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Non-Abelian topological quantum error correction
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Topological quantum computation

Use anyons to perform fault-tolerant quantum computation [Kitaev '97]

Passive TQC Majorana wires, FQH states, ...
» Information encoded in groundspace of physical system
> Protected by energy gap at T' =0
» Need error correction for thermal noise

» non-Abelian anyons are possible

Active QEC surface code, color code, ...
» Information encoded in codespace of system of qubits
» Actively measure stabilizers

» Error correction when stabilizers are violated

Alexis Schotte arXiv:2012.04610 Non-Abelian topological quantum error correction 3/25



Active Non-Abelian quantum error correction

» Codespace of system of qubits
> Actively measure set of commuting projectors

» Noise — Non-abelian anyons

Our goals: 1. Construction of a non-Abelian code of qubits

2. Classical simulation of this code

Necessary ingredients:

You are here
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Abelian vs non-Abelian codes

Abelian Non-Abelian
+ Low-weight local stabilizer codes + Native universal gate set in 2D
+  Well studied + Beyond stabilizer codes

+ High thresholds

= No native non-Clifford gate in 2D = Complicated

> Magic state distillation — Hard to simulate classically
» Code-switching to higher

dimensional codes
— high overhead
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Previous work

» Konig, Kuperberg, Reichardt:  Turaev-Viro codes
arXiv:1002.2816

» Bonesteel, DiVincenzo: Measurement circuits for Levin-Wen Operators
arXiv:1206.6048

» Feng, Bonesteel: Fixing violated vertices in Fibonacci Levin-Wen code
PhD Thesis W. Feng

» Burton, Brell, Flammia: Threshold for phenomenological model of Fib anyons
arXiv:1506.03815
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The extended string-net code
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The Levin-Wen model

HA = 72@@ - ZBp
Quli ) =5 1)

1
By =3 > d.0;
S

Defined by a Unitary Fusion Category C:

> string types {1,is,...,in} —  qudit states |0),]1),...,|N)
> branching rules J;;; —  determine @,
> numerical data {d;, F} —  determine B,
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The Levin-Wen model

HA = 72@@ - ZBp
Quli ) =5 1)

1
By =3 > d.0;
S

surface code: C = Zo
{1,¢e} exe=1
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The Levin-Wen model

HA = _ZQv - ZBP
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The extended Levin-Wen model

Hy==> Q=) B
v P
) )
Q. 1K) = i K
1
By = 55 > d:0;,
S
> Localized excitations follow DFIB anyonic statistics: {11, 17, 71, 77}

> Inside Hqn = {|¢) |IL, Qv |¥) = |¥)}, the anyon charge of a plaquette is a
well-defined quantum-number.
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The tube algebra
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Measuring anyon charges

‘resolve’ circuit

Faa

(2:2 Pachner move)

F-move
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Vertex correction

Some errors o€ can take the initial state out of the string-net subspace:

o J[Q.)#0 = 0°W) ¢ Han

After measuring all @, projectors with
outcomes V' the state is returned to
Hs.n. by unitary Uy conditioned on V/

UV |\IIV> S Hs.n.

I 11 10w

S ——

3
t1o QB [7]
depth-4 1-Q,
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Error correction protocol

Apply noise

Measure vertex projectors + tails

Apply vertex correction

Measure anyon charge in all plaquettes
while syndrome is nonempty

1. Fuse pairs of anyons as dictated by decoding algorithm
2. Measure anyon charges
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The clustering decoder
Decoding graph:

Schotte
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Classical simulation
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Translating qubit errors to anyonic processes
» Non-stabilizer code — Pauli noise is not natural here!

» Fusion states of anyons in plaquettes <> unique lattice qubit states:

—

» The states {|@, b)} form an orthonormal basis of H .y

» Express joint action of noise in fusion basis:
vertex measurement
vertex correction

(@, v'| Uy Py o°|a,b)
(@,b'| o¢ Py o°|a,b)
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Computing the matrix elements
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Computing the matrix elements

(@ ,b|ccPyot|d, by =

Py ol
where ;*» = ;*{ and ;*’ =
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Assumptions for the classical simulation

» Noise = random Pauli errors
» Total number of errors T ~ Poisson(|E| p)
» Perfect measurements

» Perfect recovery operations

We simulate the dynamics of the system for 1" timesteps
Individual time step in the simulation

An edge e is selected at random

A random Pauli operator of is applied to the state

All vertex projectors {Q,} and tail qubits are measured

Depending on the outcome V/, vertex correction Uy is applied

L

The anyon charge of all plaquettes is measured.
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Results

Clustering decoder, depolarizing noise

0.6 Fi-w0
05 L=12
4 L=14
04| 4-L=16
Fros
0.3
0.2
0.1
0 v . . . .
0.01 0.02 0.03 0.04 0.045 0.05 0.055
p

pe = 0.0475

Clustering decoder, dephasing noise

0.7 - - - - - - -
0.6 Fi-n
L=14
051 | $-L=16
04 -
& —“-L=20
03} | 4-L=22

0.2

0.1

0s

0.02 0.03 0.04 0.05 0.06
p

pe ~ 0.0725

Comparable to surface code thresholds under similar assumptions!
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Summary & Outlook
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Summary

» Active Non-Abelian QEC  —  system of qubits
» Code space defined using modified Levin-Wen Hamiltonian

» 3 ingredients:

» Quantum error correction
» Topological quantum field theory = — tube algebra 4+ anyonic fusion basis
> Tensor networks — translating qubit errors to anyons

» First threshold for 2D code which natively supports a universal gate set

» Threshold comparable to surface code threshold under similar assumptions
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Outlook

» More natural noise model?
» Simulating fully fault-tolerant setup
» Finding better decoders

> Applying our techniques to different non-Abelian codes (with lower-depth
measurement circuits)

» Planar string-net codes

» Road to experimental implementation
— hardware-efficient multi-qubit gates
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