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Topological quantum computation
Use anyons to perform fault-tolerant quantum computation [Kitaev ’97]

Passive TQC Majorana wires, FQH states, . . .

I Information encoded in groundspace of physical system
I Protected by energy gap at T = 0
I Need error correction for thermal noise
I non-Abelian anyons are possible

Active QEC surface code, color code, . . .

I Information encoded in codespace of system of qubits
I Actively measure stabilizers
I Error correction when stabilizers are violated
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Active Non-Abelian quantum error correction
I Codespace of system of qubits
I Actively measure set of commuting projectors
I Noise → Non-abelian anyons

Our goals: 1. Construction of a non-Abelian code of qubits
2. Classical simulation of this code

Necessary ingredients:

QEC

TQFT TN

You are here
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Abelian vs non-Abelian codes

Abelian Non-Abelian

Low-weight local stabilizer codes
Well studied
High thresholds

Native universal gate set in 2D
Beyond stabilizer codes

No native non-Clifford gate in 2D
I Magic state distillation
I Code-switching to higher

dimensional codes
→ high overhead

Complicated
Hard to simulate classically
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Previous work

I König, Kuperberg, Reichardt: Turaev-Viro codes
arXiv:1002.2816

I Bonesteel, DiVincenzo: Measurement circuits for Levin-Wen Operators
arXiv:1206.6048

I Feng, Bonesteel: Fixing violated vertices in Fibonacci Levin-Wen code
PhD Thesis W. Feng

I Burton, Brell, Flammia: Threshold for phenomenological model of Fib anyons
arXiv:1506.03815
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The Levin-Wen model
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Defined by a Unitary Fusion Category C:
I string types {1, i2, . . . , iN} → qudit states |0〉 , |1〉 , . . . , |N〉
I branching rules δijk → determine Qv

I numerical data {di, F} → determine Bp
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The Levin-Wen model
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surface code: C = Z2
{1, e} e× e = 1

C = FIB
{1, τ} τ × τ = 1 + τ

Alexis Schotte arXiv:2012.04610 The extended string-net code 9 / 25



The Levin-Wen model

HΛ = −
∑

v

Qv −
∑

p

Bp

Qv

∣∣i j
k
〉

= δijk

∣∣i j
k
〉

Bp = 1
D2

∑
s

dsO
s
p

v

p

a

b

e

c

d
=
∑
n

Fabecdf

a d
f

cb

=
1
φ

+
1√
φ

=
1√
φ

−
1
φ

Alexis Schotte arXiv:2012.04610 The extended string-net code 10 / 25



The extended Levin-Wen model

HΛ = −
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I Localized excitations follow DFIB anyonic statistics: {11, 1τ, τ1, ττ}

I Inside Hs.n. = {|ψ〉 |
∏

v Qv |ψ〉 = |ψ〉}, the anyon charge of a plaquette is a
well-defined quantum-number.
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The tube algebra
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Measuring anyon charges

. . .

F-move
(2-2 Pachner move)
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Vertex correction
Some errors σe can take the initial state out of the string-net subspace:

[σe,
∏

v

Qv] 6= 0 ⇒ σe |Ψ0〉 /∈ Hs.n.

After measuring all Qv projectors with
outcomes V the state is returned to
Hs.n. by unitary UV conditioned on V

UV |ΨV 〉 ∈ Hs.n.

UV : 7→
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Error correction protocol

Apply noise

Measure vertex projectors + tails

Apply vertex correction

Measure anyon charge in all plaquettes
while syndrome is nonempty
1. Fuse pairs of anyons as dictated by decoding algorithm
2. Measure anyon charges
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The clustering decoder
Decoding graph:
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Translating qubit errors to anyonic processes
I Non-stabilizer code → Pauli noise is not natural here!
I Fusion states of anyons in plaquettes ↔ unique lattice qubit states:

|~a,~b〉 =

a2

a4a3

a1

b

I The states {|~a,~b〉} form an orthonormal basis of Hs.n.

I Express joint action of noise
vertex measurement
vertex correction

in fusion basis:

〈~a′,~b′| UV PV σe |~a,~b〉

〈~a′,~b′| σe PV σe |~a,~b〉
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Computing the matrix elements

I UV PV σ
e |~a,~b〉 and σePV σ

e |~a,~b〉 only
depend on local properties of |~a,~b〉

σx

a1 a2

a4a3b1

b3

b2

I Tensor network representation of anyonic fusion states:

|~a,~b〉 =

a1 a2

a3 a4

a5

a4a
3 b

1 b
2

a
2 a

1 b
1

a
4 b

2 a
5
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Computing the matrix elements

|~a,~b〉 =
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. . .
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Assumptions for the classical simulation

I Noise = random Pauli errors
I Total number of errors T ∼ Poisson(|E| p)
I Perfect measurements
I Perfect recovery operations

We simulate the dynamics of the system for T timesteps

Individual time step in the simulation
1. An edge e is selected at random

2. A random Pauli operator σe
i is applied to the state

3. All vertex projectors {Qv} and tail qubits are measured

4. Depending on the outcome V , vertex correction UV is applied

5. The anyon charge of all plaquettes is measured.
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Results

Clustering decoder, depolarizing noise

pc ≈ 0.0475

Clustering decoder, dephasing noise

pc ≈ 0.0725

Comparable to surface code thresholds under similar assumptions!

Alexis Schotte arXiv:2012.04610 Classical simulation 22 / 25



Outline

Non-Abelian topological quantum error correction

The extended string-net code

Classical simulation

Summary & Outlook

Alexis Schotte arXiv:2012.04610 Summary & Outlook 23 / 25



Summary

I Active Non-Abelian QEC → system of qubits

I Code space defined using modified Levin-Wen Hamiltonian

I 3 ingredients:
I Quantum error correction
I Topological quantum field theory → tube algebra + anyonic fusion basis
I Tensor networks → translating qubit errors to anyons

I First threshold for 2D code which natively supports a universal gate set

I Threshold comparable to surface code threshold under similar assumptions
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Outlook

I More natural noise model?

I Simulating fully fault-tolerant setup

I Finding better decoders

I Applying our techniques to different non-Abelian codes (with lower-depth
measurement circuits)

I Planar string-net codes

I Road to experimental implementation
→ hardware-efficient multi-qubit gates
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