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Quantum algorithms for quantum chemistry




Quantum algorithms for quantum chemistry

O

* Quantum simulation can be used to solve extremely important problems.
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* Classical methods quickly become intractable.
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Progression of complexities

O

Algorithm H chain thermodynamic | H, continuum limit
limit (as system grows) | (increasing precision)

Taylor series database [1] O(N>3/e) O(N’1/e)
Campbell qDRIFT [2,3] O(N?5/e?) O(N®2%/e?)
Single factorisation [4] O(N*>/e) O(N38/e)
Sparse [4] O(N?%3/¢) O(N>%/e)
Double factorisation [5] O(N3*/e) O(N38/e)
THC (this work) [6] O(N?/e) O(N31/e)
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Non-Clifford gates

O

Clifford gates like X and CNOT are easy in surface code.
Non-Clifford gates like T and Toffoli* are harder.

Can distill magic states for Toffolis directly.

We count Toffoli gates. S B 7

*Toffolis are controlled CNOTs

C. Gidney, A. G. Fowler, Quantum 3, 135 (2019). o CONOMohed 6 116 DISYIGHS STors
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To represent wavefunctions on computer we choose N orbitals. @i 8”?

There are O(N*) Hamiltonian terms.

N N
— T T T
H = Z VogrsQpQqaras + Z Tyqa,aq
p,q,T,S=1 p’q:l

azr and a; are creation and annihilation operators for electrons (fermions).

Overall complexity goes like

A X Vdatain H



Rewrite as

N
Z pqrsa AqQr a5+ z pq p

p.qr,s=1 pq 1
L N

_ ) ol g

_z“){’ Z Ipq 4p@ Tpqapa
=1 p,q=1 p,q=1

Typically can take L = O(N) — low rank.

There are O(N3) parameters.

D. W. Berry, C. Gidney, M. Motta, J. McClean, R. Babbush, Quantum 3, 208 (2019).



Rotate basis for each part of the factorisation:

2 N
Ewe Zgéq)?o +2T

p,q=1 p,q=1
z a)gU{, Z h{)mnm Ug + Z thlgT
L M, N
Z Wy z U{TmhgmnlU{Jm + z thzTnlU&T
£=0 m=1 =1

V. von Burg, G. H. Low, T. Haner, D. S. Steiger, M. Reiher, M. Roetteler, M. Troyer, arXiv:2007.14460 (2020).



Hamiltonian is

H = > Z pqrsa aga, a5+ Z quapaq

p,q,7,s=1 p,q=1
1
~ _ (), (1) (v ) ( ) ’r
Y G efeelet Y, Tl
p,q,1,s=1 u,v=1 p,q=1

Typically can take M = O(N) = number of parameters is O(N?).

Number of steps would scale as

M
1 z Z |X,§”)X§”)CWX() ()

»,q,r,s=1 u,v=1
E. G. Hohenstein, R. M. Parrish, T. J. Martinez, J. Chem. Phys. 137, 044103 (2012).



For the two- electron part:
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For the two- electron part:

N
= z Zx(u) t zxf,“)aq - ZX(V) t ZXﬁv)as
wv=1 \p= q=1 s=1
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For the two- electron part:

= z Zx(u) i zx(“)aq - ZX(V) i ZX(V)
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Asymptotic A
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Each qubit records the occupation of an orbital, e.g.
W) = a;]0011) + @,]|0101) + a3|1001) + @,|0110) + a<|1010) + a,|1100)

Anticommuting Majorana operators:

Ypo = ap + ag Yp1 = —i(a, — a;;)
Use the Jordan-Wigner transformation:
Yo = Xpr—lzp—Z A Vp1 = Ypr—lzp—Z A

n,=U0-2,)/2
Two-body part of Hamiltonian becomes

M

1

3 Z (#V(ngl Uu)(U:/erUV)
wy=1



The controlled unitary
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Quantum ROM
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R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, H. Neven, Physical Review X 8, 041015 (2018).




We aim to prepare

L
;\/?m

We can allow entanglement with an ancilla

L

w
> (Zioitempy)
£=1

For each £ we determine an alternate value alt, and a probability keep,.

L
1
> ﬁwnalt{)nkeepn
£=1

We swap register |£) with register |alt,) with probability |keep,).

R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, H. Neven, Physical Review X 8, 041015 (2018).



Regular QROM would use L Toffolis for L data points.
Instead use two step process:

Iterate through bits
ignoring lowest log k bits;
complexity L /k.

Swap data based on
remaining log k bits;
complexity m(k — 1) for
size-m output.

Optimal k ~ /L/m gives
complexity 0(vLm).

0(vLm) ancillas needed.
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G. H. Low, V. Kliuchnikov, L. Schaeffer, arXiv:1812.00954 (2018).



Approximating the Hamiltonian

2.0

Two types of orbitals:

e Reiher et al. [PNAS

114, 7555 (2017)]
N =108

Error (milliHartree)

e Lietal. [J Chem Phys
150, 024302 (2019)]
N =152

error due to M truncation only —o— Lj

-10.0

D %0 330 550 e50 300
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Total error 1.6 mHa: 1 mHa for phase estimation + 0.6 mHa for approximation
of the Hamiltonian

Reiher: Li:
M = 350 M = 450
16 bits for rotations 20 bits for rotations
10 bits for state preparation 10 bits for state preparation
Hamiltonian error 0.29 mHa Hamiltonian error 0.18 mHa
A =306.3 A=1201.5
2142 logical qubits 2196 logical qubits

5.3 billion Toffolis 32 billion Toffolis



Comparison to other methods (FeMoco)

O

» For prior methods we allowed the same precision for a fair comparison.

» We corrected and improved state preparation for double factorisation.

» We corrected A for our sparse method, and further optimised it.

» We improved our single factorisation method with amplitude amplification.

qubits  Toffolis qubits  Toffolis

Algorithm

(billions) (billions)
single factorisation 3320 95 3628 120
sparse 2190 88 2489 44
double factorisation (von Burg) 3725 10 6404 64
- tensor hypercontraction 2142 5.3 2196 32




Complexity 1 X v/ data

THC data O(N?)
DF data O(N?3)

Thermodynamic limit
THC: N111 x VN2 ~ N21
DF: N1.88 X 1/1\[3 ~ N3.4-

Continuum limit
THC: N21 x VN2 ~ N31
DF: N23 x VN3 ~ N38

Asymptotics
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Reducing ancillas needed

O

Scheme optimised for Toffolis.




Reducing ancillas needed

qubits

O

Reduce k to 16 and output rotations in two parts.

600 f
500 F
400

300

() 00 4000 OO0 S000 0000 000




We get the highest efficiency yet with THC (tensor hypercontraction).

The efficiency is high because:

Hamiltonian A-norm is small

Hamiltonian is represented with a small amount of data
Projected scaling for larger systems N41 is the best yet.

For FeMoco the complexity is down to 5 billion Toffolis.

J. Lee, D.W. Berry, C. Gidney, W.J. Huggins, J.R. McClean, N. Wiebe, R. Babbush,
arXiv: 2011.03494 (2020).



