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Quantum supremacy experiments

Random Circuit Sampling (Google Sycamore) BosonSampling (USTC Jiuzhang)

This talk: improved complexity-theoretic evidence that these tasks are hard
for classical computers



probability

Evidence of hardness for
guantum supremacy experiments

* Model: prove hardness of
sampling with high fidelity as
system size scales

* Low noise regime

* Limitations: cannot prove
hardness even in this idealized
setting due to insufficient
robustness

output string

First result: significantly improve the robustness of prior hardness results



Computational model:
low-noise regime
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Goal: Prove it is hard to sample from a distribution that is
very close to the ideal distribution



Evidence for hardness of sampling

* To prove hardness of sampling, it suffices to prove robust hardness
results for computing the output probability [Stockmeyer’85, AA’11]
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Evidence for hardness of sampling

Goal: prove hardness of approximating the output probability of random
cirucuits (linear optical networks)
to additive imprecision on the order of the average output probability
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Evidence for hardness of sampling

Goal: #P hardness of computing [(0|C|0)|* + 0(27™)
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First result: improved robustness
in the low-noise regime
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First result: improved robustness
in the low-noise regime
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First result: improved robustness
in the low-noise regime

Random circuit  exp(—0(n?)) exp(—0(nlogn)) 02™) For constant depth
sampling [BFNV’19, circuits, tight up to

(n qubits, Mov’20] O (logn) factor in the
constant depth) exponent
BosonSampling  exp(—0(n*)) exp(—6nlogn) exp(—nlogn) Tight up to constant
(n photons, [AA'11] factor in the exponent

n? detectors)
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Theory vs. Experiment
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Low-noise regime: Goal is to prove hardness of sampling
from a distribution that is very close to the ideal distribution



Theory vs. Experiment

A

probability

output string

High noise regime: in experiments we only observe a tiny
deviation from uniform along the correct direction

$1/exp



New model: high-noise regime
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High-noise regime:

Given a random circuit, a fixed noise model (constant
noise rate),

sample from the (exact) output distribution of the
noisy circuit
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New model: high-noise regime

S :I: 1/exp \

noisy random circuits converge to
uniform exponentially quickly

output string [ABOIN’96, GD’18]

Second result: these tiny signals remain hard to compute



probability

New model: high-noise regime

§ $1/exp \

noisy random circuits converge to
uniform with speed exp(—em)

> [Boixo et al’18]

output string

Second result: these tiny signals remain hard to compute
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Second result: evidence of hardness
in the high-noise regime

hard to compute within exp(—0(mlogm))

<>

§$ exp(—em) close to uniform

output string

Second result: these tiny signals remain hard to compute
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Second result: evidence of hardness
in the high-noise regime

hard to compute within exp(—0(mlogm))

§$ exp(—em) closeﬂm

Cannot improve our high-noise
result much further, due to the

<>

>

output string
exponential convergence to

Second result: these tiny signals remain hard to compute uniform



Proof sketch

An algorithm for computing the output probability of
random circuits

Polynomial structure
[AA’11, BFNV’19, Mov’20]

v

An algorithm for computing the output probability of
any circuit



Proof techniques: first result
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* The problem reduces to
polynomial interpolation on
noisy data points [AA'11,
BFNV’19, Mov’20]

* We develop a robust
Berlekamp-Welch argument
that

e simplifies the proof
* tolerates more errors
* reduces the extrapolation error



Proof techniques: second result

Linearity of noise channels
Preserves the polynomial structure

Low noise result > High noise result

* The same worst to average case reduction techniques also apply to
the high noise setting

 Q: what about worst case hardness?

e A: error detection [Fujii’16]
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Summary of our results

Low noise

High noise

output string

Our result: we substantially improve
the robustness of prior hardness
results in the low noise setting

optimality
Our result: we give initial evidence

of hardness with exponentially
decreasing fidelity
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Hig
to i

N-noise result implies barrier

mproving low-noise result

Barrier to improving the low-noise
results as well

hard to Wn exp(—0(mlogm))

SII: exp(—em) close to uniform

<>

output string



Barriers to proving hardness of sampling
(in the low-noise regime)

Random circuit sampling BosonSampling
* Noise barrier [This work] * Polynomial interpolation barrier
* Depth barrier [Napp et al’20] [AA'11]
(see talk on Friday) * Q: do noise and depth barriers
e Polynomial interpolation barrier apply?
[AA'11]

* Our result: exp(—O(n log n)) * Our result: exp(—6nlogn)
* Goal: 0(27™) * Goal: exp(—n logn)



