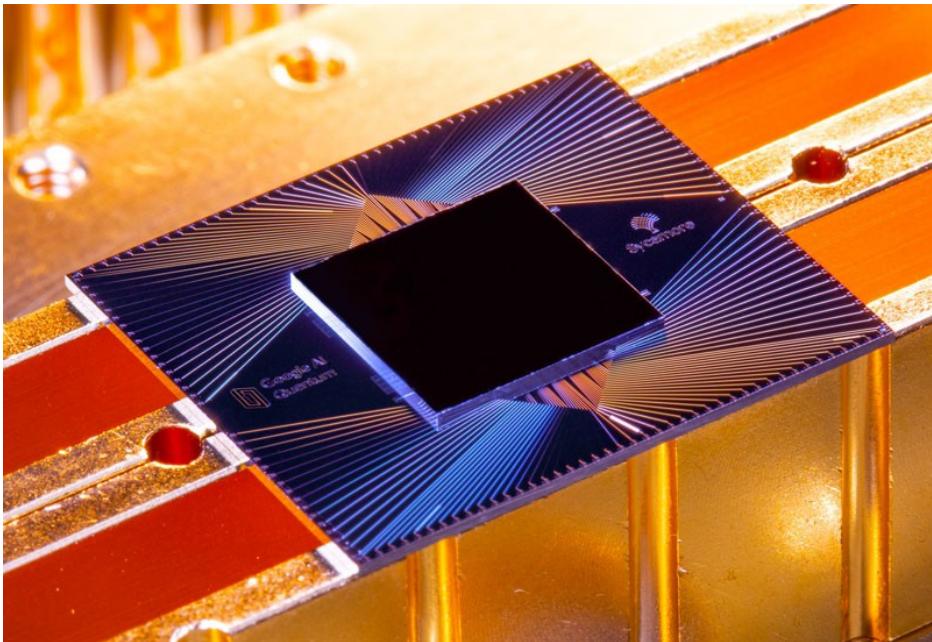


Noise and the frontier of quantum supremacy

Yunchao Liu (UC Berkeley)

joint work with Adam Bouland (UC Berkeley), Bill Fefferman (U of Chicago), Zeph Landau (UC Berkeley)

Quantum supremacy experiments

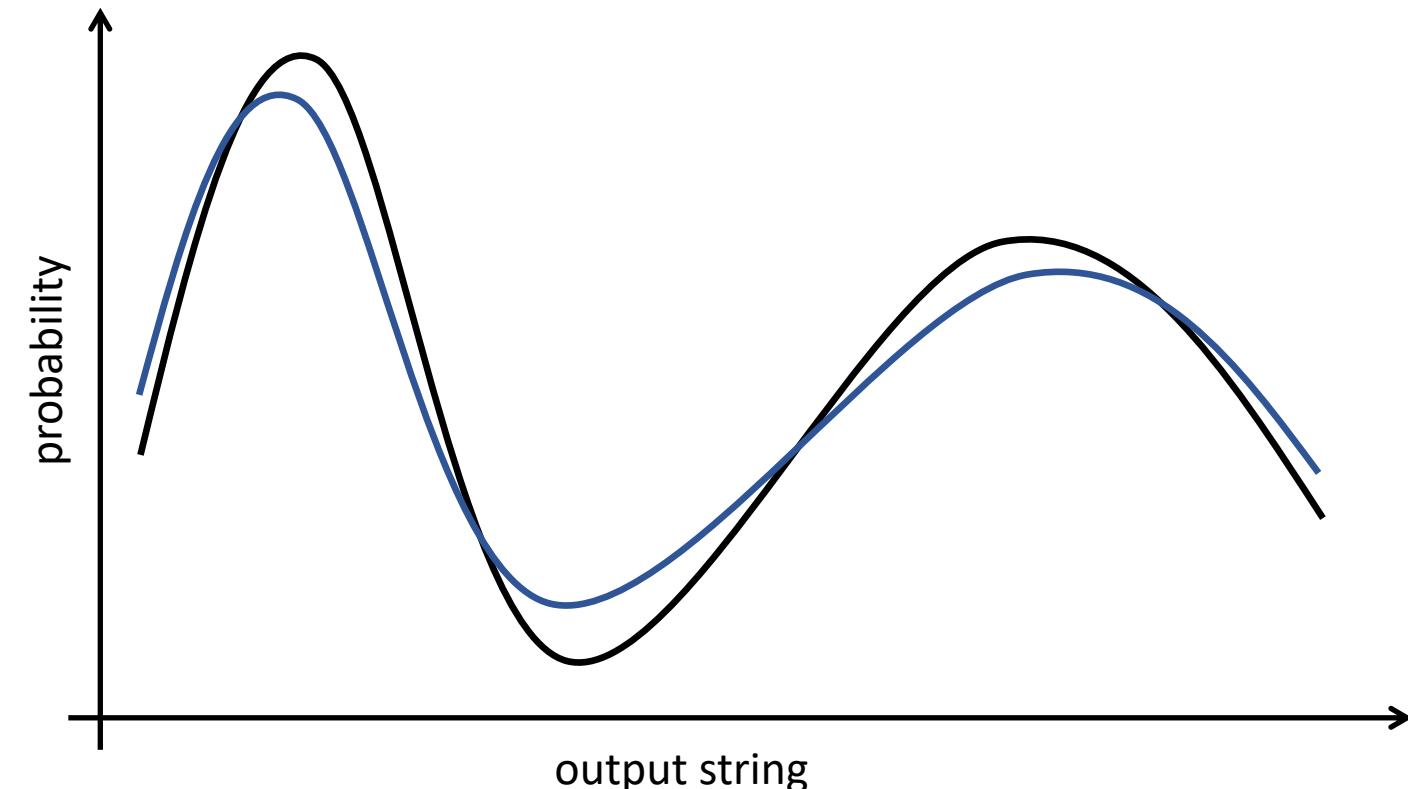


Random Circuit Sampling (Google Sycamore)

BosonSampling (USTC Jiuzhang)

This talk: improved complexity-theoretic evidence that these tasks are hard for classical computers

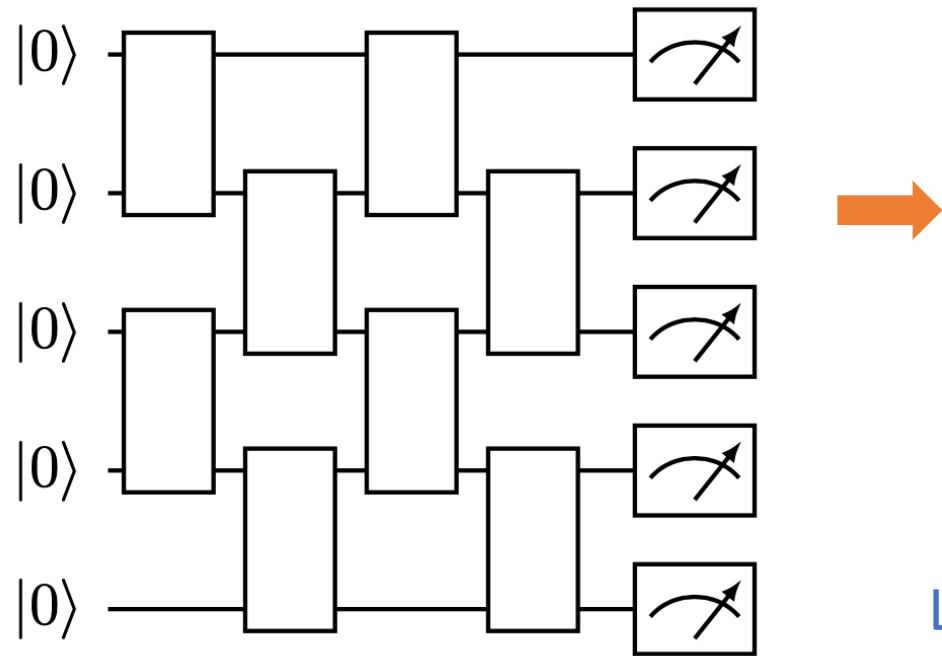
Evidence of hardness for quantum supremacy experiments



- Model: prove hardness of sampling with high fidelity as system size scales
- *Low noise regime*
- Limitations: cannot prove hardness even in this idealized setting due to insufficient robustness

First result: significantly improve the robustness of prior hardness results

Computational model: low-noise regime



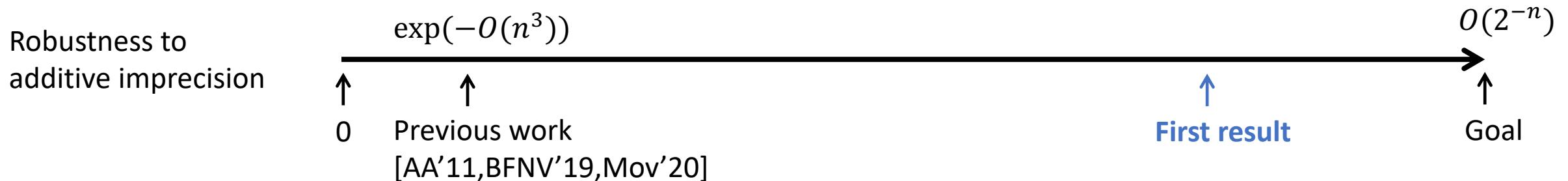
110110000010111100010011011011100111101001011110101,
11110000101010101110111011100000000100011111011101001,
00010001011010100010110010000101000000110100001010010...

Low-noise regime:

Goal: Prove it is hard to sample from a distribution that is
very close to the ideal distribution

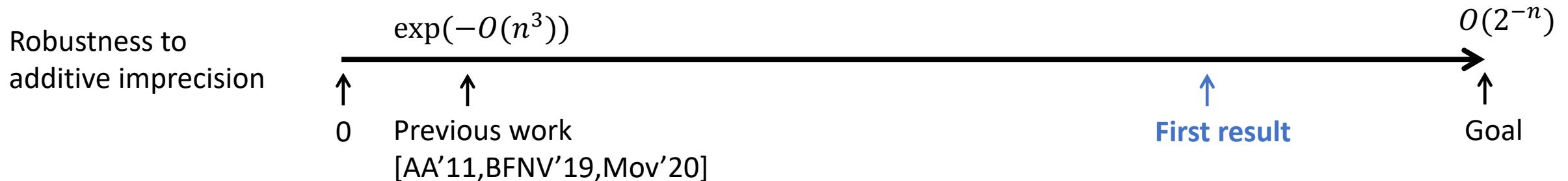
Evidence for hardness of sampling

- To prove hardness of sampling, it suffices to prove robust hardness results for computing the output probability [Stockmeyer'85, AA'11]



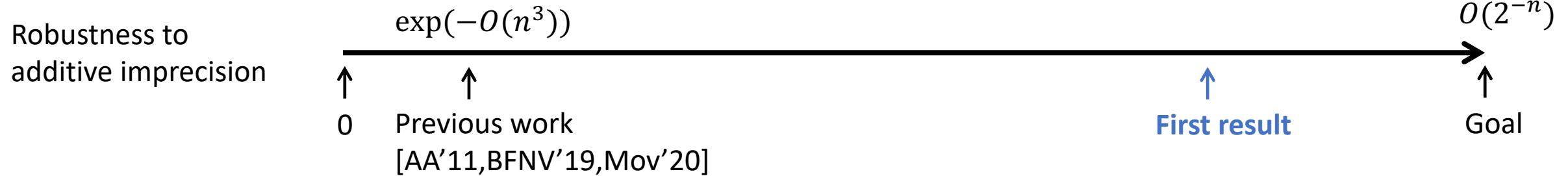
Evidence for hardness of sampling

Goal: prove hardness of approximating the output probability of random circuits (linear optical networks)
to additive imprecision on the order of the average output probability



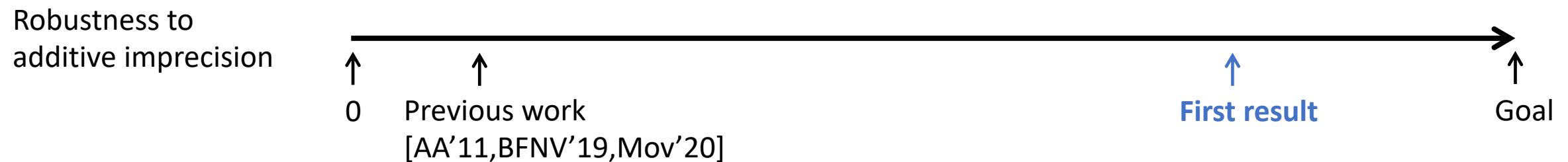
Evidence for hardness of sampling

Goal: $\#P$ hardness of computing $|\langle 0|C|0\rangle|^2 \pm O(2^{-n})$



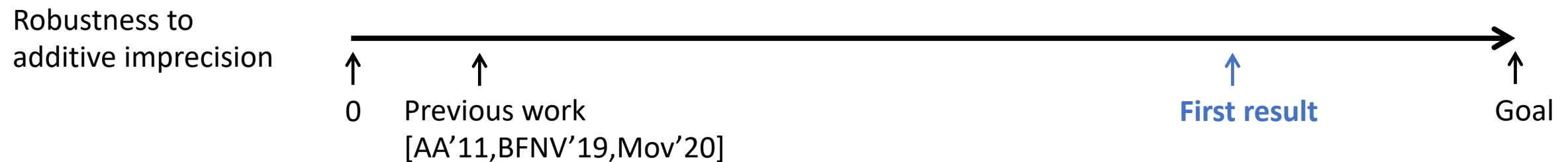
First result: improved robustness
in the low-noise regime

Task	Previous result	Our result	Goal	Remark
Random circuit sampling (n qubits, m gates)	$\exp(-O(m^3))$ [BFNV'19, Mov'20]	$\exp(-O(m \log m))$	$O(2^{-n})$	



First result: improved robustness
in the low-noise regime

Task	Previous result	Our result	Goal	Remark
Random circuit sampling (n qubits, constant depth)	$\exp(-O(n^3))$ [BFNV'19, Mov'20]	$\exp(-O(n \log n))$	$O(2^{-n})$	For constant depth circuits, tight up to $O(\log n)$ factor in the exponent

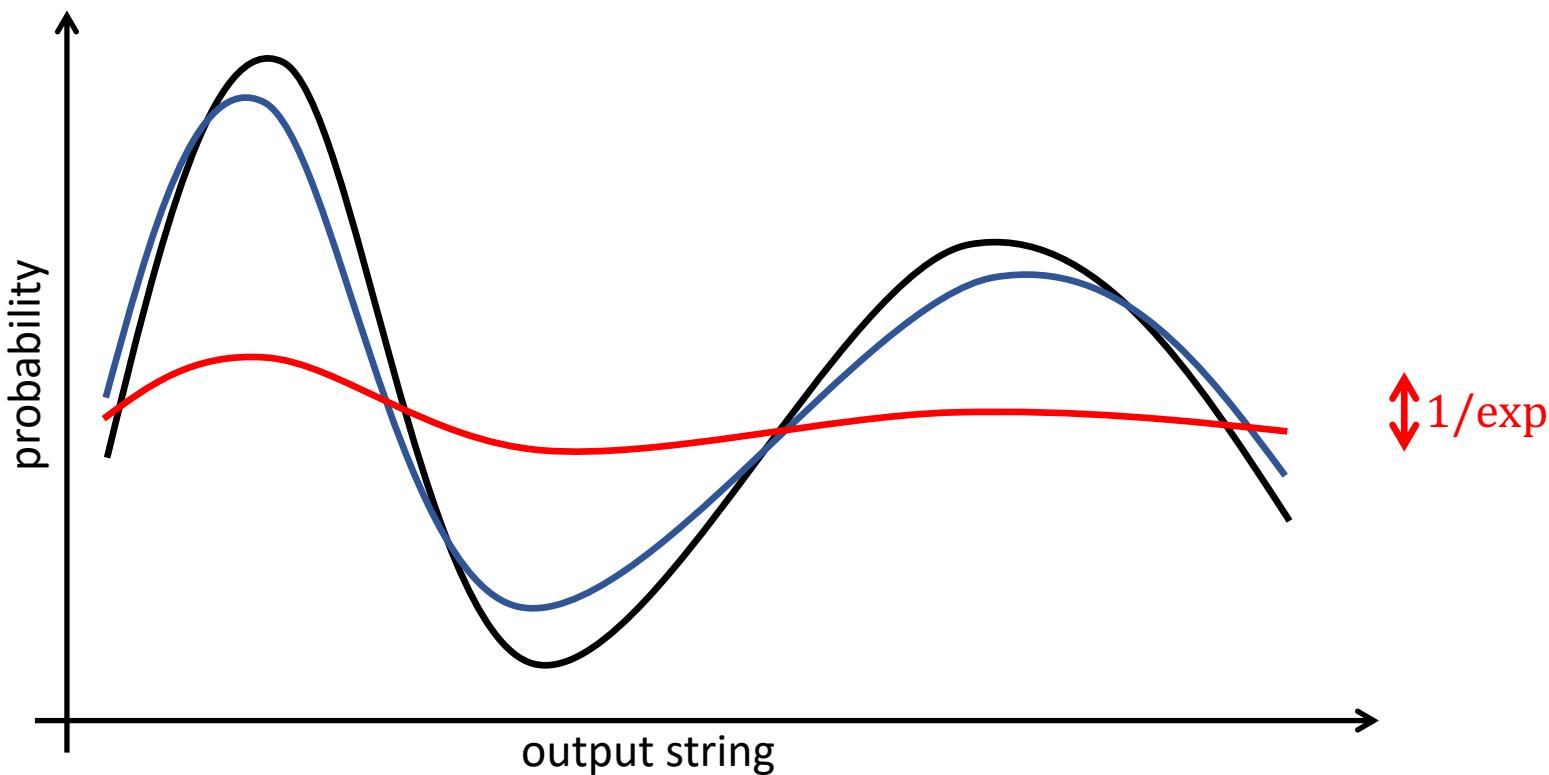


First result: improved robustness in the low-noise regime

Task	Previous result	Our result	Goal	Remark
Random circuit sampling (n qubits, constant depth)	$\exp(-O(n^3))$ [BFNV'19, Mov'20]	$\exp(-O(n \log n))$	$O(2^{-n})$	For constant depth circuits, tight up to $O(\log n)$ factor in the exponent
BosonSampling (n photons, n^2 detectors)	$\exp(-O(n^4))$ [AA'11]	$\exp(-6n \log n)$	$\exp(-n \log n)$	Tight up to constant factor in the exponent

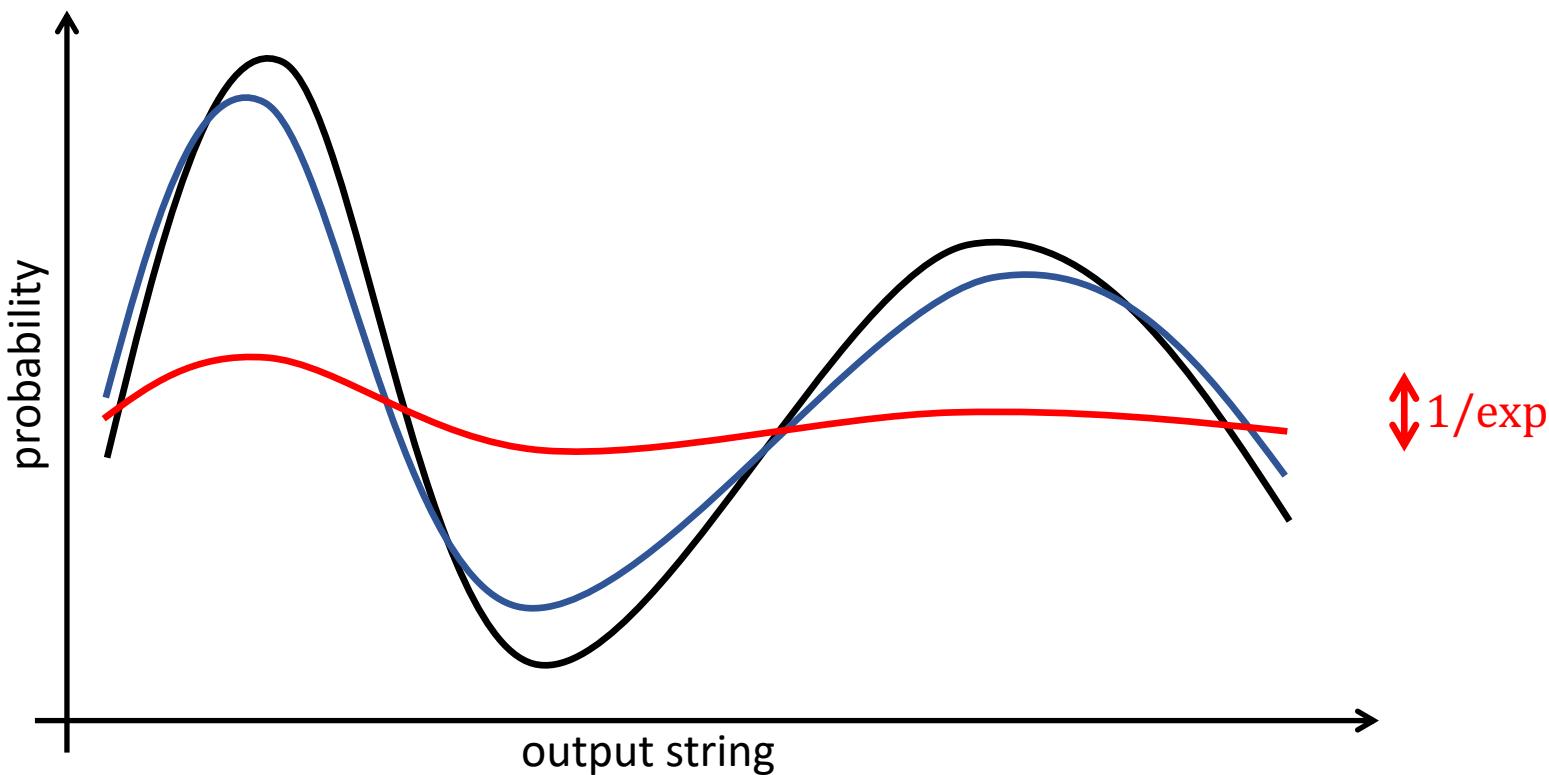
Robustness to additive imprecision

Theory vs. Experiment



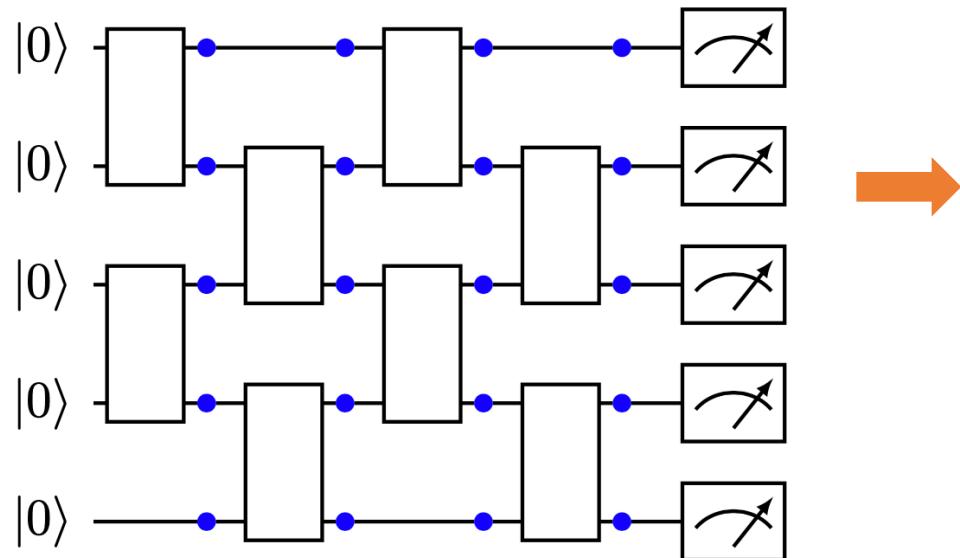
Low-noise regime: Goal is to prove hardness of sampling
from a distribution that is **very close to the ideal distribution**

Theory vs. Experiment



High noise regime: in experiments we only observe a **tiny** deviation from uniform along the correct direction

New model: high-noise regime

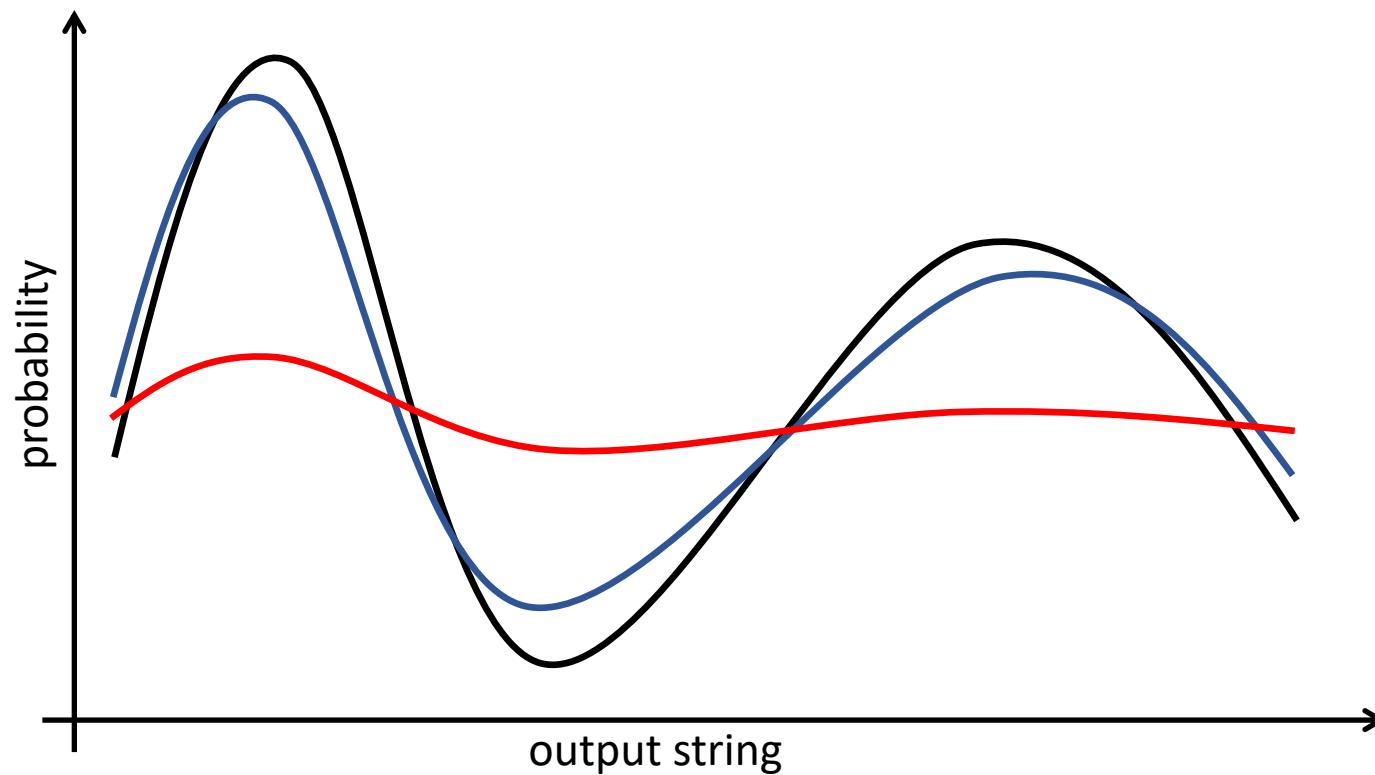


110110000010111100010011011011100111101001011110101,
1111000010101010111011100000000100011111011101001,
000100010110101000101100100001010000011010000101001...

High-noise regime:

Given a random circuit, a fixed noise model (constant noise rate),
sample from the **(exact)** output distribution of the **noisy** circuit

New model: high-noise regime

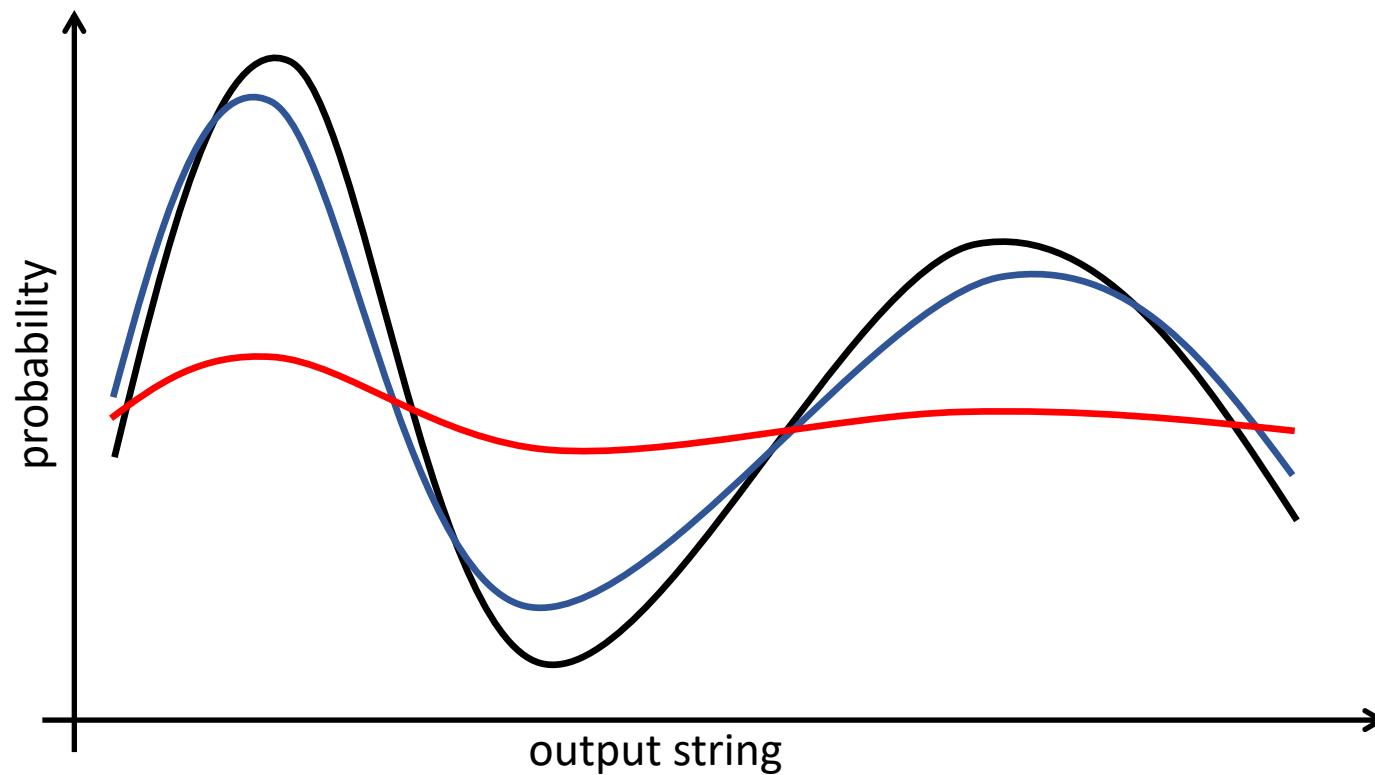


$\uparrow\downarrow 1/\exp$

noisy random circuits converge to
uniform exponentially quickly
[ABOIN'96, GD'18]

Second result: these tiny signals remain hard to *compute*

New model: high-noise regime

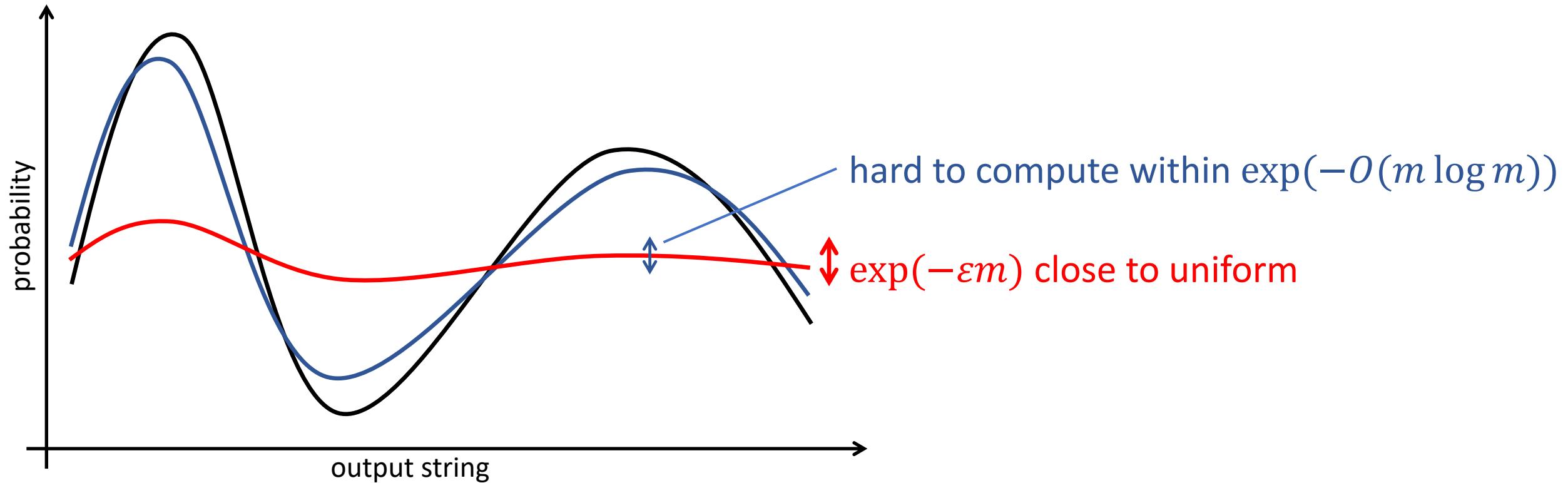


$\uparrow\downarrow 1/\exp$

noisy random circuits converge to
uniform with speed $\exp(-\varepsilon m)$
[Boixo et al'18]

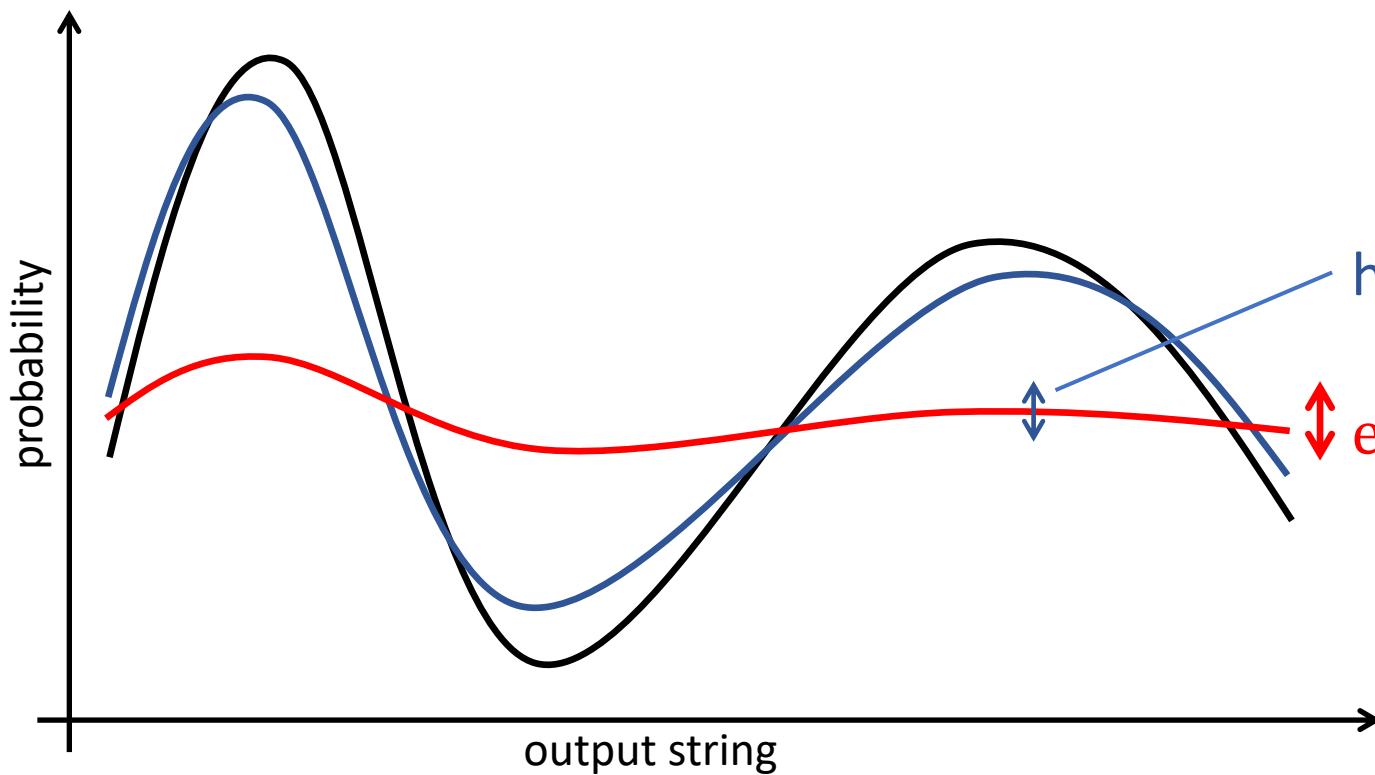
Second result: these tiny signals remain hard to compute

Second result: evidence of hardness in the high-noise regime



Second result: these tiny signals remain hard to compute

Second result: evidence of hardness in the high-noise regime



Second result: these tiny signals remain hard to compute

hard to compute within $\exp(-O(m \log m))$

$\exp(-\varepsilon m)$ close to uniform

Cannot improve our high-noise result much further, due to the exponential convergence to uniform

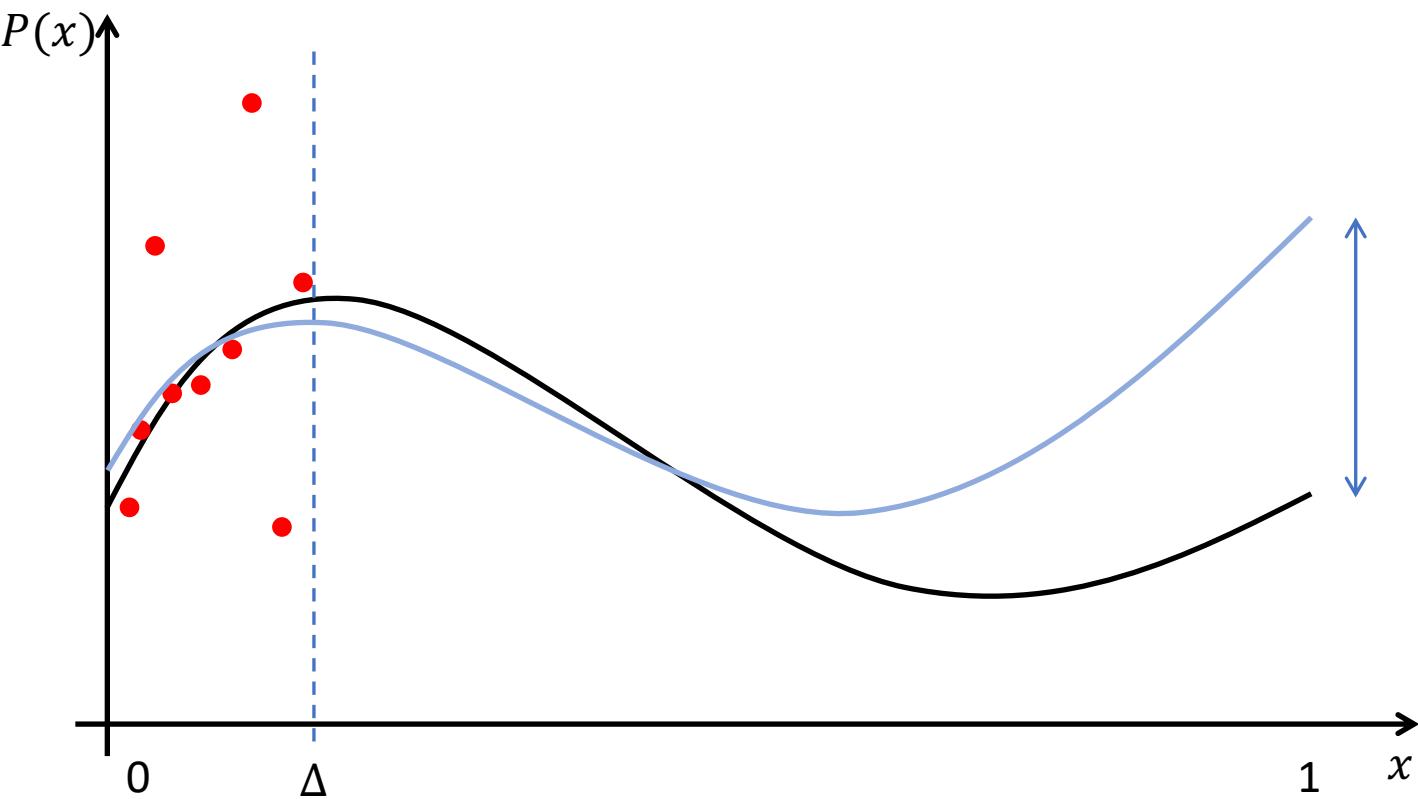
Proof sketch

An algorithm for computing the output probability of
random circuits

Polynomial structure
[AA'11, BFNV'19, Mov'20]

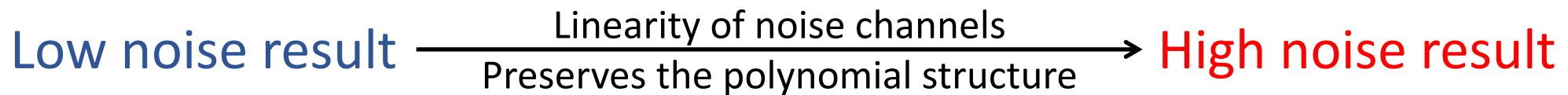
An algorithm for computing the output probability of
any circuit

Proof techniques: first result



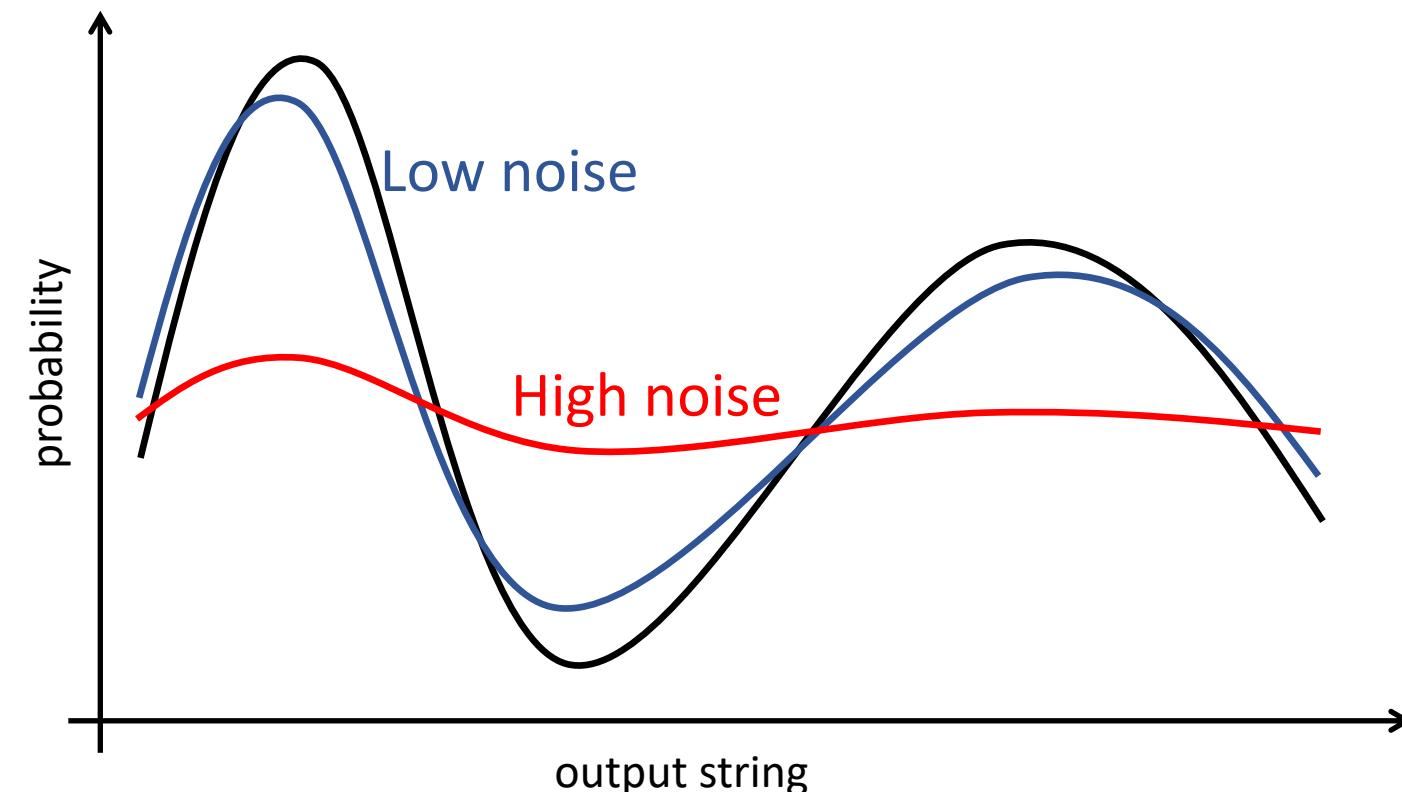
- The problem reduces to polynomial interpolation on noisy data points [AA'11, BFNV'19, Mov'20]
- We develop a robust Berlekamp-Welch argument that
 - simplifies the proof
 - tolerates more errors
 - reduces the extrapolation error

Proof techniques: second result



- The same worst to average case reduction techniques also apply to the high noise setting
- *Q: what about worst case hardness?*
- A: error detection [Fujii'16]

Summary of our results

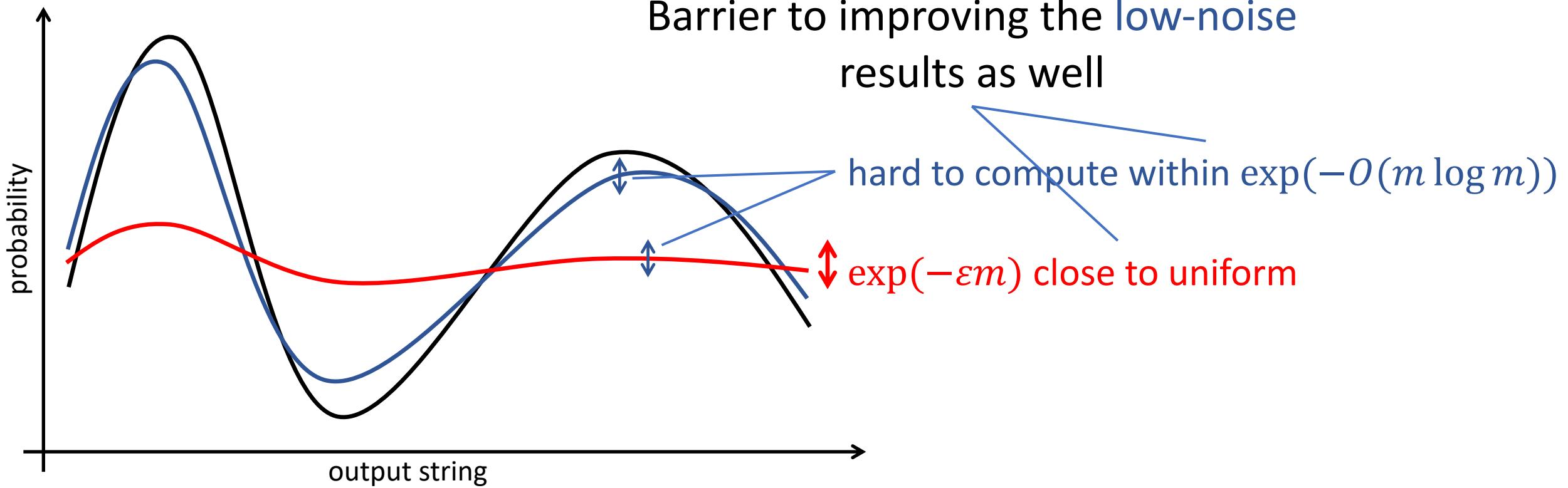


- **Our result:** we substantially improve the robustness of prior hardness results in the low noise setting

optimality

- **Our result:** we give initial evidence of hardness with exponentially decreasing fidelity

High-noise result implies barrier to improving low-noise result



Barriers to proving hardness of sampling (in the low-noise regime)

Random circuit sampling

- Noise barrier [This work]
- Depth barrier [Napp et al'20]
(see talk on Friday)
- Polynomial interpolation barrier
[AA'11]

BosonSampling

- Polynomial interpolation barrier
[AA'11]
- *Q: do noise and depth barriers apply?*

- Our result: $\exp(-O(n \log n))$
- **Goal: $O(2^{-n})$**

- Our result: $\exp(-6n \log n)$
- **Goal: $\exp(-n \log n)$**