capacity channel boosts error correction rates

V.Siddhu, arXiv:2003.10367 (2020)
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Non-additivity can give rise to conceptual surprises

Belief: Allowing leakage of quantum information to a channel’s environment is detrimental for

its ability to preserve entanglement.

Result: Quantum capacity can be boosted by allowing leakage of quantum information to a

channel’s environment.

V.Siddhu, arXiv:2011.15116 (2020)
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What is the leakage procedure?

Quantum Channel Pair

ρ B

C

Trash
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What is the leakage procedure?

Quantum Channel Pair

ρ B

C

Trash

With Leakage

ρ Bl

Cl

More Trash
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Allowing qutrit channel B to leak takes B 7→ Bl
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Contribution of this talk

• Theoretical tool: log-singularities in the von-Neumann entropy

arXiv:2003.10367

• Conceptual surprise: allowing leakage of information can boost quantum communication

arXiv:2011.15116

• Message: Study of quantum capacities/non-additivity is a fundamental and fertile area for

developing new theoretical and conceptual tools

17



Contribution of this talk

• Theoretical tool: log-singularities in the von-Neumann entropy

arXiv:2003.10367

• Conceptual surprise: allowing leakage of information can boost quantum communication

arXiv:2011.15116

• Message: Study of quantum capacities/non-additivity is a fundamental and fertile area for

developing new theoretical and conceptual tools

17



Contribution of this talk

• Theoretical tool: log-singularities in the von-Neumann entropy

arXiv:2003.10367

• Conceptual surprise: allowing leakage of information can boost quantum communication

arXiv:2011.15116

• Message: Study of quantum capacities/non-additivity is a fundamental and fertile area for

developing new theoretical and conceptual tools

17



Contribution of this talk

• Theoretical tool: log-singularities in the von-Neumann entropy

arXiv:2003.10367

• Conceptual surprise: allowing leakage of information can boost quantum communication

arXiv:2011.15116

• Message: Study of quantum capacities/non-additivity is a fundamental and fertile area for

developing new theoretical and conceptual tools

17



THANK YOU
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