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cluster states

any undirected graph G = (V, E) defines a cluster state |¢¢g):

Ya) = H CZi,j ®|+>k

(i4)€E keV

= very simple circuit!
however, requires interactions between |E/| distinct pairs of qubits
instead, introduce a single ancilla, O, that interacts with each of the

“identical” data qubits (i € V) one by one
— calibrate only a constant number of physically distinct interactions
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preparing cluster states

abstract problem: prepare cluster states using interactions only between
Q and data qubits (no two-qubit gates between data qubits)

simplest solution: use SWAP gates

practical challenge: dual-rail SWAP gate D D

(encoding scheme in which
qubit loss is detectable)

implementable!

=
~
.

N
N



length o« L — /




© 0 N O Gk W N

S

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

S

recall;

V)0 l H (%) i
0); — +)i =

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

T,

S

Jd
\VV

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

S

Jd
\VV

Jd Y
\V

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

S

Jd
\VV

Jd Y
\V

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

q
T
1
T
1
T

-
T

Jd
\VV

Jd Y
\V

Jd Y
\V

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

4

S

D
\VV
’_

Jd Y
\V

Jd Y
\V

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

S

D
\VV
’_

Jd Y
\V

Jd Y
\V

VA
\VV

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

4

v |
S
S ¢

Jd Y
\V

VA
\VV

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



© 0 N o T A W N

D l
¥,
¥, ¢

Jd Y
\V

VA
\VV

/A
\VV

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



and so on...

= A

v I
S
S ¢
S ¢
D °
S ¢

A

N
A
N

/d
L

“eNOT”: (af0) + 1)) e|@)i — al0)ol0): + BI1)ol1):



length oc L? — L

\_

length o< L —

[some edges

omitted for clarity]

N

%



length oc L? — L

length o< L —

\_

S

[some edges

omitted for clarity]

N

%



potential concerns

1. propagation of circuit-level errors
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all effective errors are local!

claim: any single-qubit circuit-level error = error supported within
{i} U N(7) on the prepared cluster state, for some data qubit i
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all effective errors are local!

claim: any single-qubit circuit-level error = error supported within
{i} U N (%) on the prepared cluster state, for some data qubit ¢
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more generally, m single-qubit circuit-level errors = m local errors on
the prepared cluster state
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thresholds

e standard depolarising noise model for “gate errors” (error rate p):

— single-qubit depolarising noise after each single-qubit
operation (gate, measurement, state preparation)

— two-qubit depolarising noise after each two-qubit gate



thresholds

e standard depolarising noise model for “gate errors” (error rate p)

e standard MWPM decoder
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— DPth = 0.39%

0.10 1

[Raussendorf et al.]: = 0.58%
(cZ circuit)
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logical error rate p
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gate error rate p



thresholds

e standard depolarising noise model for “gate errors” (error rate p)
+ each qubit lost with probability pjoss

e generalised MWPM decoder of [Barrett & Stace '10]
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1. propagation of circuit-level errors

effective errors are actually local (= weight O(1) for bec lattice)
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total delay line length o< L? /
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0. cubic lattice — bcc lattice
Goee C Geubic, SO omit qubits in Geypic \ Goec

1. propagation of circuit-level errors

effective errors are actually local (= weight O(1) for bec lattice)

2. noisy delay lines — errors on idle qubits

total delay line length oc L?

logical error probability ~ exp(—+/delay line error rate)



delay line errors

n = delay line error rate

1
d=-(L+1
total delay line error probability = nL? 5 )

code distance o< L

for each 1 and gate error rate p, 3 an optimal logical error rate p,

for fixed gate error rate p, expect p, to scale with n as

Z_?* X exp(—c\/ﬁ)



delay line errors

e.g.,
e fix gate error p = 1073
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delay line errors

e.g.,
e fix gate error p = 1073 “break-even point” (at which p, = p = 1073)
® SUPPOSE N = NMioss occurs at Miess = 7.4 x 1074
] Le=11 optical fibres: Myoss ~ 9.6 x 10~4
1 L«=13 .
_ \ T (assuming 17 ns between photons)
1 L«=17
X Y Le=21
10_3_5 ) \ Moss = 1.4 X 107* — Dy = 107°
& ] N « (L, =~ 30)
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' Moss = 9.5 x 1076 — p, =10"1°
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summar Yy '\

1. constant component overhead .

,T

2. local error propagation & A

lopen questions: can similar ideas be exploited in other contexts?
better characterisation of these circuits?]

3. FTQC could potentially be achieved through incremental
improvements to a small number of key components



thanks for listening!
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