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Quantum algorithms for quantum chemistry

 Quantum simulation can be used to solve extremely important problems.



Quantum algorithms for quantum chemistry

 Quantum simulation can be used to solve extremely important problems.

 Classical methods quickly become intractable.
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Non-Clifford gates

 Clifford gates like X and CNOT are easy in surface code.

 Non-Clifford gates like T and Toffoli* are harder.

 Can distill magic states for Toffolis directly.

 We count Toffoli gates.

C. Gidney, A. G. Fowler, Quantum 3, 135 (2019).

*Toffolis are controlled CNOTs
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Qubitisation
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The electronic structure Hamiltonian

 To represent wavefunctions on computer we choose 𝑁 orbitals.

 There are 𝑂(𝑁4) Hamiltonian terms.

𝐻 = ෍

𝑝,𝑞,𝑟,𝑠=1

𝑁

𝑉𝑝𝑞𝑟𝑠𝑎𝑝
†𝑎𝑞𝑎𝑟

†𝑎𝑠 + ෍

𝑝,𝑞=1

𝑁

𝑇𝑝𝑞𝑎𝑝
†𝑎𝑞

 𝑎𝑖
† and 𝑎𝑗 are creation and annihilation operators for electrons (fermions).

 Overall complexity goes like

𝜆 × data in 𝐻



Single factorisation

 Rewrite as

𝐻 = ෍

𝑝,𝑞,𝑟,𝑠=1

𝑁

𝑉𝑝𝑞𝑟𝑠𝑎𝑝
†𝑎𝑞𝑎𝑟

†𝑎𝑠 + ෍

𝑝,𝑞=1

𝑁

𝑇𝑝𝑞𝑎𝑝
†𝑎𝑞

=෍

ℓ=1

𝐿

𝜔ℓ ෍

𝑝,𝑞=1

𝑁

𝑔𝑝𝑞
(ℓ)
𝑎𝑝
†𝑎𝑞

2

+ ෍

𝑝,𝑞=1

𝑁

𝑇𝑝𝑞𝑎𝑝
†𝑎𝑞

 Typically can take 𝐿 = 𝑂(𝑁) – low rank.

 There are 𝑂(𝑁3) parameters.

D. W. Berry, C. Gidney, M. Motta, J. McClean, R. Babbush, Quantum 3, 208 (2019).



Double factorisation

 Rotate basis for each part of the factorisation:

෍

ℓ=0

𝐿

𝜔ℓ ෍

𝑝,𝑞=1

𝑁

𝑔𝑝𝑞
(ℓ)
𝑎𝑝
†𝑎𝑞

2

+ ෍

𝑝,𝑞=1

𝑁

𝑇𝑝𝑞𝑎𝑝
†𝑎𝑞

෍

ℓ=0

𝐿

𝜔ℓ𝑈ℓ
† ෍

𝑚=1

𝑀ℓ

ℎℓ𝑚𝑛𝑚

2

𝑈ℓ +෍

ℓ=1

𝑁

𝑡ℓ𝑛ℓ,𝑇

෍

ℓ=0

𝐿

𝜔ℓ ෍

𝑚=1

𝑀ℓ

𝑈ℓ𝑚
† ℎℓ𝑚𝑛1𝑈ℓ𝑚

2

+෍

ℓ=1

𝑁

𝑡ℓ𝑈ℓ,𝑇
† 𝑛1𝑈ℓ,𝑇

V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler, M. Troyer, arXiv:2007.14460 (2020).



Tensor hypercontraction (THC)

 Hamiltonian is

𝐻 =
1

2
෍

𝑝,𝑞,𝑟,𝑠=1

𝑁

𝑉𝑝𝑞𝑟𝑠𝑎𝑝
†𝑎𝑞𝑎𝑟

†𝑎𝑠 + ෍

𝑝,𝑞=1

𝑁

𝑇𝑝𝑞𝑎𝑝
†𝑎𝑞

≈
1

2
෍

𝑝,𝑞,𝑟,𝑠=1

𝑁

෍

𝜇,𝜈=1

𝑀

𝜒𝑝
(𝜇)
𝜒𝑞
(𝜇)
𝜁𝜇𝜈𝜒𝑟

(𝜈)
𝜒𝑠
(𝜈)

𝑎𝑝
†𝑎𝑞𝑎𝑟

†𝑎𝑠 + ෍

𝑝,𝑞=1

𝑁

𝑇𝑝𝑞𝑎𝑝
†𝑎𝑞

 Typically can take 𝑀 = 𝑂 𝑁  number of parameters is 𝑂(𝑁2).

 Number of steps would scale as

𝜆 ∝ ෍

𝑝,𝑞,𝑟,𝑠=1

𝑁

෍

𝜇,𝜈=1

𝑀

𝜒𝑝
(𝜇)
𝜒𝑞
(𝜇)
𝜁𝜇𝜈𝜒𝑟

(𝜈)
𝜒𝑠
(𝜈)

E. G. Hohenstein, R. M. Parrish, T. J. Martínez, J. Chem. Phys. 137, 044103 (2012).



Nonorthogonal basis

 For the two-electron part:
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 For the two-electron part:
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Asymptotic  

 Thermodynamic limit 
(growing system size) 
𝑁1.11 THC              
𝑁1.88 for DF

 Continuum limit 
(increasing orbitals 
for single system)         
𝑁2.09 THC              
𝑁2.28 for DF

Thermodynamic limit

Continuum limit



Majorana operators

 Each qubit records the occupation of an orbital, e.g.
𝜓 = 𝛼1 0011 + 𝛼2 0101 + 𝛼3 1001 + 𝛼4 0110 + 𝛼5 1010 + 𝛼6|1100〉

 Anticommuting Majorana operators:

𝛾𝑝0 = 𝑎𝑝 + 𝑎𝑝
† 𝛾𝑝1 = −𝑖(𝑎𝑝 − 𝑎𝑝

†)

 Use the Jordan-Wigner transformation:
𝛾𝑝0 = 𝑋𝑝𝑍𝑝−1𝑍𝑝−2⋯𝑍0 𝛾𝑝1 = 𝑌𝑝𝑍𝑝−1𝑍𝑝−2⋯𝑍0

𝑛𝑝 = (𝕀 − 𝑍𝑝)/2

 Two-body part of Hamiltonian becomes

1

8
෍

𝜇,𝜈=1

𝑀

𝜁𝜇𝜈 𝑈𝜇
†𝑍1𝑈𝜇 𝑈𝜈

†𝑍1𝑈𝜈



The controlled unitary



Quantum ROM

Gidney’s
joint trick

R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, H. Neven, Physical Review X 8, 041015 (2018).



Coherent alias sampling

 We aim to prepare

෍

ℓ=1

𝐿
𝑤ℓ

𝜆
|ℓ〉

 We can allow entanglement with an ancilla

෍

ℓ=1

𝐿
𝑤ℓ

𝜆
ℓ |tempℓ〉

 For each ℓ we determine an alternate value altℓ and a probability keepℓ.

෍

ℓ=1

𝐿
1

𝐿
ℓ altℓ |keepℓ〉

 We swap register |ℓ〉 with register |altℓ〉 with probability |keepℓ〉.

R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, H. Neven, Physical Review X 8, 041015 (2018).



Advanced QROM

 Regular QROM would use 𝐿 Toffolis for 𝐿 data points.

 Instead use two step process:

G. H. Low, V. Kliuchnikov, L. Schaeffer, arXiv:1812.00954 (2018).

1. Iterate through bits 
ignoring lowest log 𝑘 bits; 
complexity 𝐿/𝑘.

2. Swap data based on 
remaining log 𝑘 bits;  
complexity 𝑚(𝑘 − 1) for 
size-𝑚 output.

 Optimal 𝑘 ∼ 𝐿/𝑚 gives 

complexity 𝑂 𝐿𝑚 .

 𝑂 𝐿𝑚 ancillas needed.



Approximating the Hamiltonian

Two types of orbitals:

 Reiher et al. [PNAS 
114, 7555 (2017)]  
𝑁 = 108

 Li et al. [J Chem Phys 
150, 024302 (2019)] 
𝑁 = 152

error due to 𝑀 truncation only

chemical accuracy



Resulting complexities (FeMoco)

Total error 1.6 mHa:  1 mHa for phase estimation + 0.6 mHa for approximation 
of the Hamiltonian

Reiher:

 𝑀 = 350

 16 bits for rotations

 10 bits for state preparation

 Hamiltonian error 0.29 mHa

 𝜆 = 306.3

 2142 logical qubits

 5.3 billion Toffolis

Li:

 𝑀 = 450

 20 bits for rotations

 10 bits for state preparation

 Hamiltonian error 0.18 mHa

 𝜆 = 1201.5

 2196 logical qubits

 32 billion Toffolis



Comparison to other methods (FeMoco)

 For prior methods we allowed the same precision for a fair comparison.

 We corrected and improved state preparation for double factorisation.

 We corrected 𝜆 for our sparse method, and further optimised it.

 We improved our single factorisation method with amplitude amplification.

Algorithm
Reiher Li

qubits Toffolis
(billions)

qubits Toffolis
(billions)

single factorisation 3320 95 3628 120

sparse 2190 88 2489 44

double factorisation (von Burg) 3725 10 6404 64

tensor hypercontraction 2142 5.3 2196 32



Asymptotics

 Complexity 𝜆 × data

 THC data ෨𝑂 𝑁2

 DF data ෨𝑂 𝑁3

 Thermodynamic limit 

THC: 𝑁1.11 × 𝑁2 ∼ 𝑁2.1

DF: 𝑁1.88 × 𝑁3 ∼ 𝑁3.4

 Continuum limit         

THC: 𝑁2.1 × 𝑁2 ∼ 𝑁3.1

DF: 𝑁2.3 × 𝑁3 ∼ 𝑁3.8 Thermodynamic limit

Continuum limit



Progression of complexities

[1] R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love, A. Aspuru-Guzik, New Journal of Physics 18, 33032 (2016).
[2] E. Campbell, Physical Review Letters 123, 070503 (2019).
[3] I. D. Kivlichan, C. E. Granade, N. Wiebe, arXiv:1907.10070 (2019).
[4] D. W. Berry, C. Gidney, M. Motta, J. McClean, R. Babbush, Quantum 3, 208 (2019).
[5] V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler, M. Troyer, arXiv:2007.14460 (2020).
[6] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, R. Babbush, arXiv: 2011.03494 (2020).

Algorithm H chain thermodynamic 
limit (as system grows)

H4 continuum limit
(increasing precision)

Taylor series database [1] ෨𝑂(𝑁5.3/𝜖) ෨𝑂(𝑁7.1/𝜖)

Campbell qDRIFT [2,3] ෨𝑂(𝑁2.5/𝜖2) ෨𝑂(𝑁6.2/𝜖2)

Single factorisation [4] ෨𝑂(𝑁4.5/𝜖) ෨𝑂(𝑁3.8/𝜖)

Sparse [4] ෨𝑂(𝑁2.3/𝜖) ෨𝑂(𝑁5.0/𝜖)

Double factorisation [5] ෨𝑂(𝑁3.4/𝜖) ෨𝑂(𝑁3.8/𝜖)

THC (this work) [6] ෨𝑂(𝑁2.1/𝜖) ෨𝑂(𝑁3.1/𝜖)



Reducing ancillas needed

q
u

b
it

s

Toffolis

Scheme optimised for Toffolis.



Reducing ancillas needed

Reduce 𝑘 to 16 and output rotations in two parts.

q
u

b
it

s

Toffolis

With 4 million qubits and 0.1% error rate, runtime is <4 days.



Conclusions

 We get the highest efficiency yet with THC (tensor hypercontraction).

 The efficiency is high because:

1. Hamiltonian 𝜆-norm is small

2. Hamiltonian is represented with a small amount of data

 Projected scaling for larger systems 𝑁2.1 is the best yet.

 For FeMoco the complexity is down to 5 billion Toffolis.

J. Lee, D.W. Berry, C. Gidney, W.J. Huggins, J.R. McClean, N. Wiebe, R. Babbush, 
arXiv: 2011.03494 (2020).


