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I. MAIN IDEAS

Fractons are topological excitations that are immobile due to superselection rules, they occur in

exotic topological phases of matter which defy expectations based on more conventional topological

quantum field theories (TQFTs). Interest in these phases was driven by Haah’s discovery of

the cubic code1, and demonstration that it supports no stringlike logical operators and forms a

partially self-correcting topological quantum memory at finite temperature2,3. The study of these

phases has grown into an active subfield at the interface of quantum codes and condensed matter

theory, with particular focus on exotic topological order4–10, slow quantum dynamics11–14 and

subsystem symmetries15–22. Fracton topological phases present a novel challenge to the classification

of quantum matter, a scheme which has otherwise largely succeeded for topological phases of

matter23. This is especially true for topological orders in 2+1D, whose classification in terms of

modular tensor categories24,25 is widely accepted to be complete and has important applications

to the theory of topological quantum computation.

To date there have been many attempts at developing a classification and understanding of all

fracton phases of matter. It has proven deceptively difficult to find a unified classification of even the

relatively simple class of translation-invariant, exactly solvable, gapped fracton models. This raises

the following natural questions: does there exist a unified framework which captures all types of

gapped fracton phases, and if so, does this framework fit within the existing TQFT landscape? In

this work, we answer both in the affirmative. Rather than abandoning the TQFT framework,

we instead espouse the idea of seeking out modifications to TQFTs which are fundamentally

sensitive to geometry. Drawing inspiration from the field of defect TQFTs26–31, as well as from

the recent classification of crystalline SPTs32–34, we introduce topological defect networks as a

unified framework for the description and classification of all types of gapped fracton phases.
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II. OVERVIEW OF RESULTS

In this work, we demonstrate that all the known types of gapped fracton models can be realized

by topological defect networks. We proceed by constructing concrete examples of topological defect

networks for well-known gapped fracton models, including the X-Cube (a foliated type-I model)

and Haah’s B code (a type-II model), as well as a fractal type-I model. We also present a new

non-Abelian panoptic fracton model based on 3+1D D4 gauge theory, which hosts fully immobile

non-Abelian excitations. We further argue that topological defect networks give rise to no stable

translation invariant gapped fracton phases in 2+1D.

The central ingredients in our construction are topological defects. A topological defect can

be embedded into a D+1 dimensional TQFT by introducing new interactions and possibly new

degrees of freedom, which are spatially localized on some lower d < D dimensional region, into

the system without closing the bulk gap. For a Hamiltonian, this corresponds to modifying its

terms near the region specified by the defect while maintaining the energy gap. Consequently,

the behavior of bulk topological excitations is modified in the vicinity of the defect. For instance,

some bulk excitations may condense on the defect; or, the defect could nontrivially permute the

topological superselection sectors of excitations passing through it. Both kinds of defects—anyon

condensing and anyon permuting—have been introduced into the 2+1D toric code Hamiltonian,

and are of interest for their applications in topological quantum computation35,36.

A 3+1D topological defect network is a particular instance of a TQFT containing defects that live

on a stratified 3-manifold M. A stratification consists of collections Sj (j ∈ [0, 3]) of j-dimensional

submanifolds that decompose the manifold, as in Fig. 1. Elements of Sj are referred to as j-

strata. We assign a 3+1D TQFT to each 3-strata and associate a topological defect with each

FIG. 1. A stratification of 3d space into 3-strata (white regions), 2-strata (red squares), 1-strata (blue lines),

and 0-strata (black vertex). A 3+1D TQFT lives on each 3-strata, and they are coupled together along the

lower-dimensional 2- and 1-strata defects. This defect TQFT could be described by a lattice model with

qubits on, e.g., the black cubic lattice.
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j-stratum (for j < 3), thereby coupling together the ambient TQFTs. This coupling, mediated by

the defect network, underpins the flexibility of topological defect networks as it directly imposes the

mobility constraints characteristic of fracton models. In particular, this coupling dictates the set of

topological excitations that condense on a given j-strata and hence, along with the braiding data

already encoded in the 3+1D TQFT, determines the set of excitations which cannot pass through

that strata—any excitations which braid non-trivially with any of the condensed excitations on

a defect are prohibited from passing through it. We utilize these properties to construct defect

TQFTs that “trap” certain topological excitations and hence describe fracton topological orders.

By comparison, previous fracton constructions essentially take the defect network length scale

to be the same as the length scale of the microscopic lattice. As emphasized in Fig. 1, in this work

we are considering a microscopic lattice length scale that is much smaller than the defect network

length scale. The particular lattice cellulation used for the microscopic lattice does not affect the

long distance physics (e.g., the particle mobility constraints). This allows us to take a continuum

limit of the microscopic lattice, yielding a field theoretic description of the resulting fracton models

in terms of defect TQFTs.

III. IMPACT AND IMPORTANCE

In this work, we have introduced topological defect networks and demonstrated that they can

describe a comprehensive variety of gapped fracton phases. Based on our ability to fit the broad

typology of gapped fractonic matter into our framework, we expect that all fracton phases admit a

defect network description. As such, we conjecture that topological defect networks realize all zero-

temperature gapped phases of matter. As a byproduct of this conjecture, we have also argued that

no fracton phases exist in 2+1D gapped systems, thereby demonstrating the potential of topological

defect networks as tools for the classification of phases of matter. This provides a promising new

route to approach the classification of all gapped phases of matter in the near future.

Another promising application of topological defect networks is to construct new fracton

topological codes beyond the stabilizer formalism, which are not bound by known restrictions

on topological stabilizer codes2,3. We have already constructed one such model that supports non-

Abelian fractons based on D4 gauge theory. Our formalism also provides a framework within which

universal results on the best achievable performance of general fracton topological codes may be

established by utilizing the existing theory of defect TQFTs.
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