

Fault-tolerant qubit from a constant number of components

Kianna Wan, Soonwon Choi, Isaac H. Kim, Noah Shutt,
& Patrick Hayden

motivation

previous work:

[Lindner & Rudolph '09] – 1D cluster states

[Pichler, Choi, Zoller, Lukin '17] – 2D cluster states
(universal MBQC)

motivation

previous work:

[Lindner & Rudolph '09] – 1D cluster states

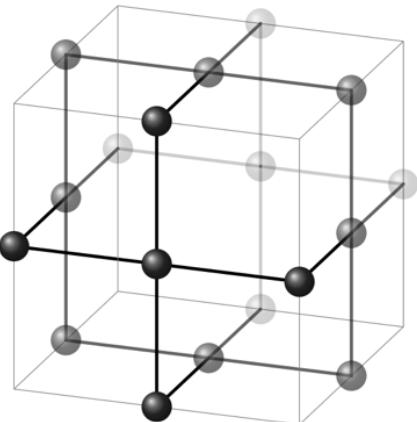
[Pichler, Choi, Zoller, Lukin '17] – 2D cluster states
(universal MBQC)

our goal: prepare 3D cluster states on bcc lattice

*(fault-tolerant universal MBQC [Raussendorf *et al.*])*

1. using an experimentally feasible setup...
2. ...while preserving fault-tolerance

elementary cell of
“bcc” lattice:



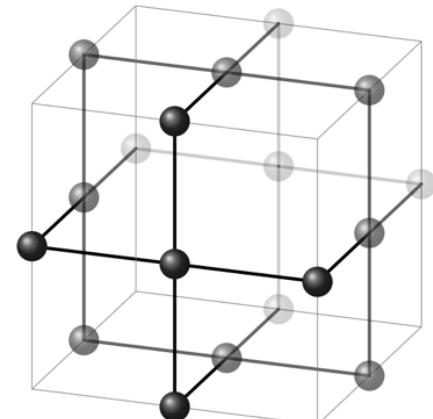
motivation

previous work:

[Lindner & Rudolph '09] – 1D cluster states

[Pichler, Choi, Zoller, Lukin '17] – 2D cluster states
(universal MBQC)

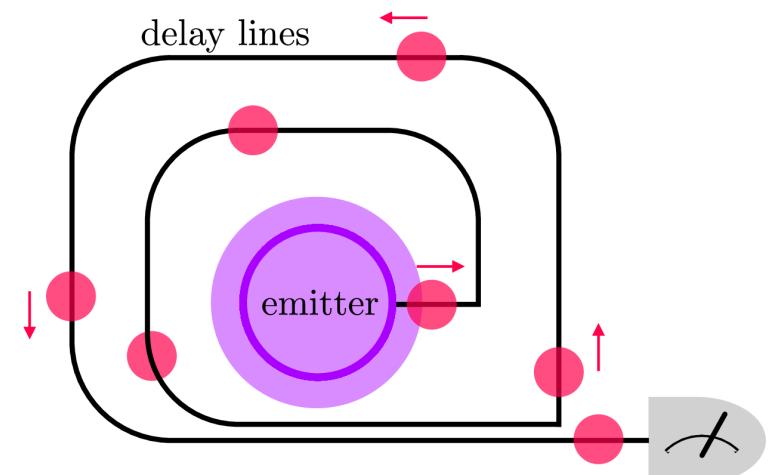
elementary cell of
“bcc” lattice:



our goal: prepare 3D cluster states on bcc lattice

(*fault-tolerant* universal MBQC [Raussendorf *et al.*])

1. using an experimentally feasible setup...
2. ...while preserving fault-tolerance

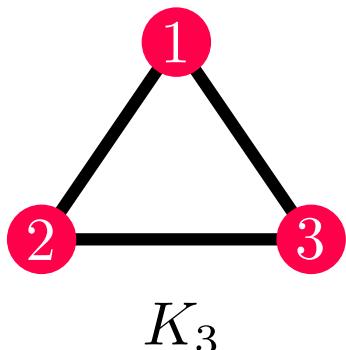


cluster states

any undirected graph $G = (V, E)$ defines a cluster state $|\psi_G\rangle$:

$$|\psi_G\rangle := \left[\prod_{(i,j) \in E} \text{c}Z_{i,j} \right] \bigotimes_{k \in V} |+\rangle_k$$

e.g.,



$$\leftrightarrow \quad |\psi_{K_3}\rangle = Z_{1,2}Z_{2,3}Z_{3,1}|+\rangle_1|+\rangle_2|+\rangle_3$$

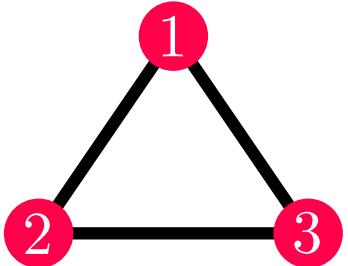
cluster states

any undirected graph $G = (V, E)$ defines a cluster state $|\psi_G\rangle$:

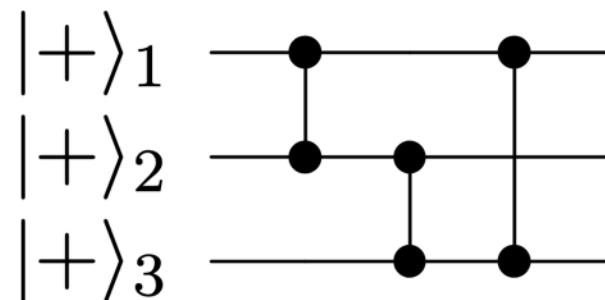
$$|\psi_G\rangle := \left[\prod_{(i,j) \in E} \text{CZ}_{i,j} \right] \bigotimes_{k \in V} |+\rangle_k$$

\Rightarrow very simple circuit!

e.g.,



K_3



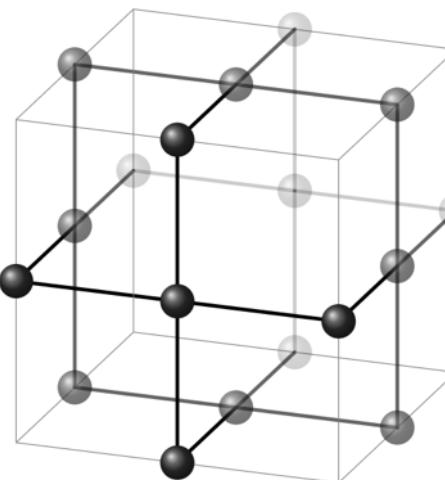
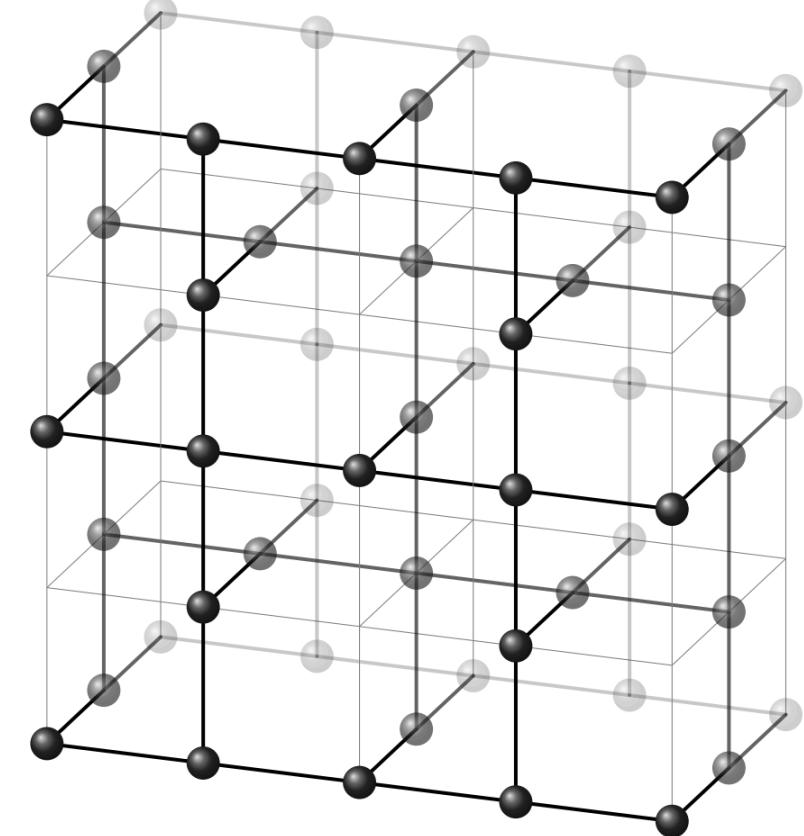
cluster states

any undirected graph $G = (V, E)$ defines a cluster state $|\psi_G\rangle$:

$$|\psi_G\rangle := \left[\prod_{(i,j) \in E} \text{CZ}_{i,j} \right] \bigotimes_{k \in V} |+\rangle_k$$

⇒ very simple circuit!

e.g.,



cluster states

any undirected graph $G = (V, E)$ defines a cluster state $|\psi_G\rangle$:

$$|\psi_G\rangle := \left[\prod_{(i,j) \in E} \text{c}Z_{i,j} \right] \bigotimes_{k \in V} |+\rangle_k$$

\Rightarrow very simple circuit!

however, requires interactions between $|E|$ distinct pairs of qubits

instead, introduce a single ancilla, \mathcal{Q} , that interacts with each of the “identical” **data qubits** ($i \in V$) one by one
→ calibrate only a constant number of physically distinct interactions

preparing cluster states

abstract problem: prepare cluster states using interactions only between Q and **data qubits** (no two-qubit gates between data qubits)

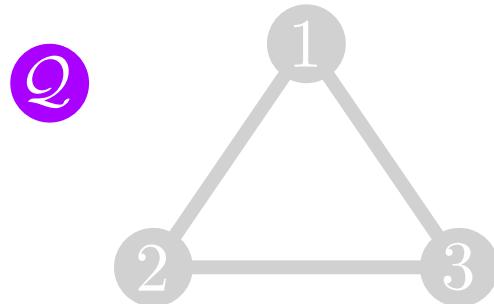
simplest solution: use SWAP gates

preparing cluster states

abstract problem: prepare cluster states using interactions only between \mathcal{Q} and **data qubits** (no two-qubit gates between data qubits)

simplest solution: use SWAP gates

e.g.,



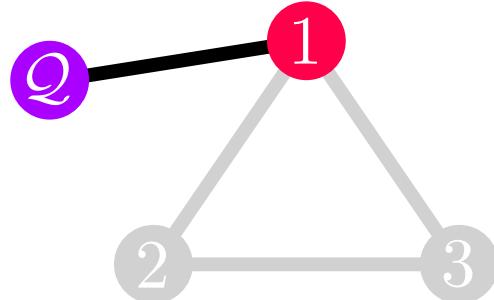
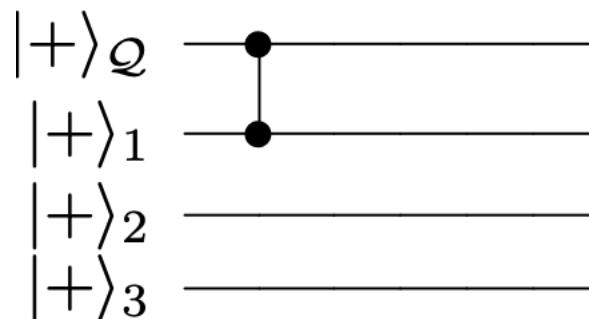
$|+\rangle_{\mathcal{Q}}$ _____
 $|+\rangle_1$ _____
 $|+\rangle_2$ _____
 $|+\rangle_3$ _____

preparing cluster states

abstract problem: prepare cluster states using interactions only between \mathcal{Q} and **data qubits** (no two-qubit gates between data qubits)

simplest solution: use SWAP gates

e.g.,

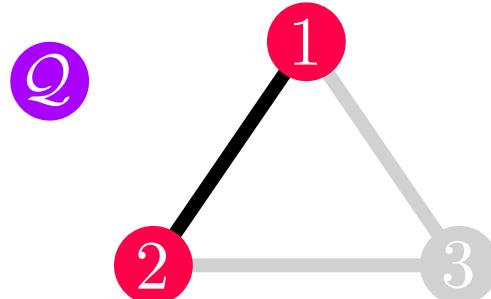
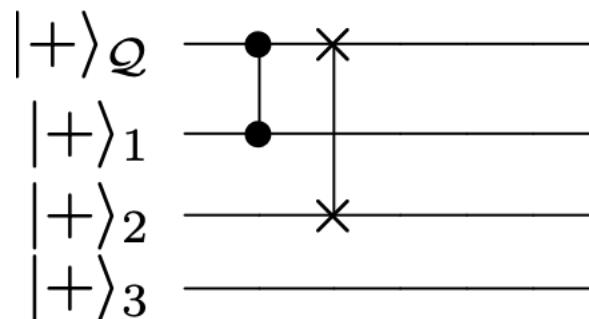


preparing cluster states

abstract problem: prepare cluster states using interactions only between \mathcal{Q} and **data qubits** (no two-qubit gates between data qubits)

simplest solution: use SWAP gates

e.g.,

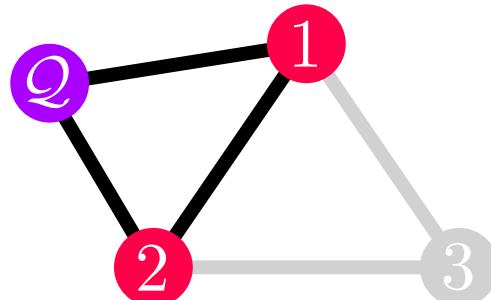
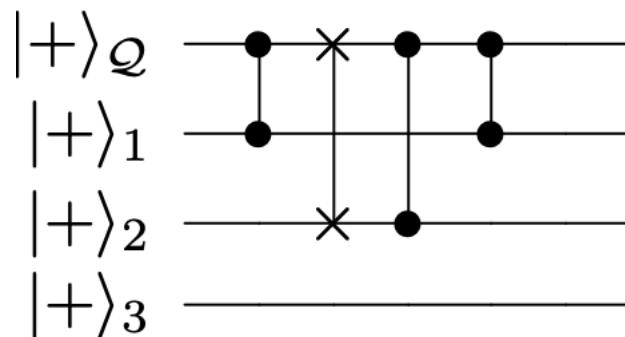


preparing cluster states

abstract problem: prepare cluster states using interactions only between \mathcal{Q} and **data qubits** (no two-qubit gates between data qubits)

simplest solution: use SWAP gates

e.g.,

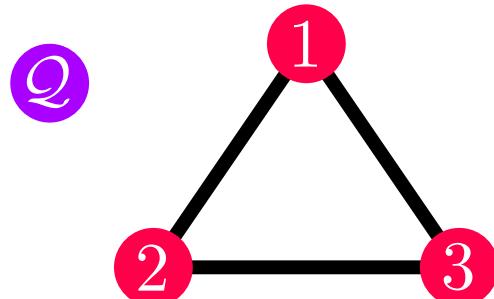
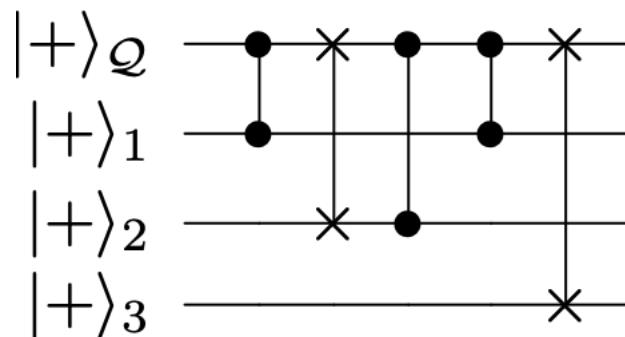


preparing cluster states

abstract problem: prepare cluster states using interactions only between \mathcal{Q} and **data qubits** (no two-qubit gates between data qubits)

simplest solution: use SWAP gates

e.g.,



preparing cluster states

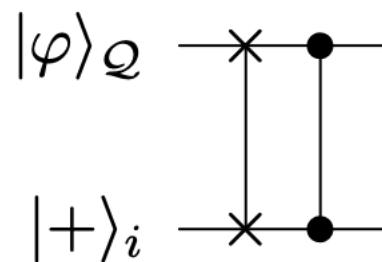
abstract problem: prepare cluster states using interactions only between Q and **data qubits** (no two-qubit gates between data qubits)

simplest solution: use SWAP gates

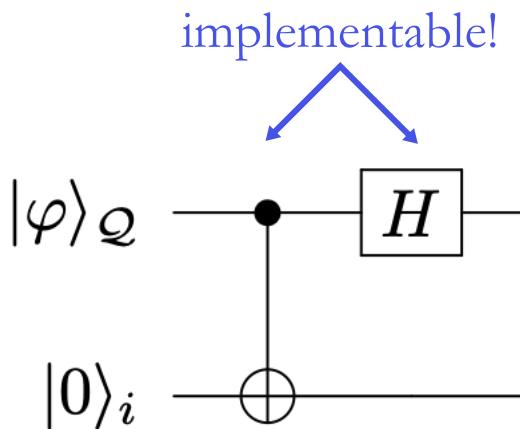
practical challenge: dual-rail SWAP gate

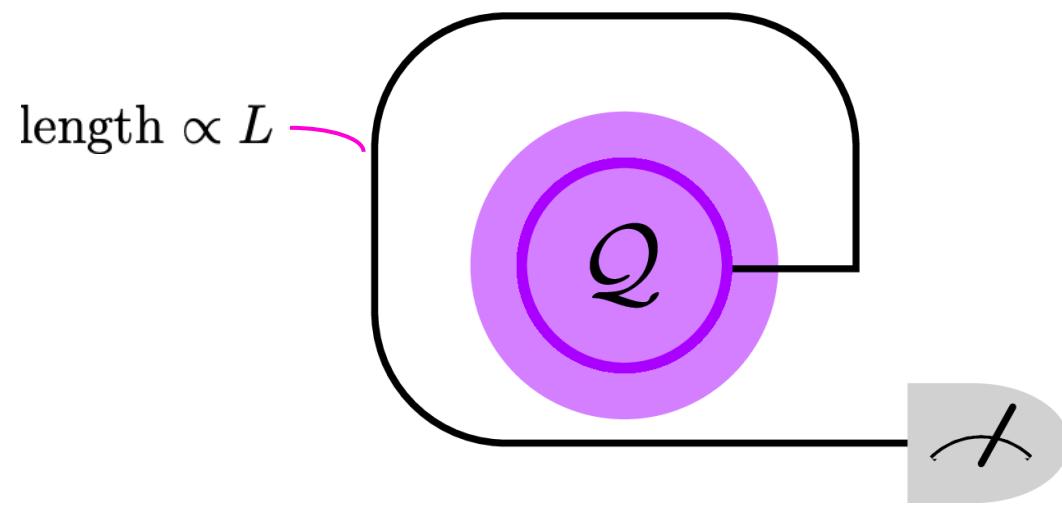
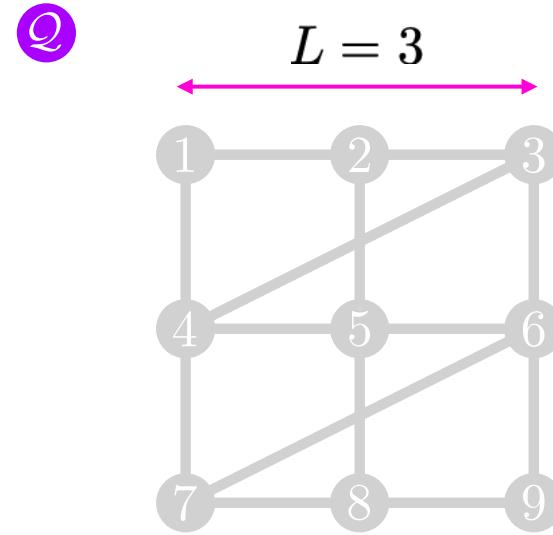
(encoding scheme in which
qubit loss is detectable)

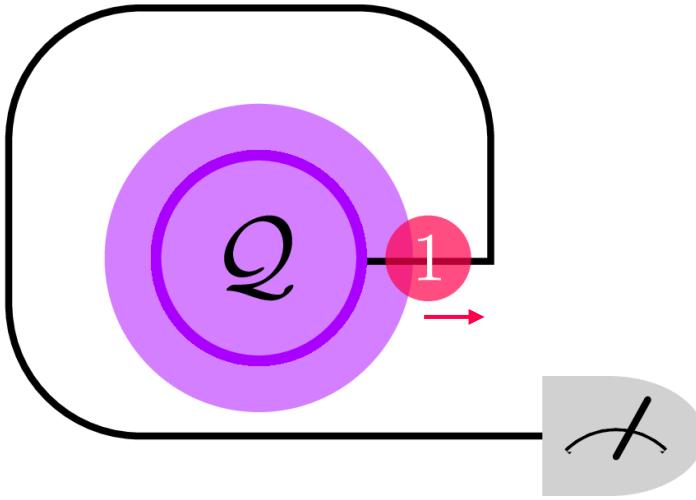
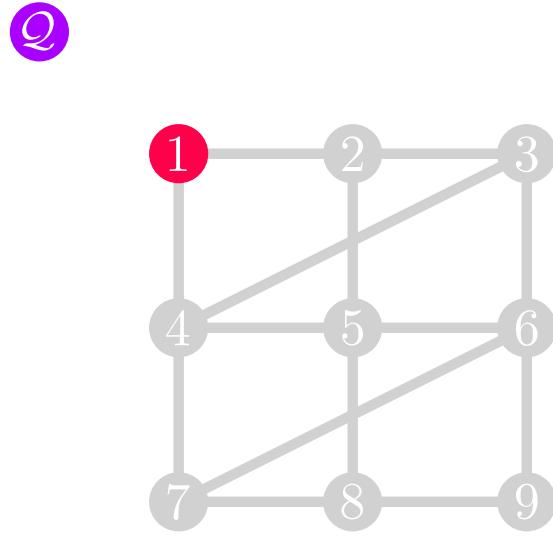
fix:



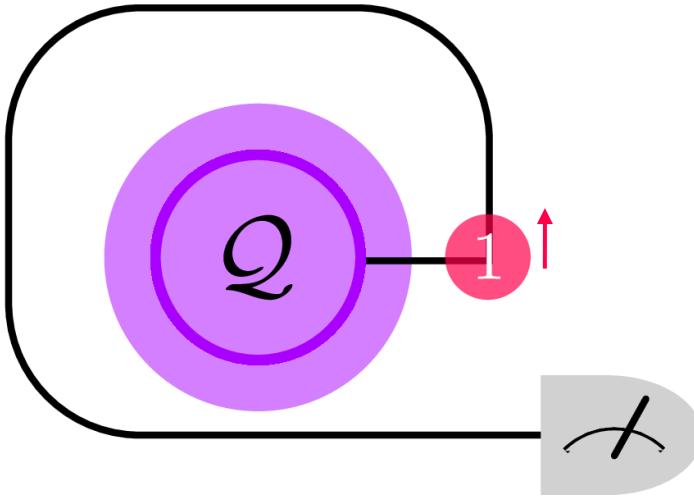
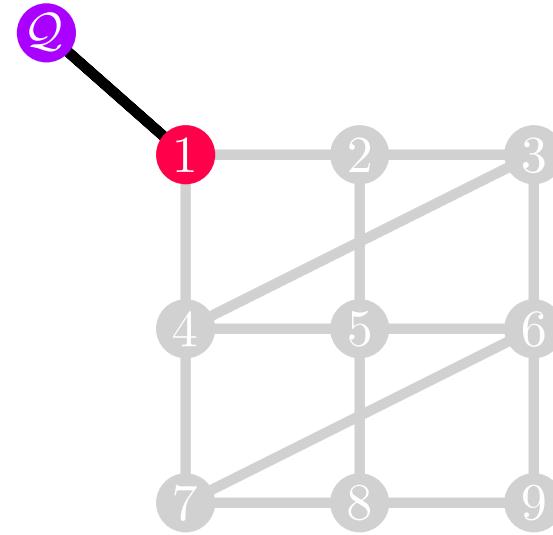
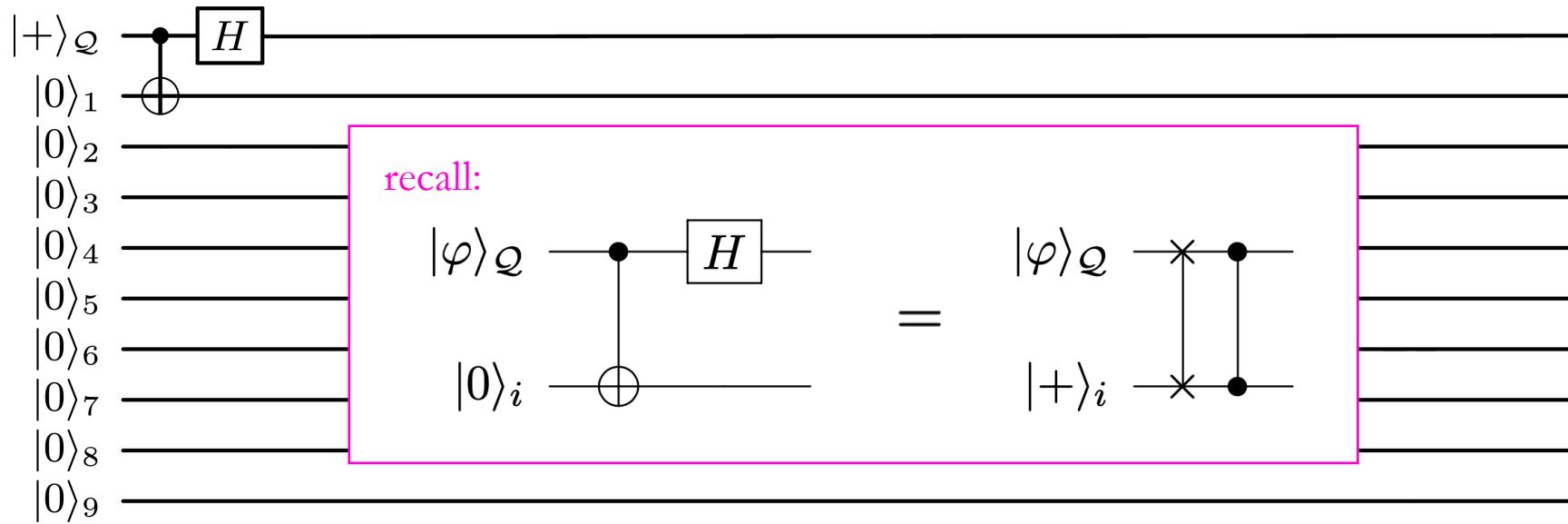
=



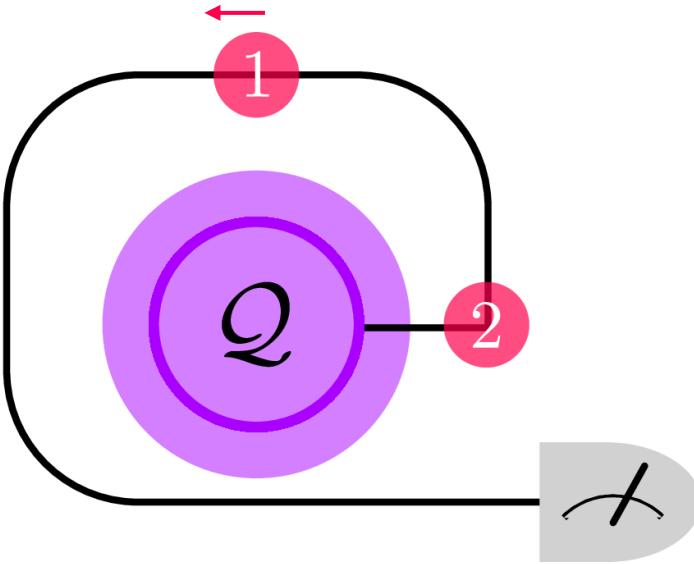
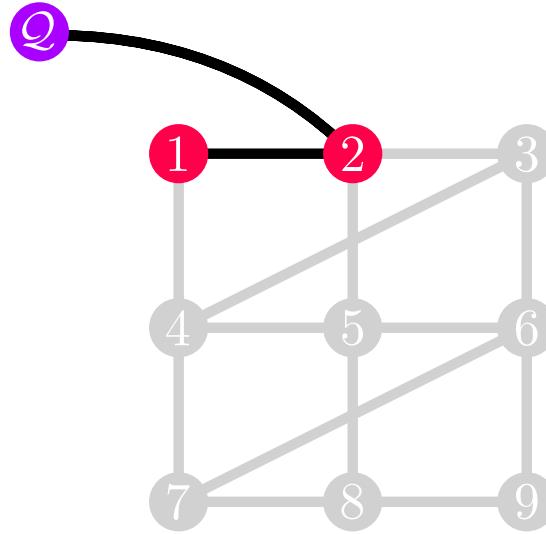




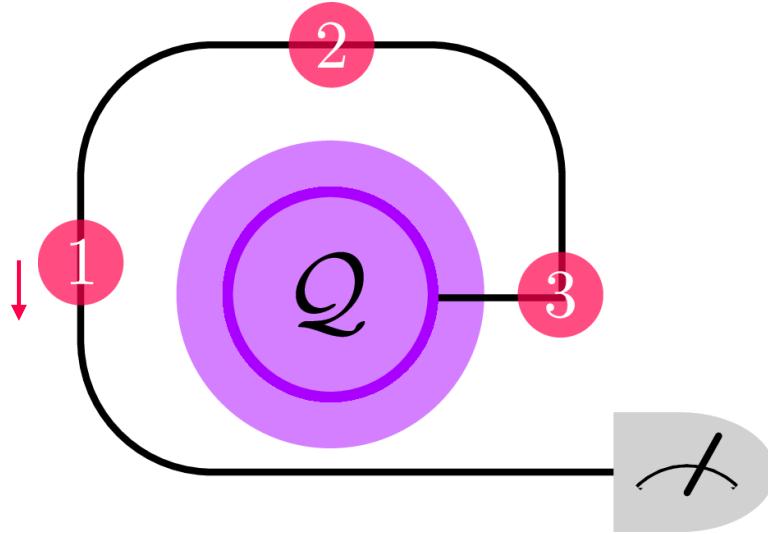
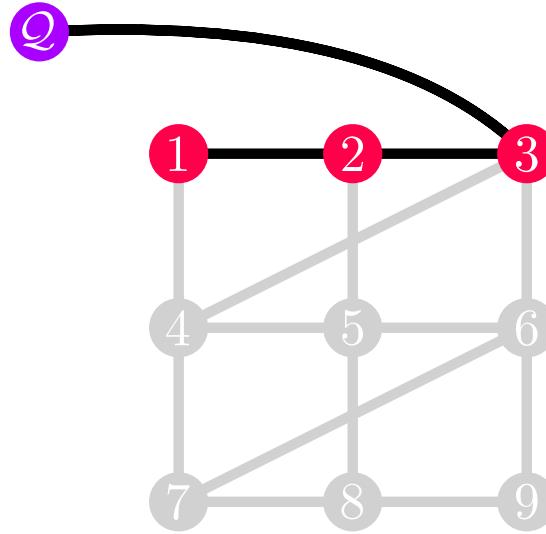
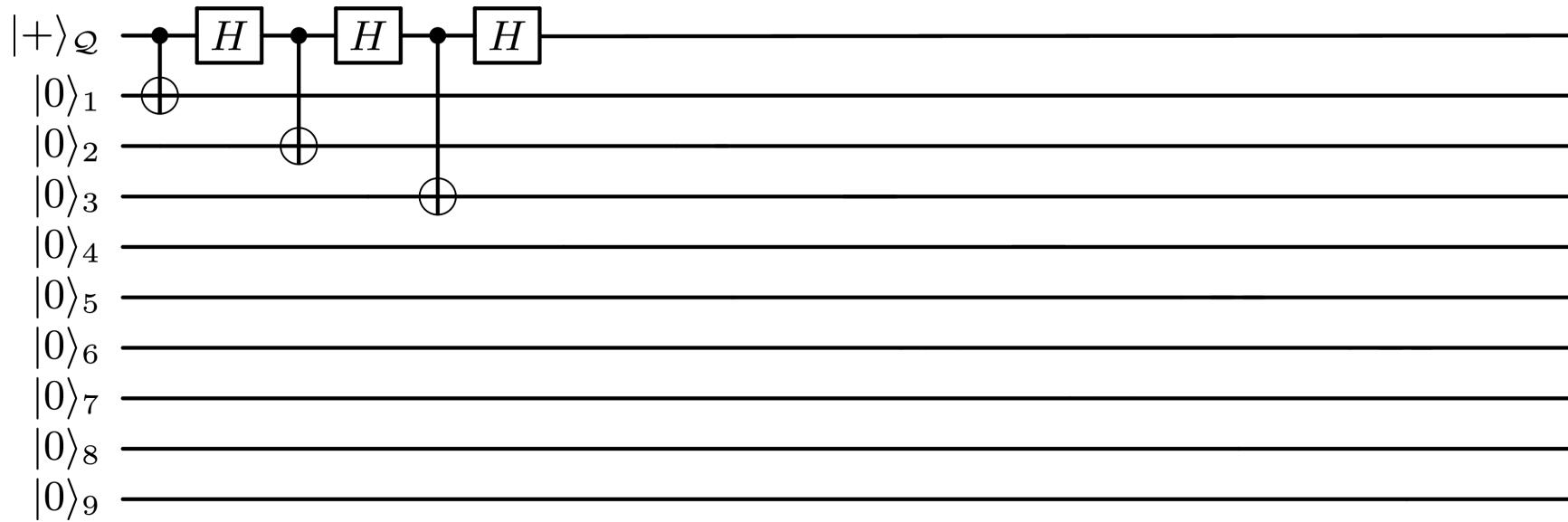
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q |\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



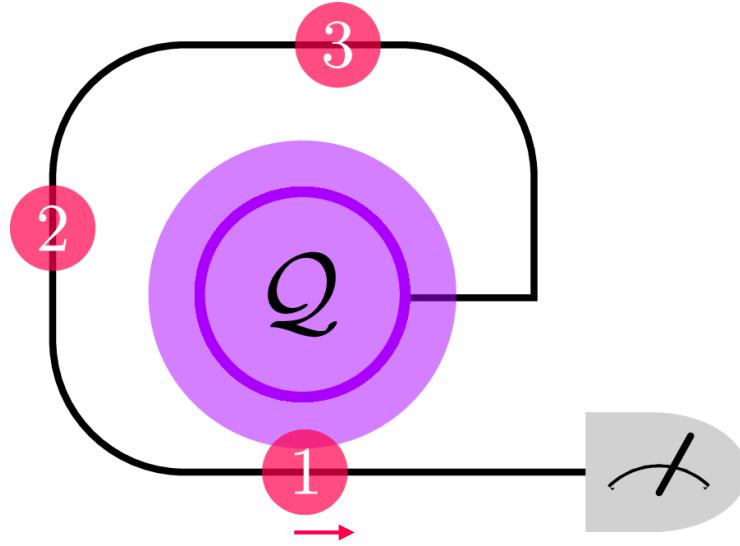
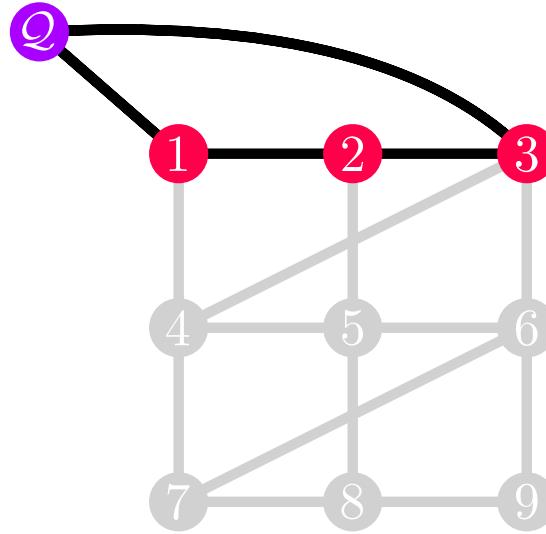
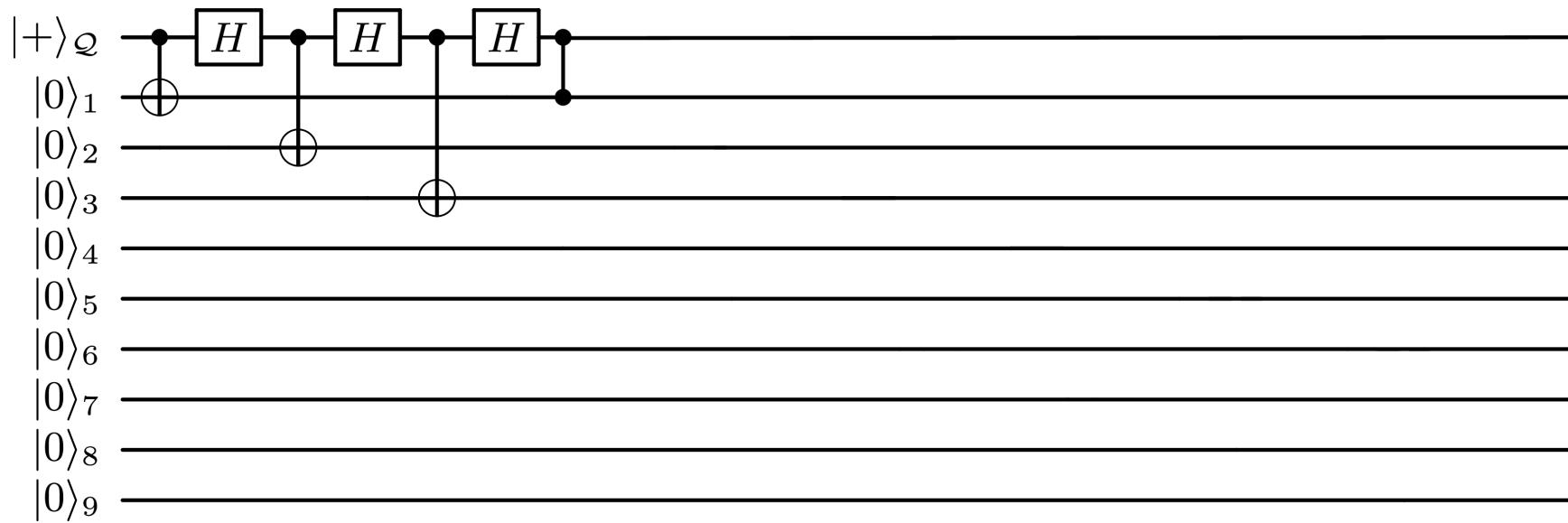
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q |\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



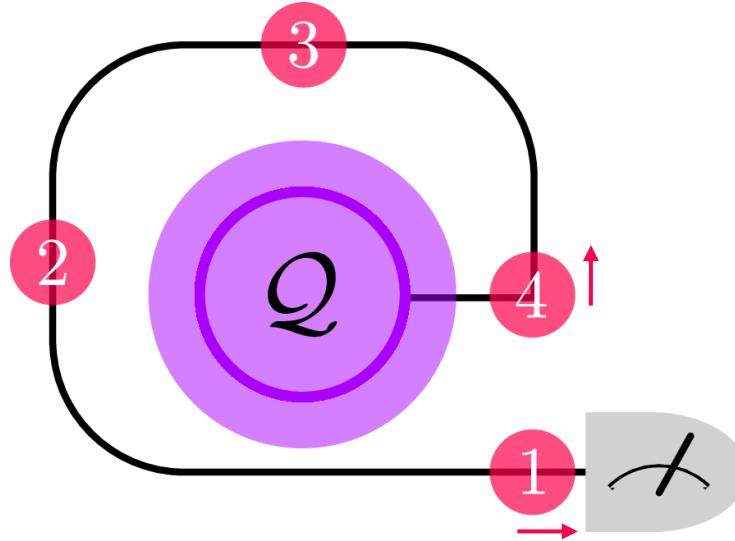
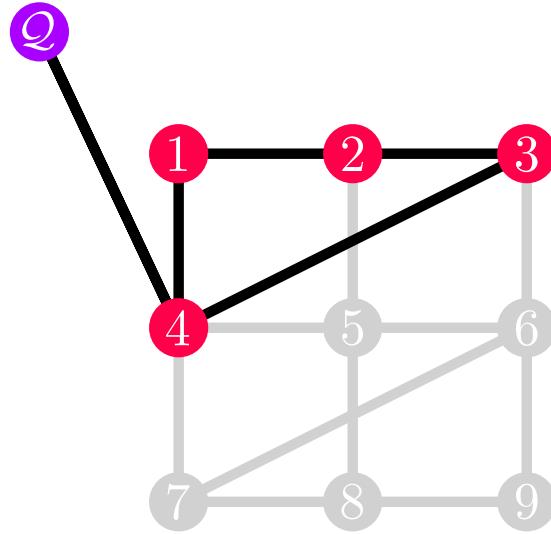
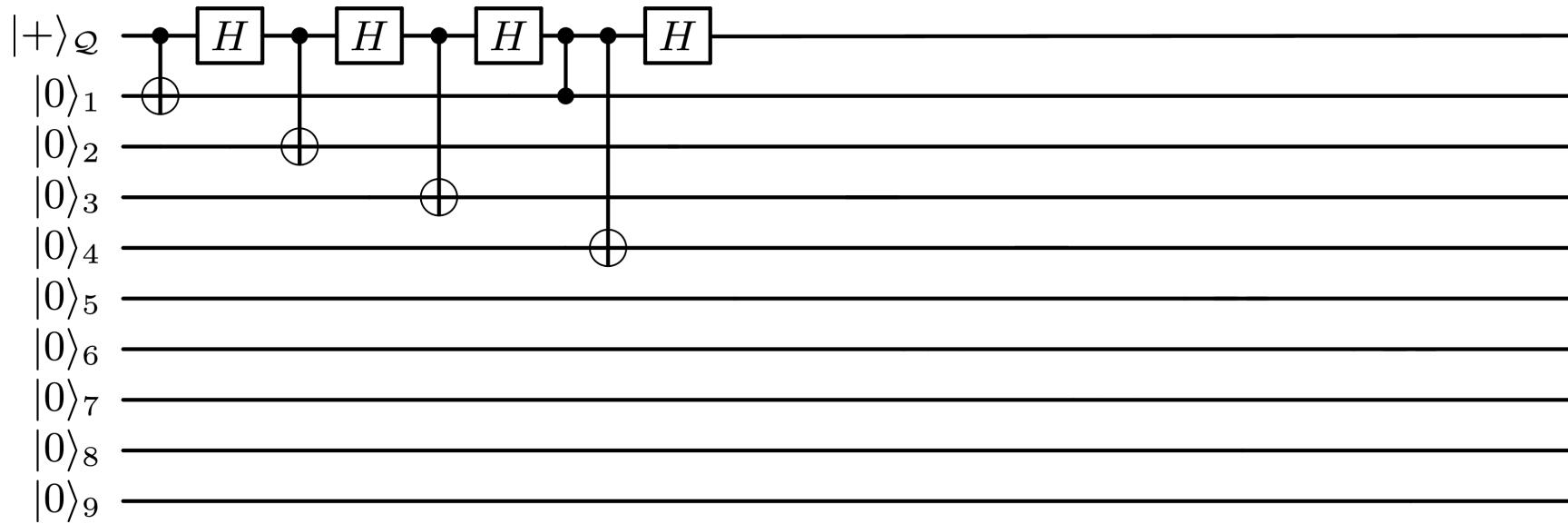
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q|\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



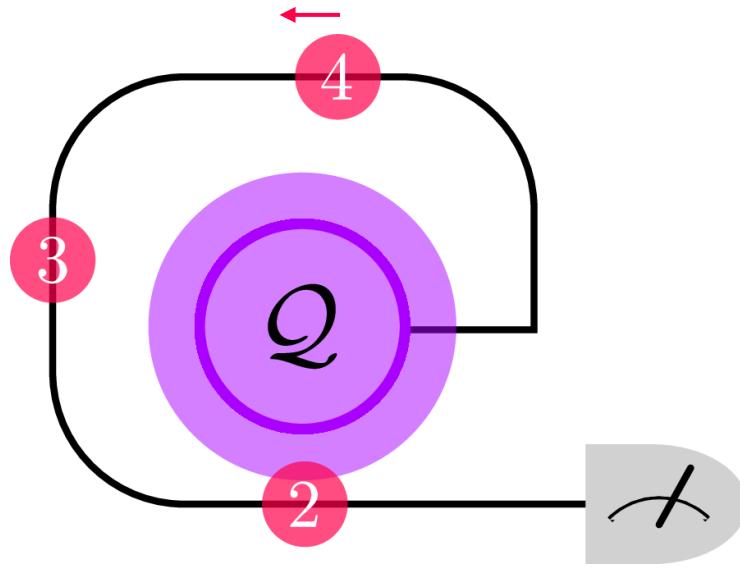
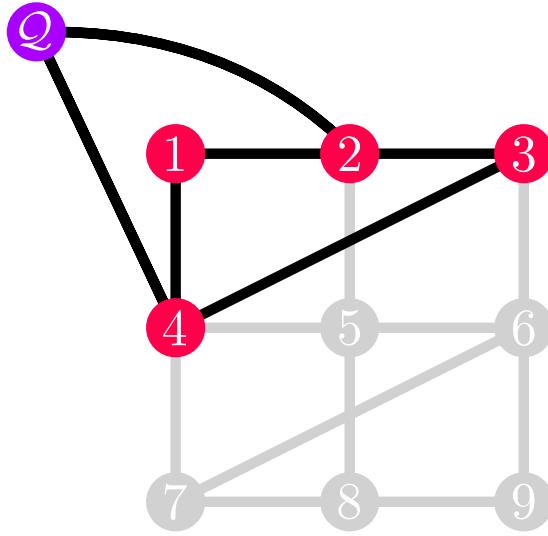
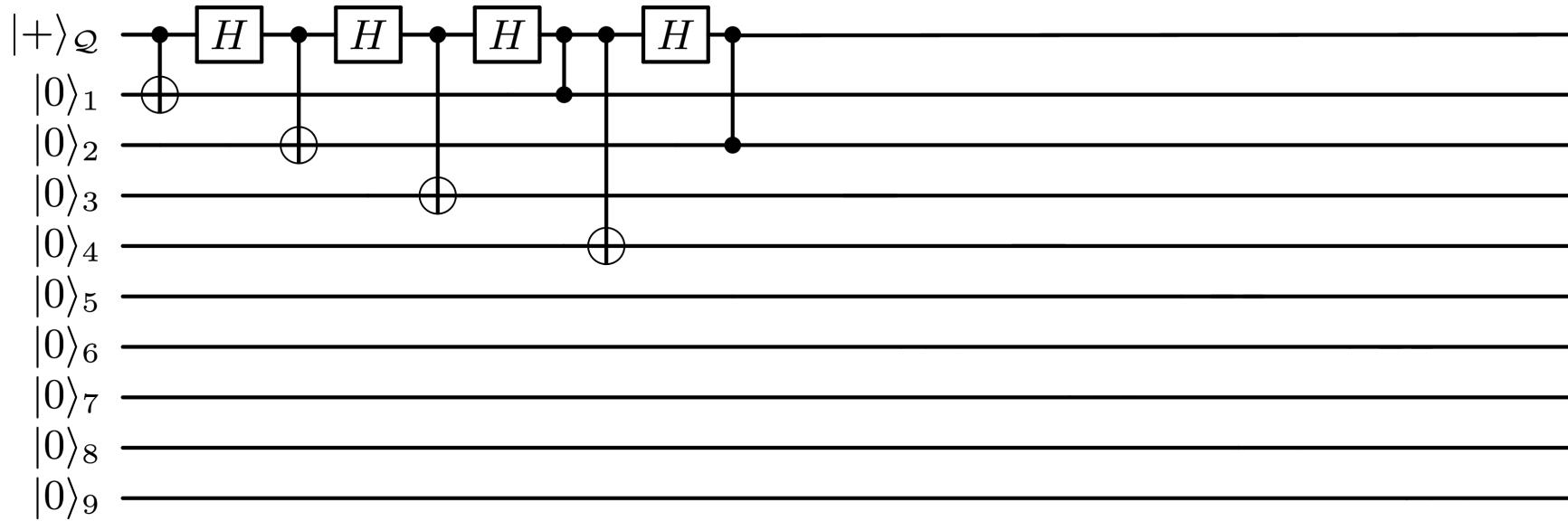
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q |\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



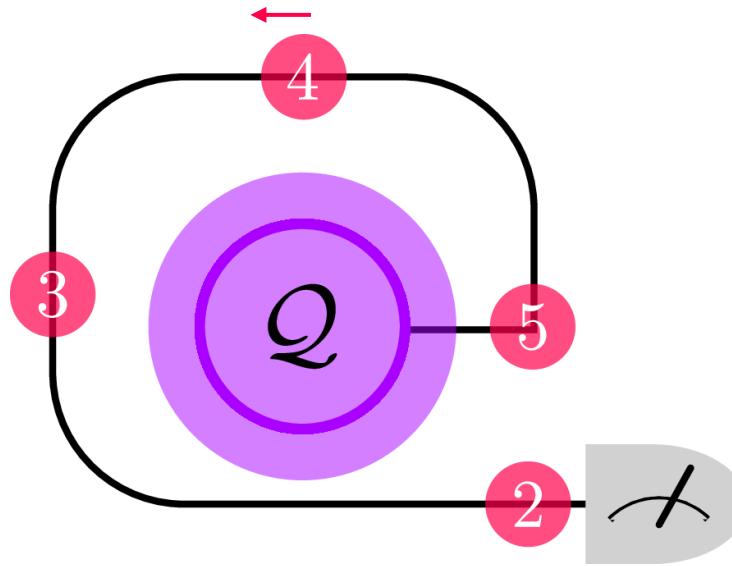
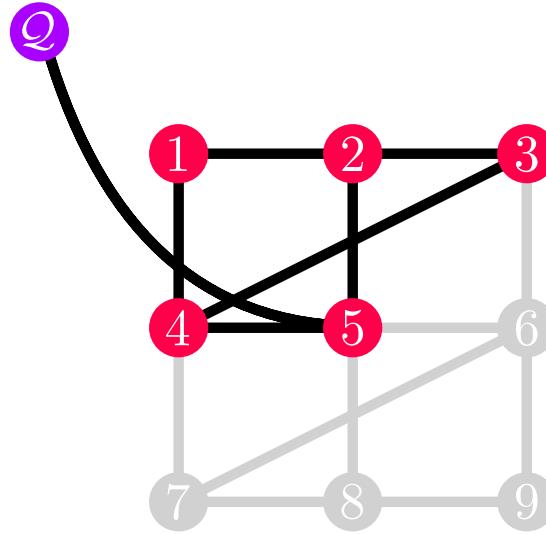
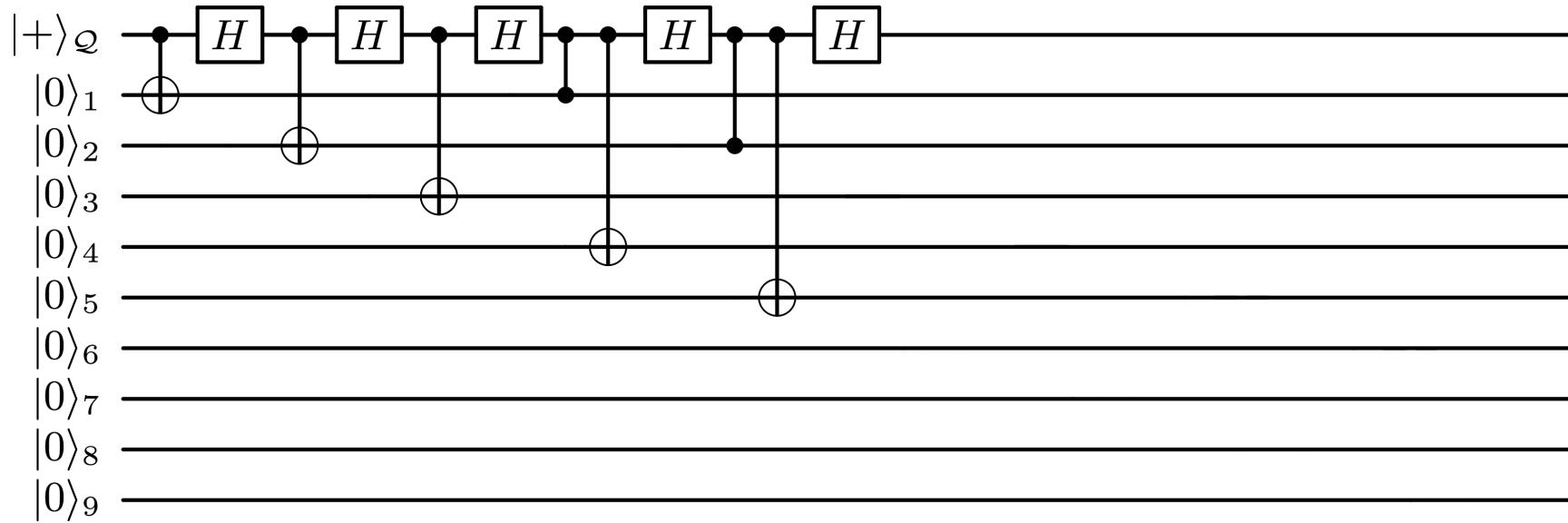
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q|\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



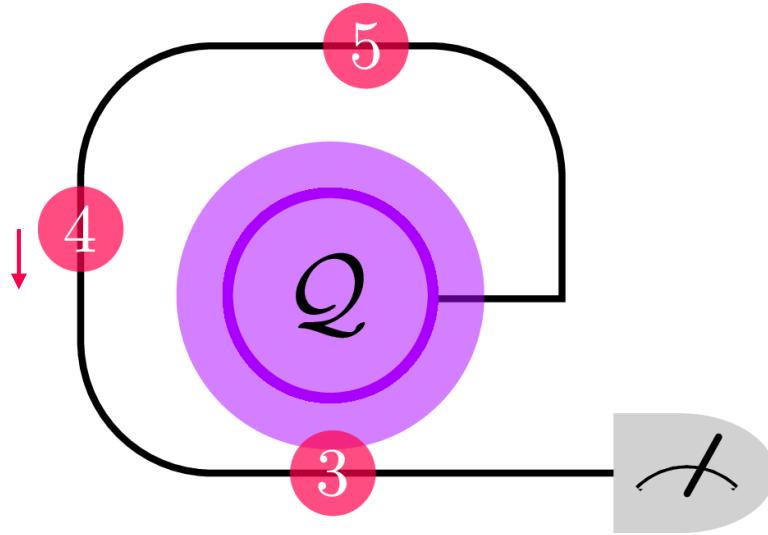
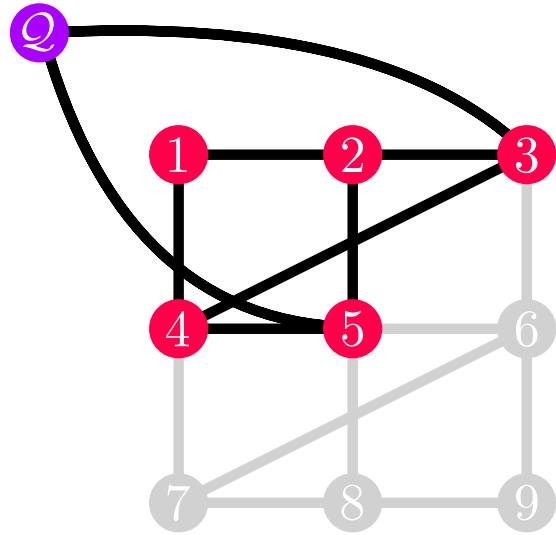
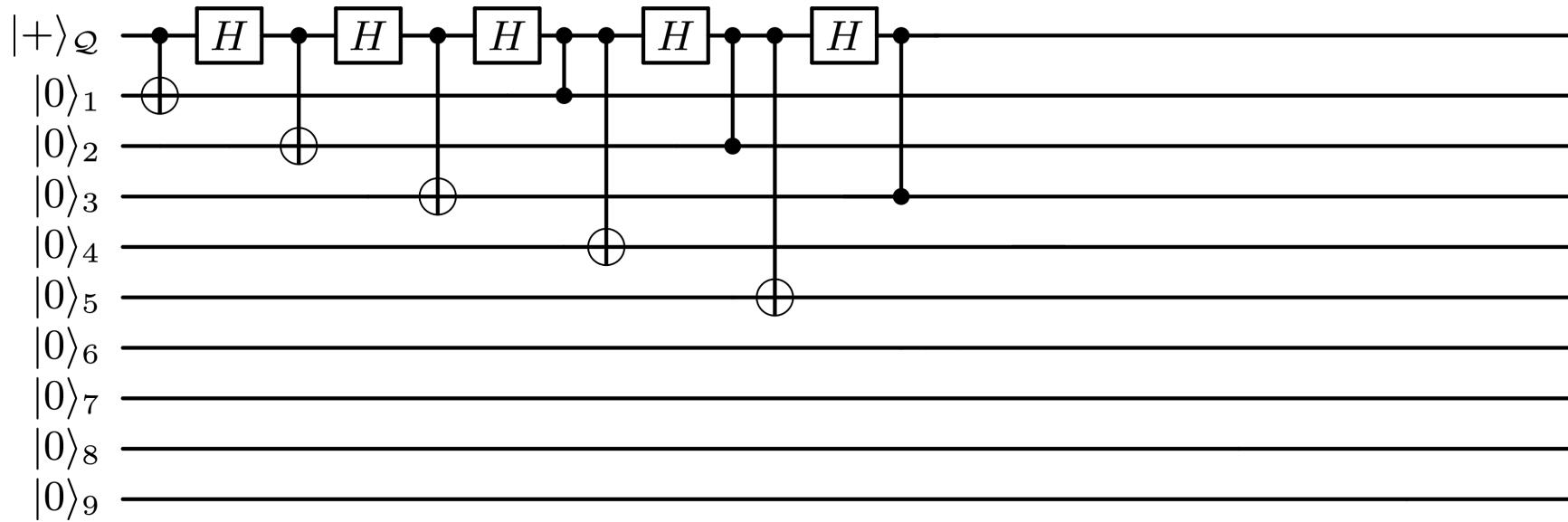
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q|\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



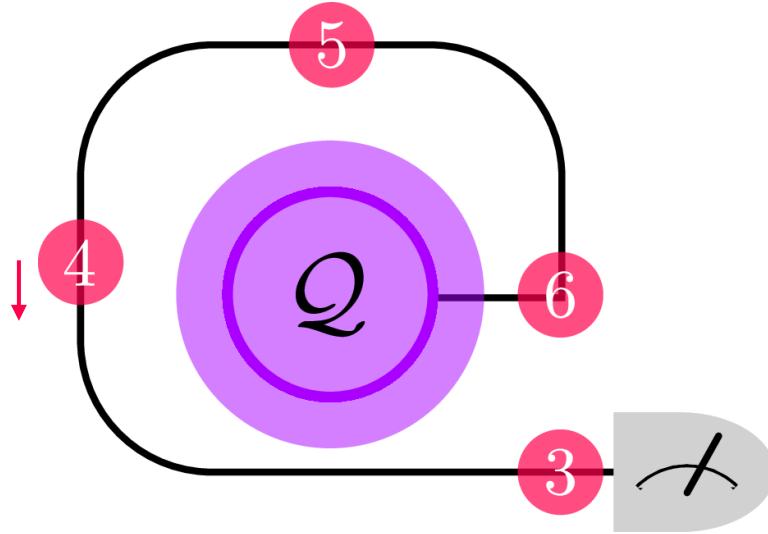
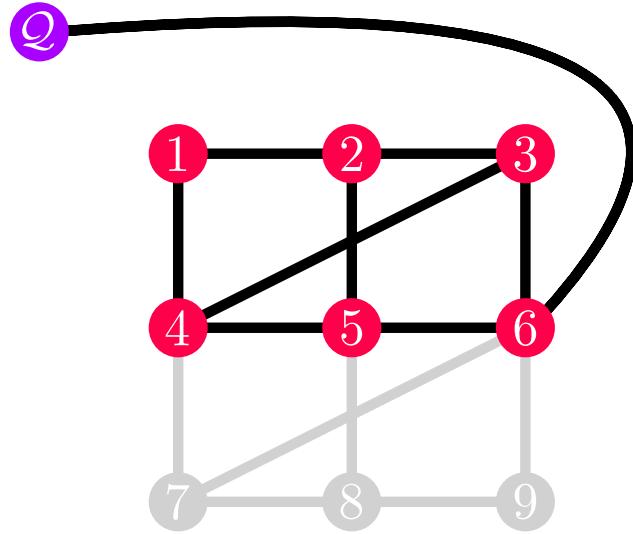
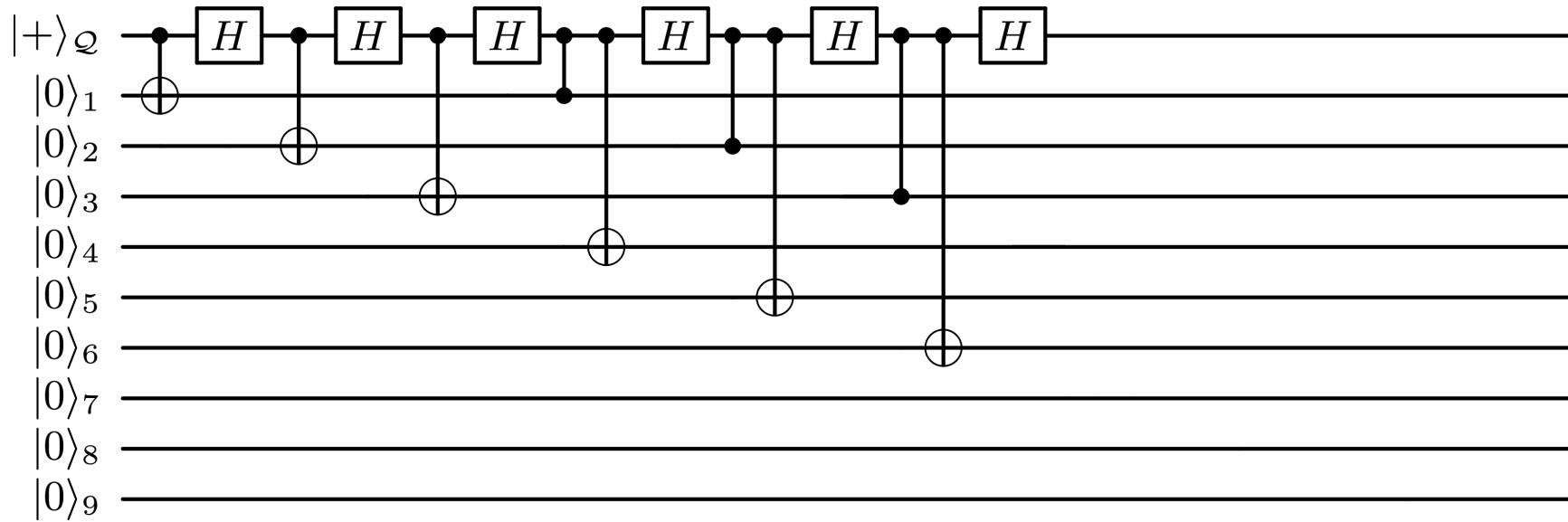
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q|\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



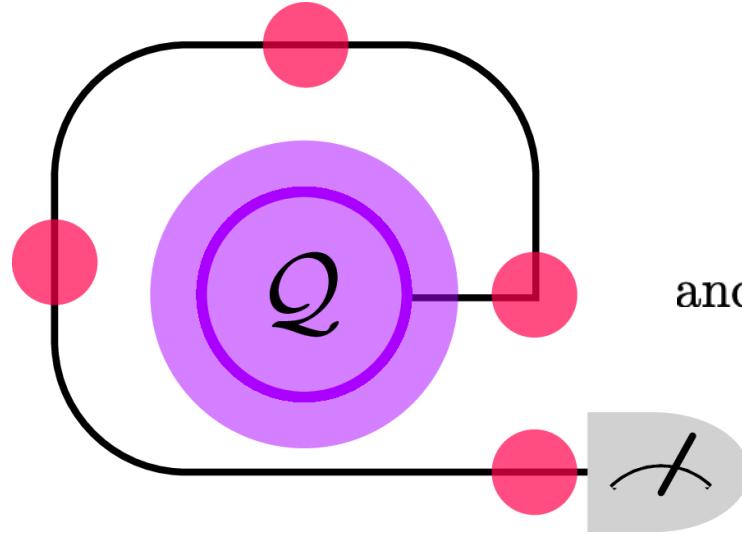
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q|\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



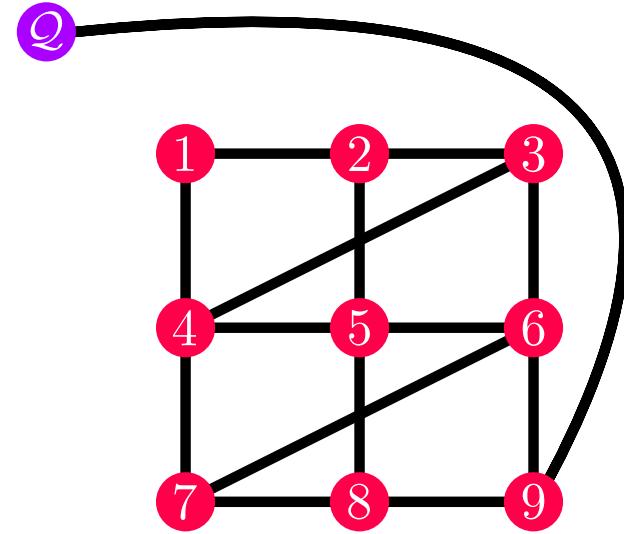
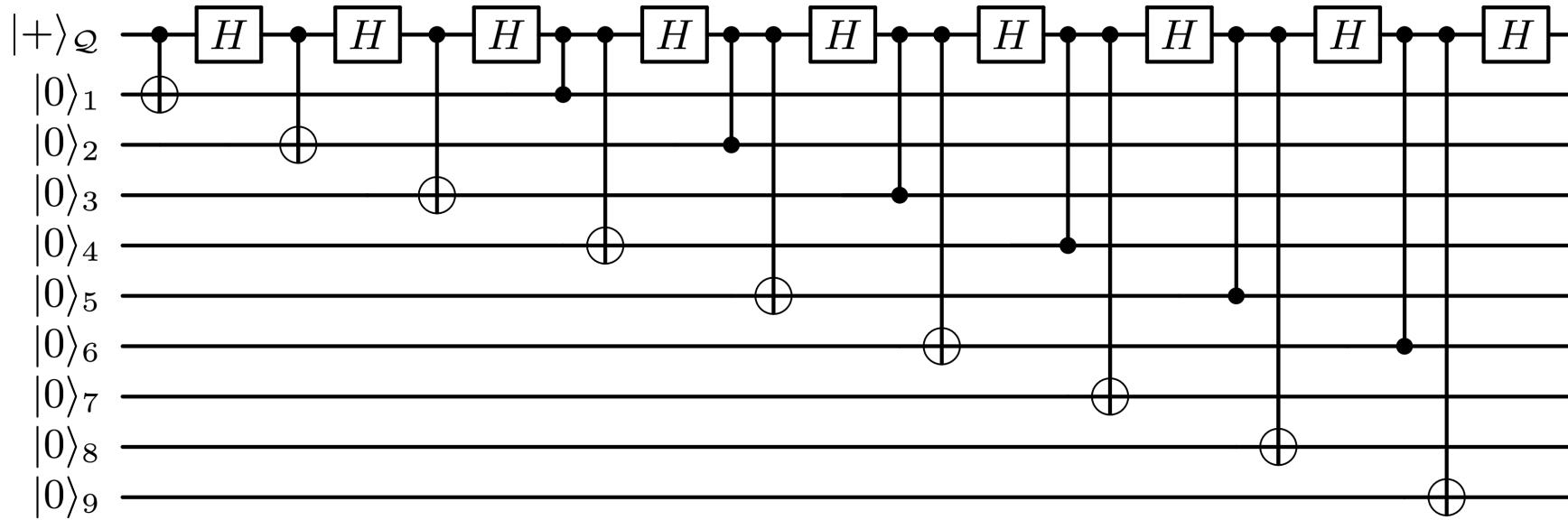
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_{\mathcal{Q}}|\emptyset\rangle_i \mapsto \alpha|0\rangle_{\mathcal{Q}}|0\rangle_i + \beta|1\rangle_{\mathcal{Q}}|1\rangle_i$



“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q|\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$



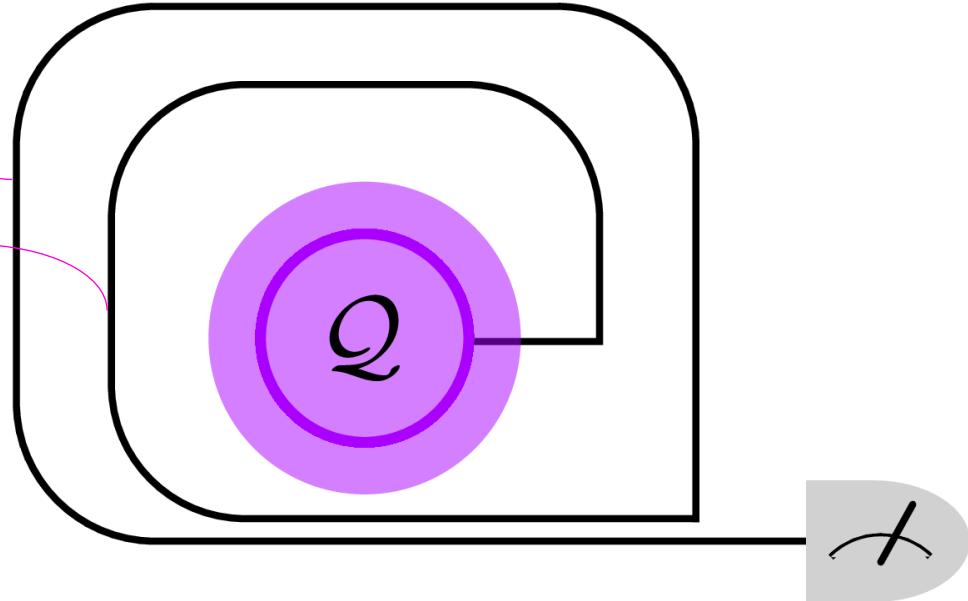
and so on...



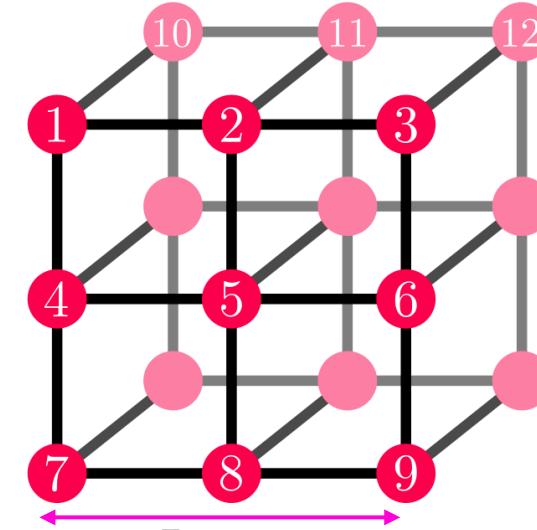
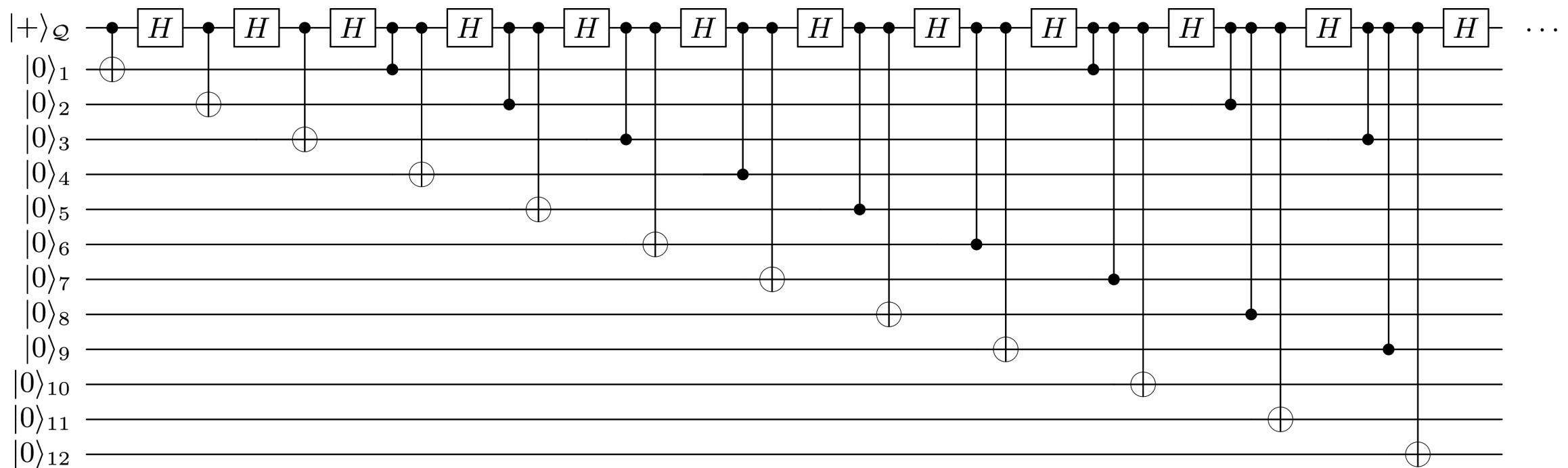
“CNOT”: $(\alpha|0\rangle + \beta|1\rangle)_Q|\emptyset\rangle_i \mapsto \alpha|0\rangle_Q|0\rangle_i + \beta|1\rangle_Q|1\rangle_i$

length $\propto L^2 - L$

length $\propto L$

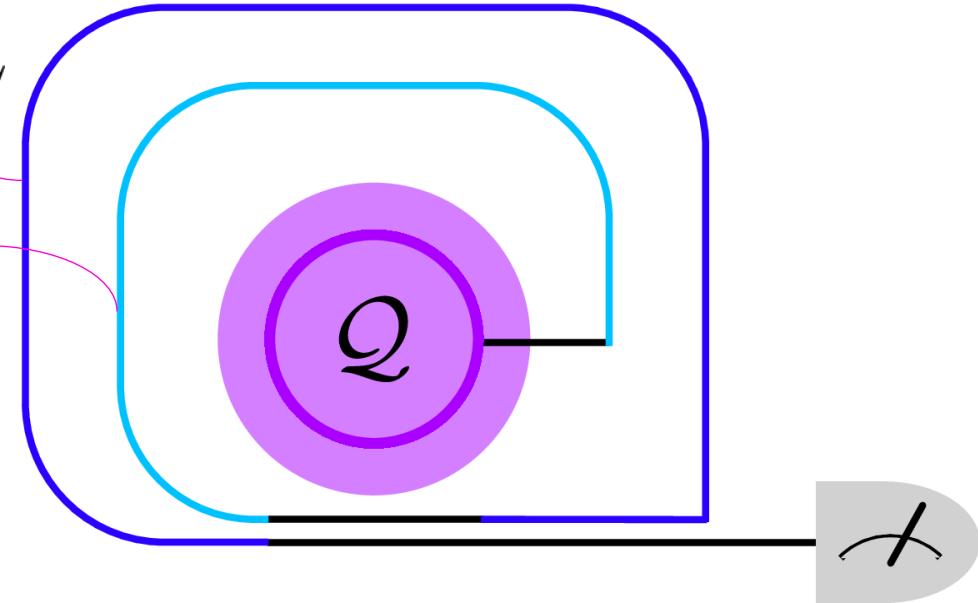


Q

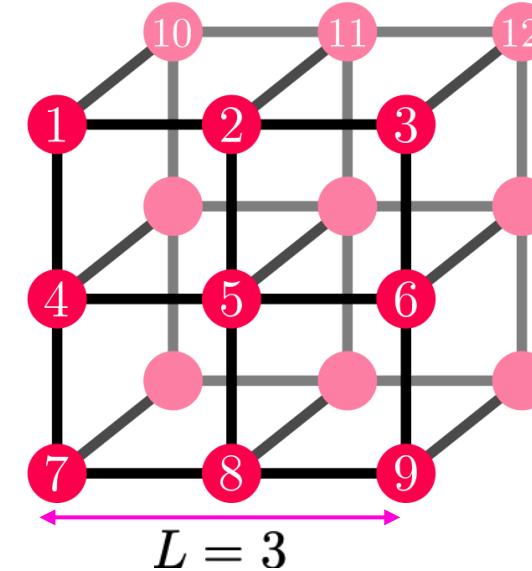


length $\propto L^2 - L$

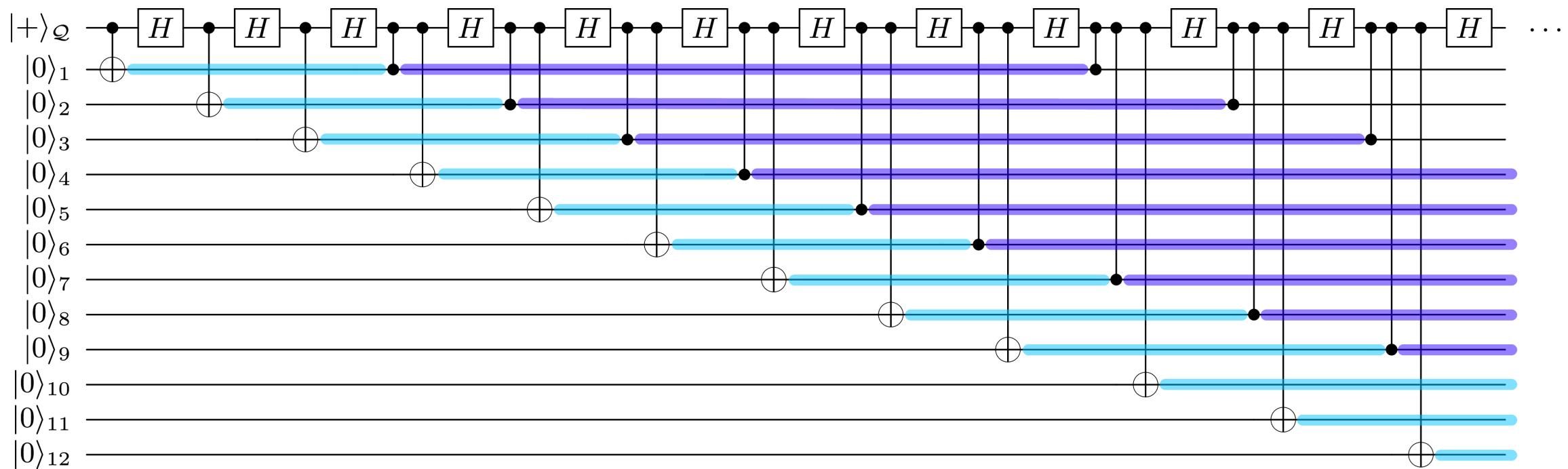
length $\propto L$



\mathcal{Q}

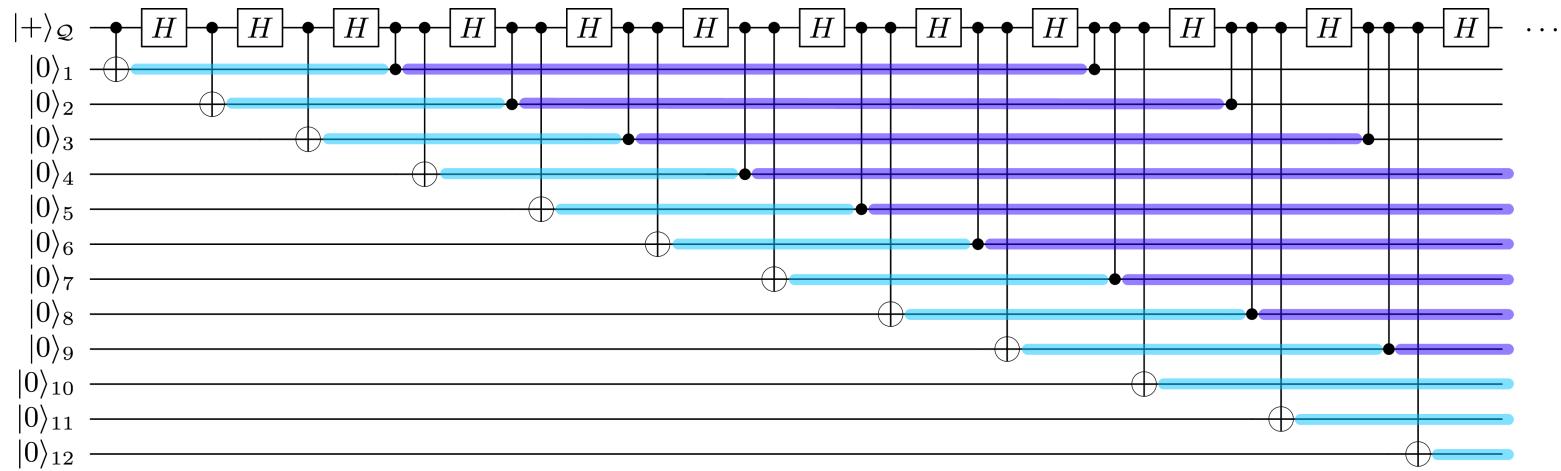


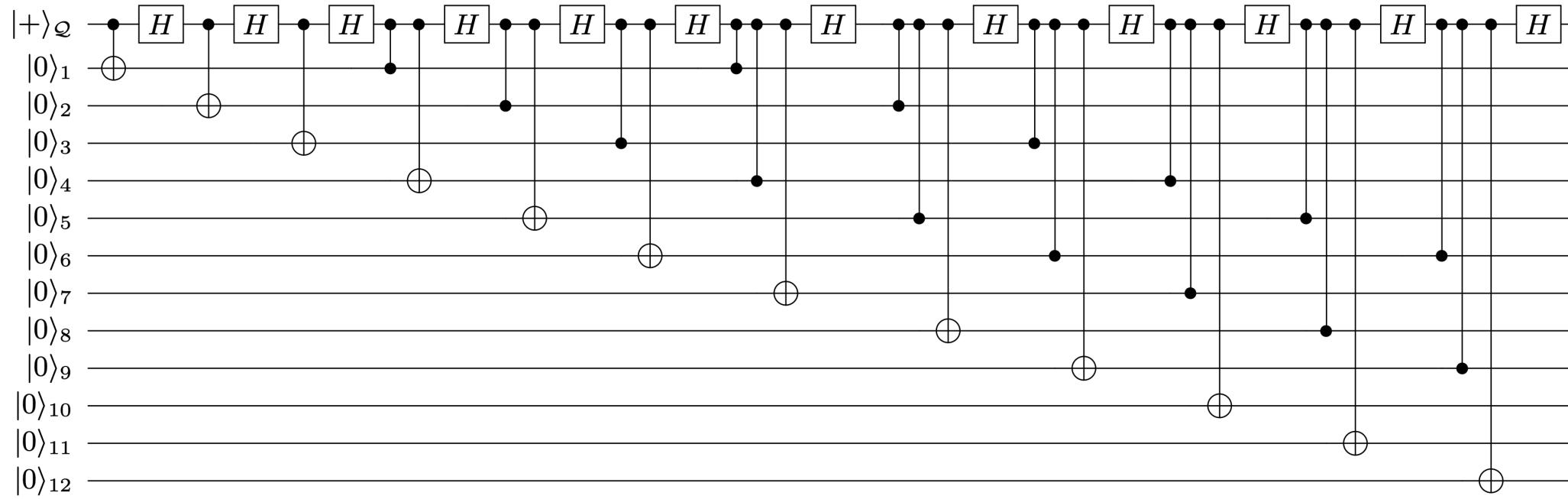
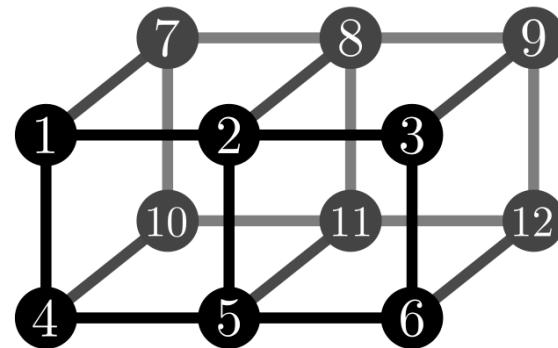
[some edges
omitted for clarity]



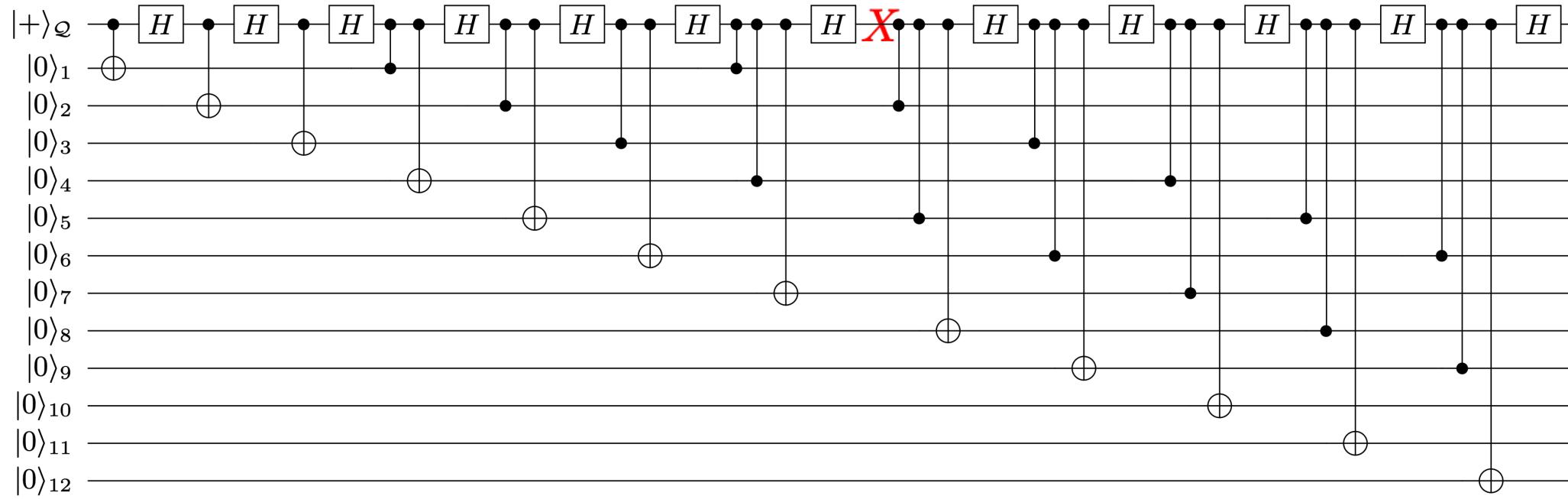
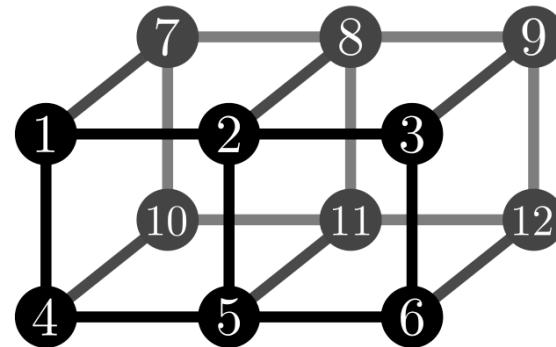
potential concerns

1. propagation of circuit-level errors

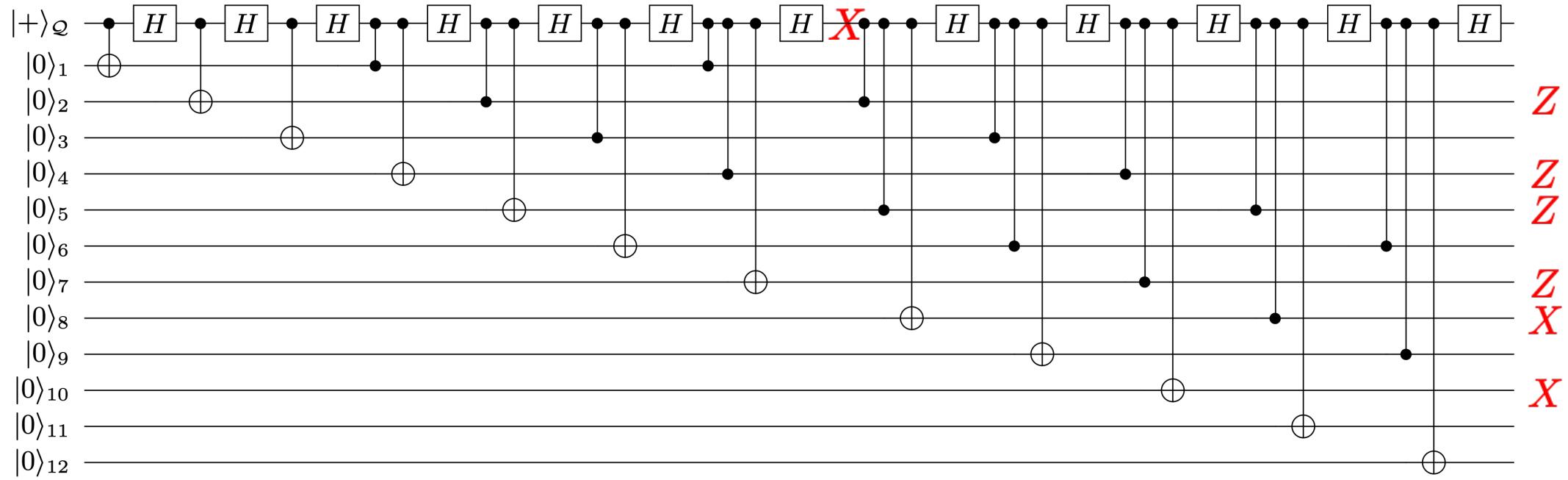
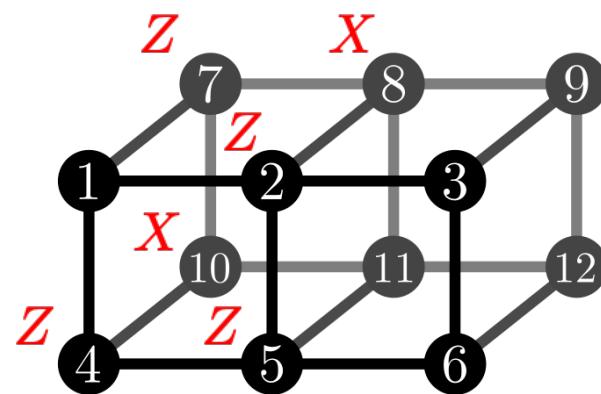




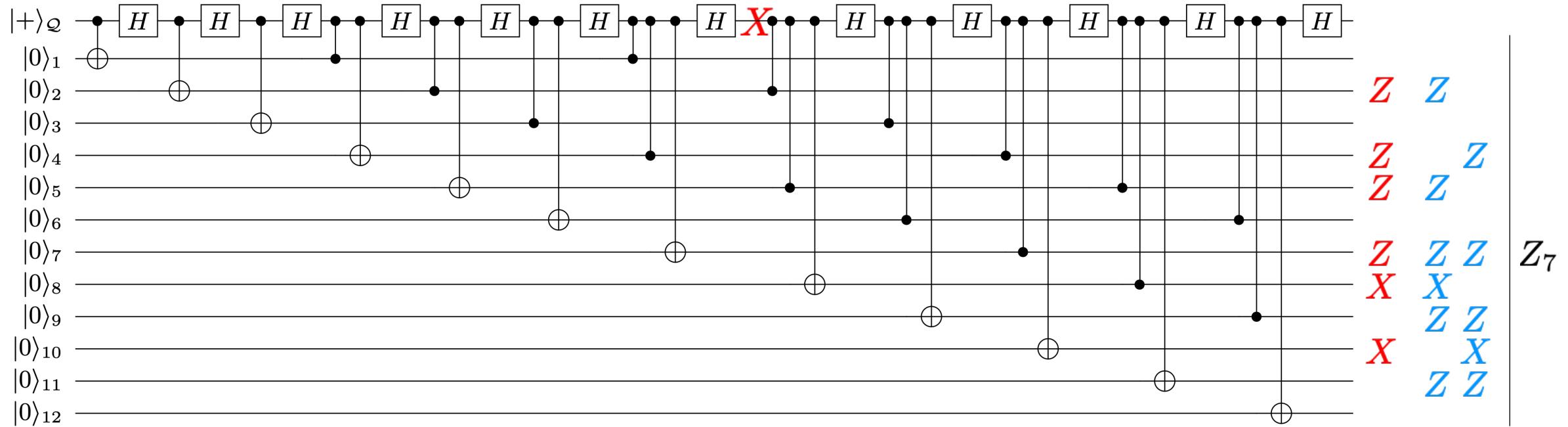
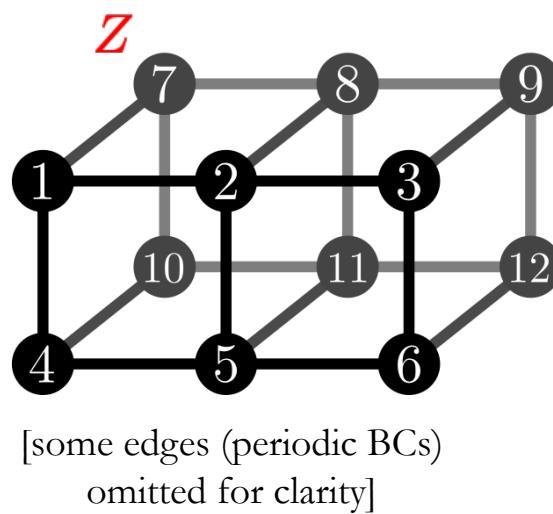
[some edges (periodic BCs)
omitted for clarity]



[some edges (periodic BCs)
omitted for clarity]



[some edges (periodic BCs)
omitted for clarity]



cluster state stabiliser generators:

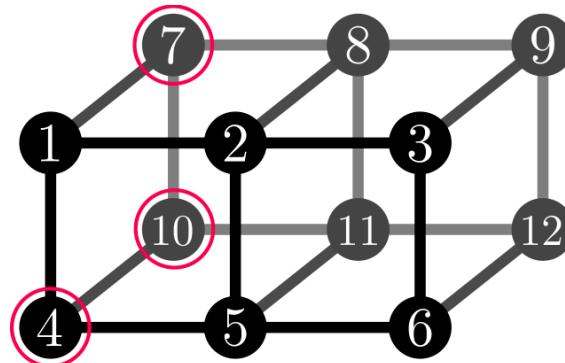
$$S_i = X_i \bigotimes_{j \in N(i)} Z_j, \quad N(i) := \{j : (i, j) \in E\}$$

for this lattice,

e.g., $S_8 = X_8 Z_2 Z_5 Z_7 Z_9 Z_{11}$
e.g., $S_{10} = X_{10} Z_4 Z_7 Z_9 Z_{11}$

all effective errors are local!

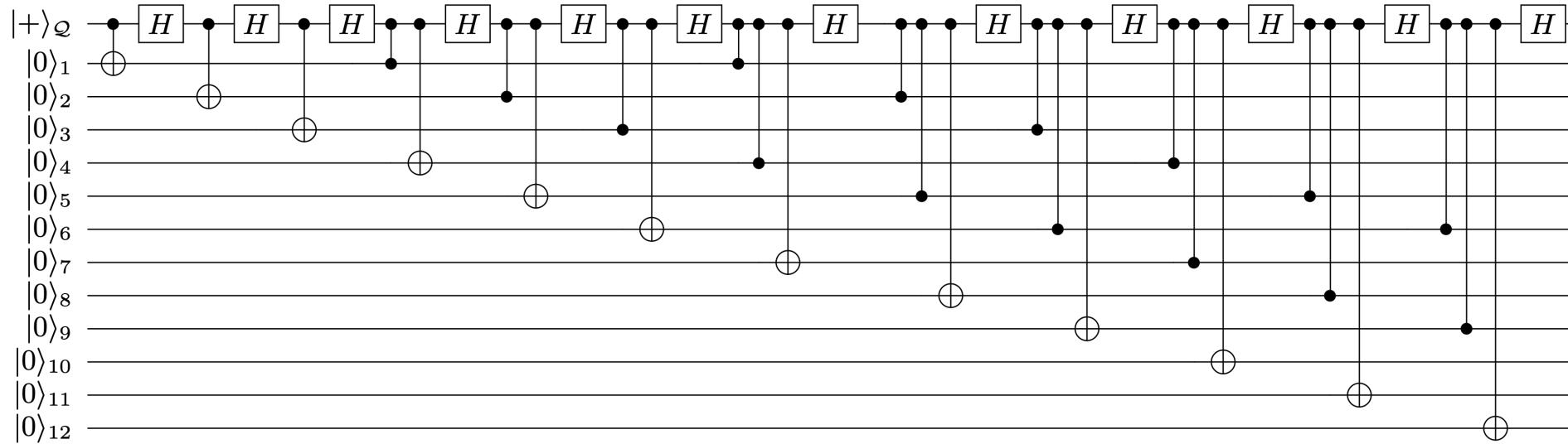
claim: *any* single-qubit circuit-level error \Rightarrow error supported within $\{i\} \cup N(i)$ on the prepared cluster state, for some data qubit i



e.g., $S \subset \{i\} \cup N(i)$ for $i = 10$

claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

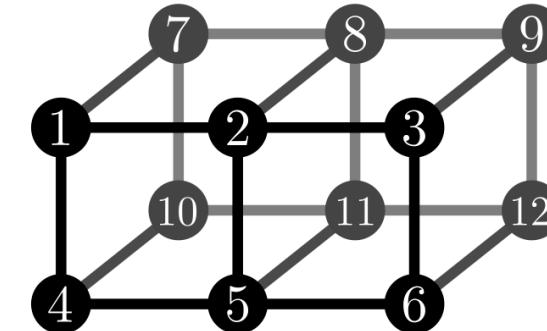
proof idea:



key observations:

1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)

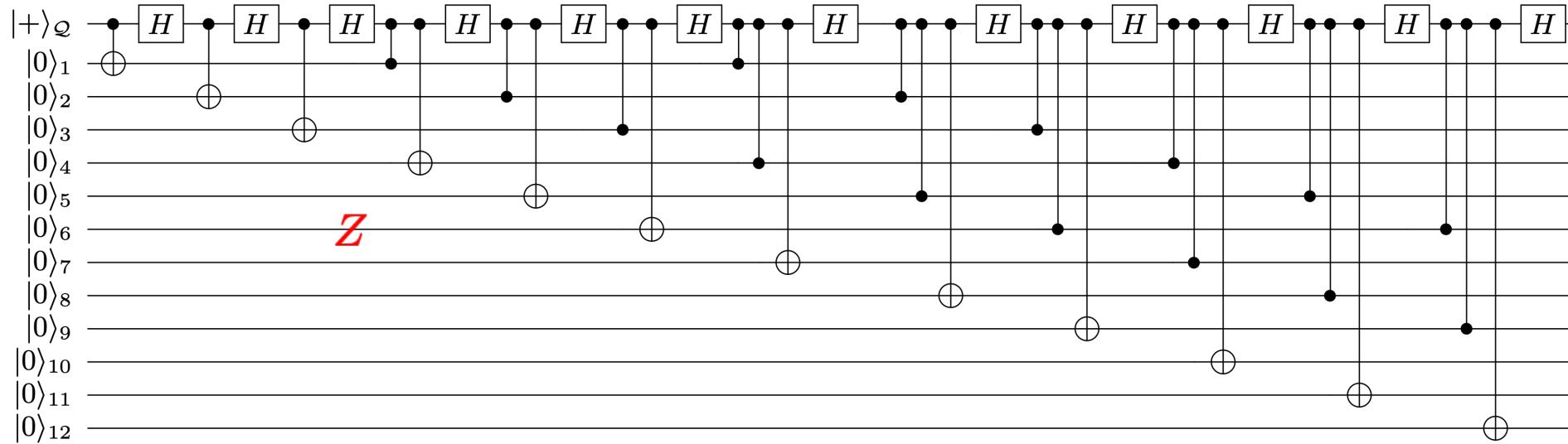
\mathcal{Q}



[some edges
omitted for clarity]

claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

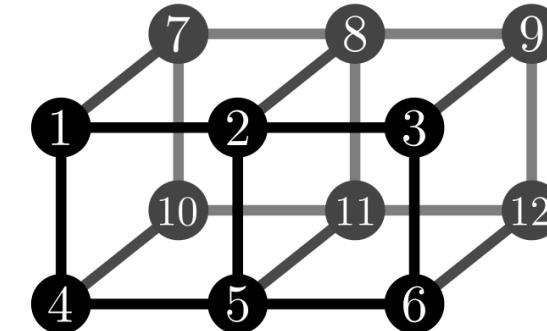
proof idea:



key observations:

1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)

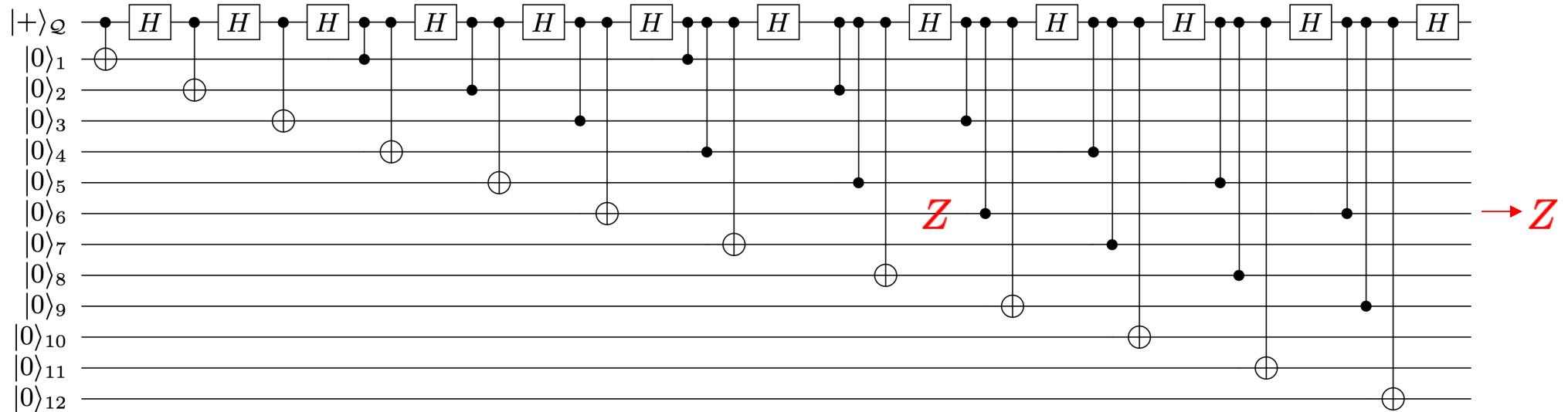
\mathcal{Q}



[some edges
omitted for clarity]

claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

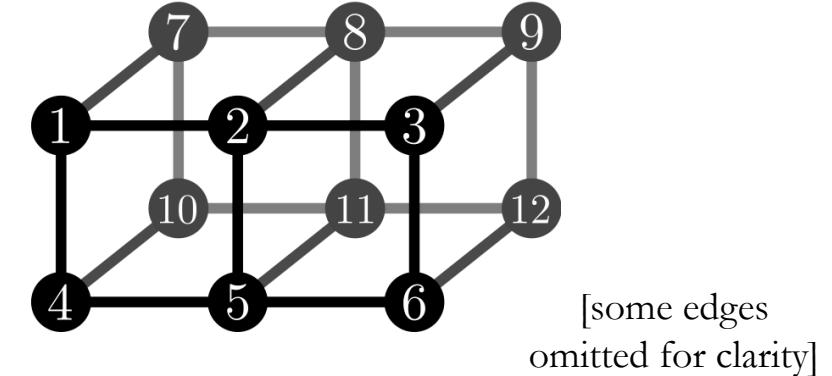
proof idea:



key observations:

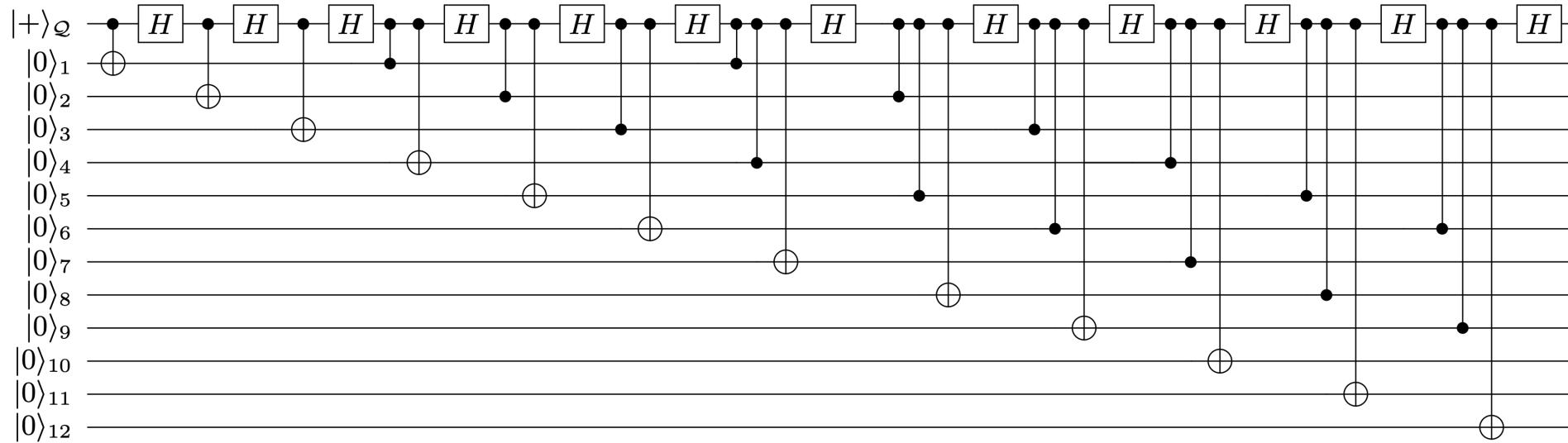
1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)

\mathcal{Q}



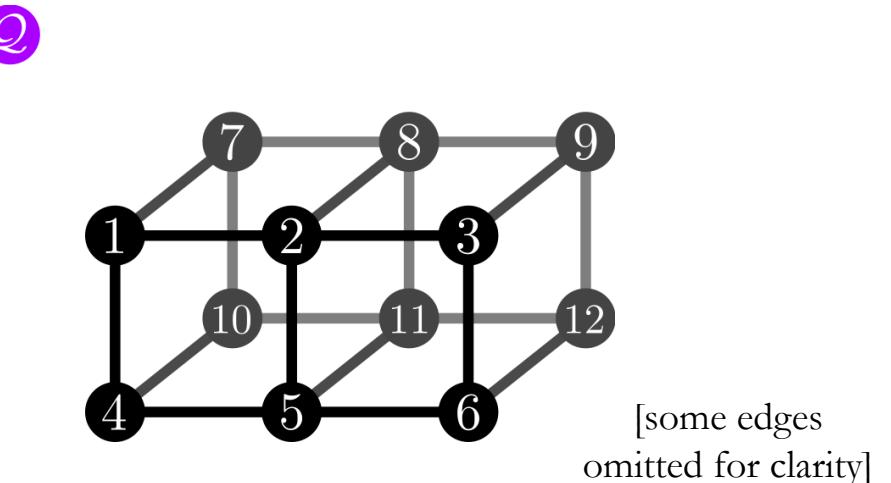
claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

proof idea:



key observations:

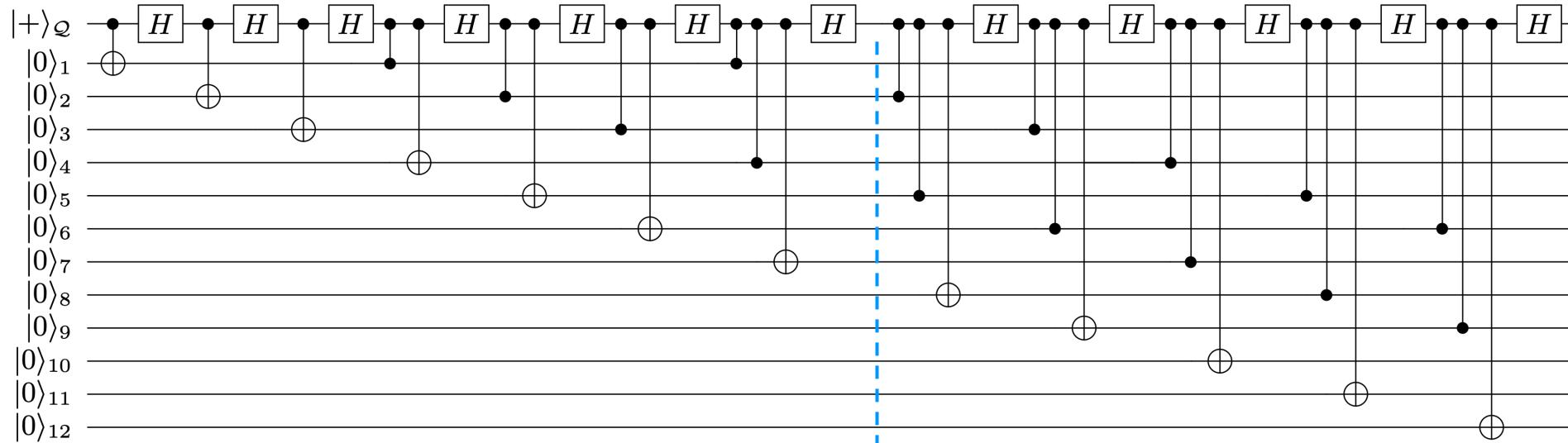
1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$



recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$

claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

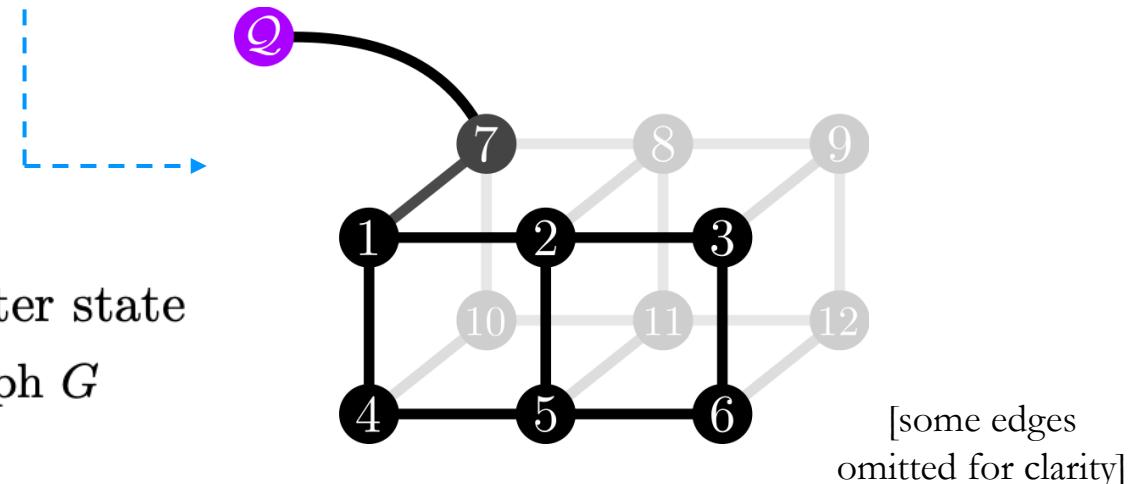
proof idea:



key observations:

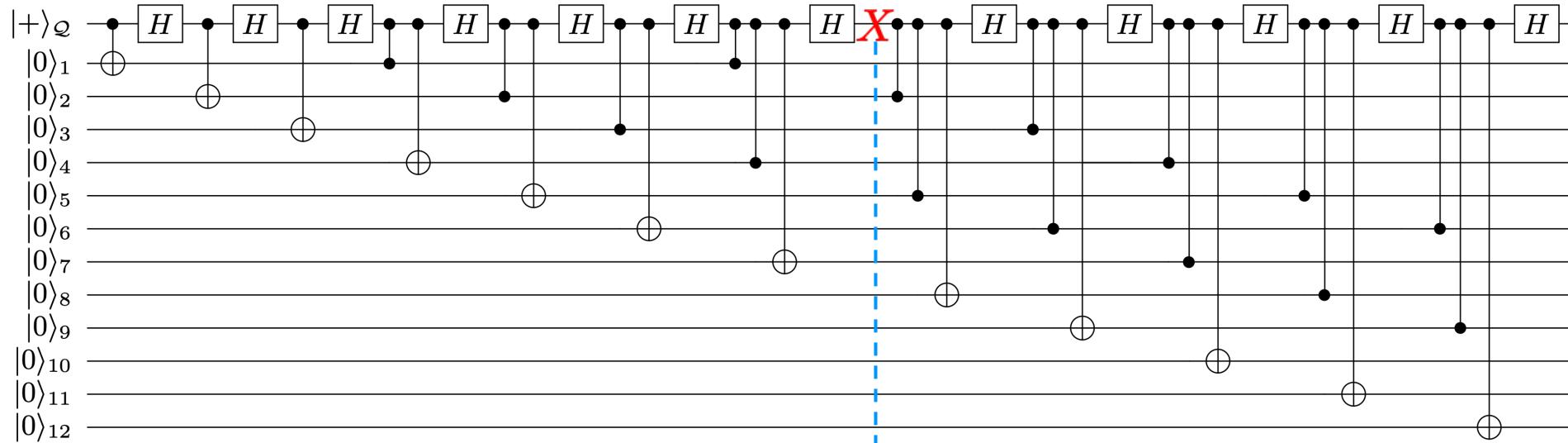
1. Z_i error \Rightarrow no effect, or Z_i on final state ($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$

recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$



claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

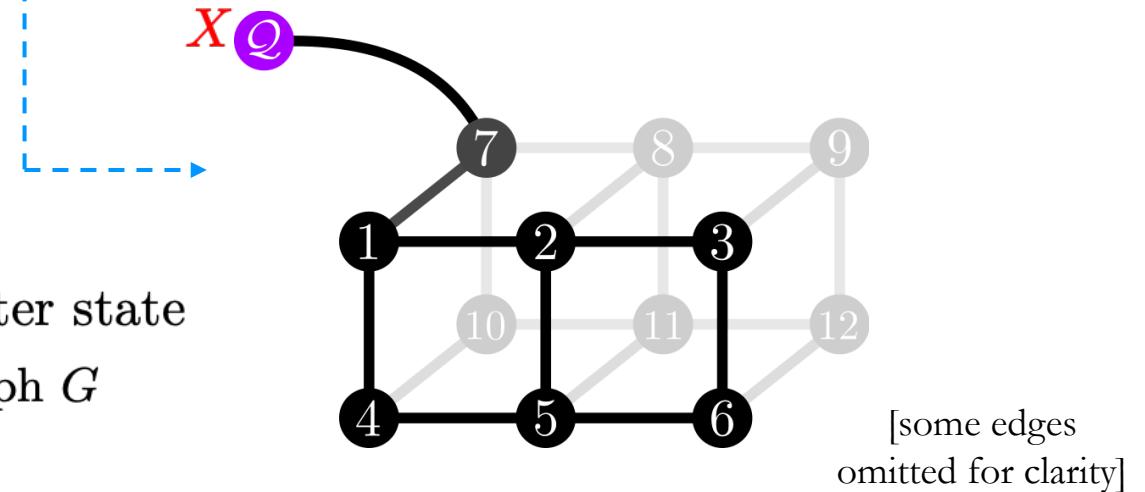
proof idea:



key observations:

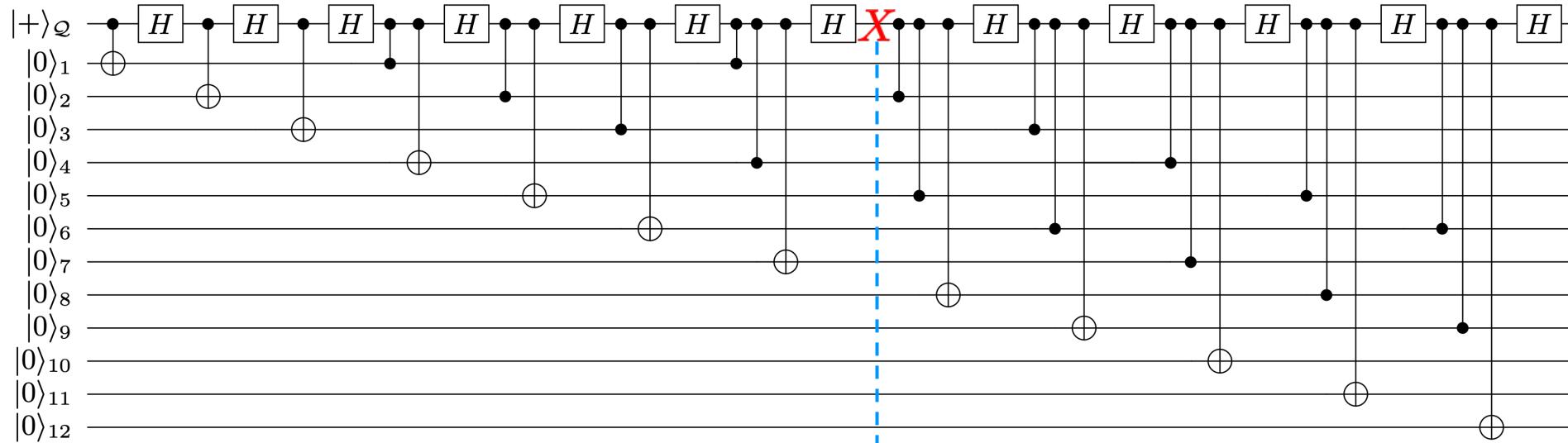
1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$

recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$



claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

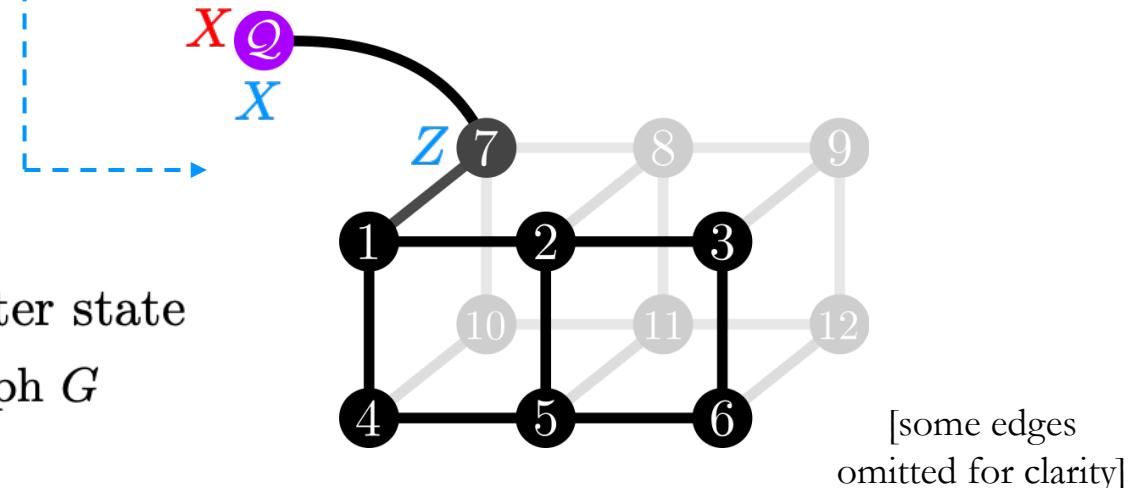
proof idea:



key observations:

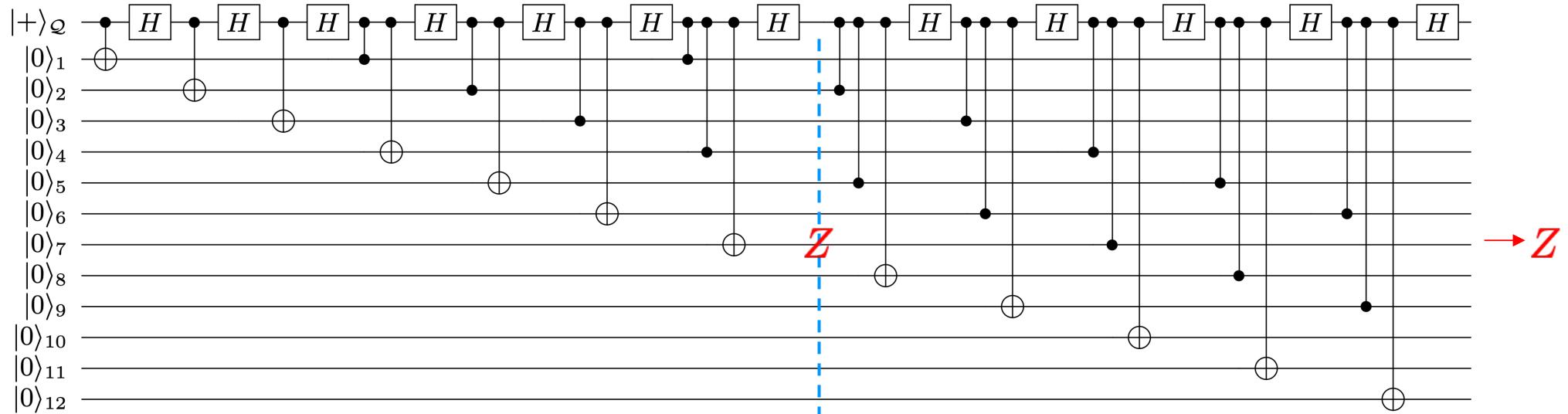
1. Z_i error \Rightarrow no effect, or Z_i on final state ($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$

recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$



claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

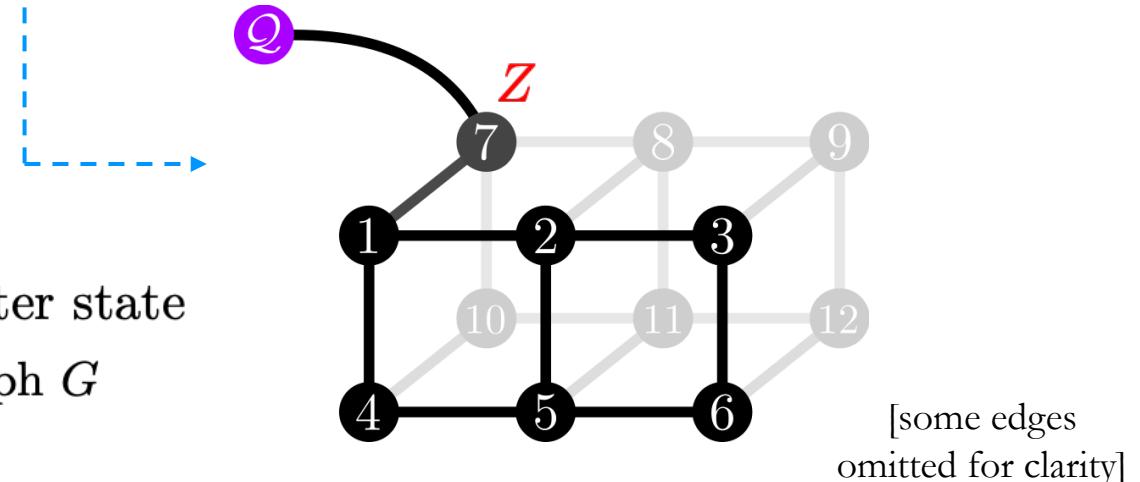
proof idea:



key observations:

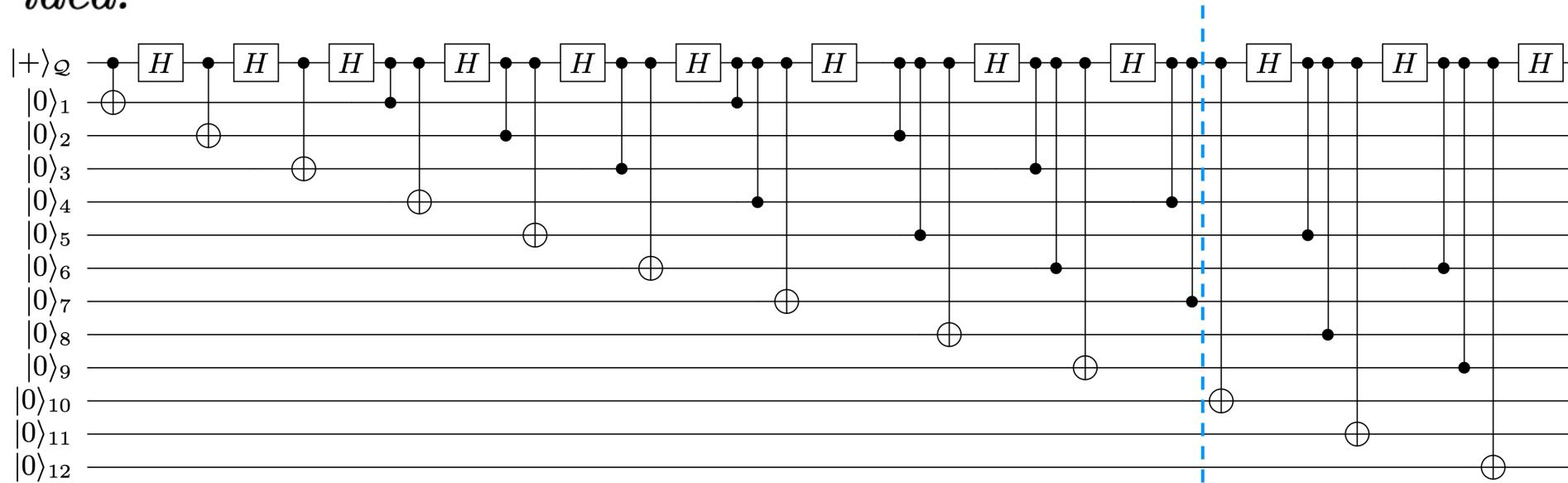
1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$

recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$



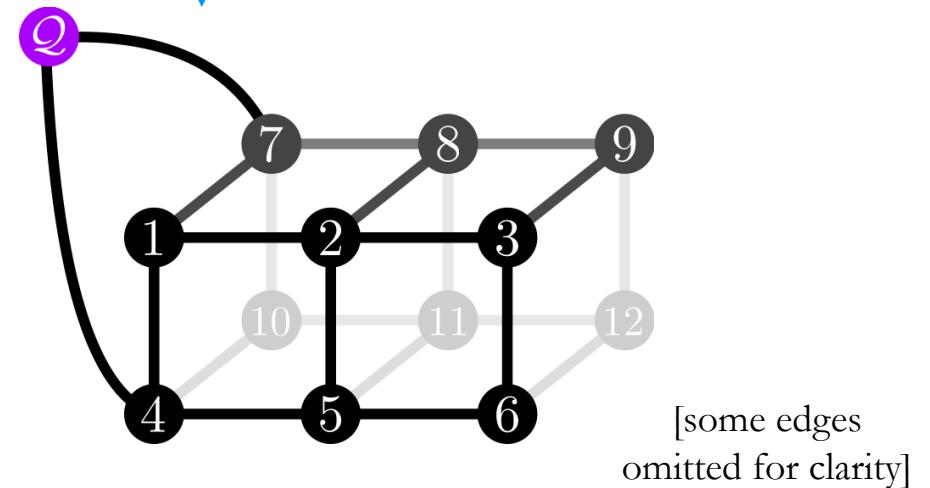
claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

proof idea:



key observations:

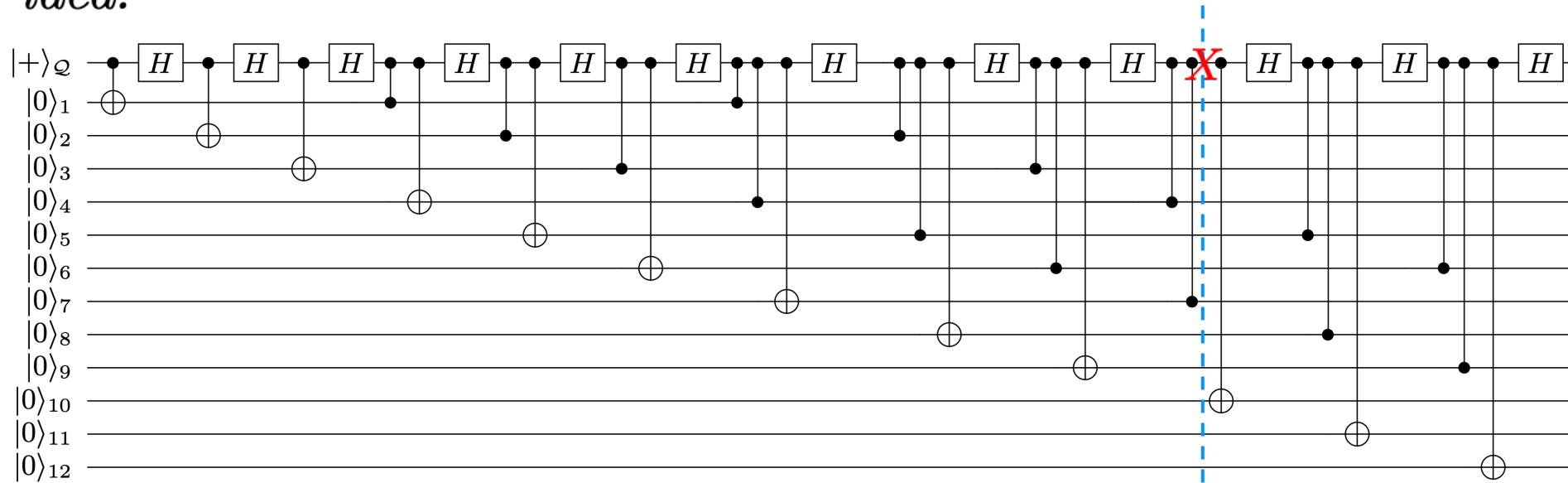
1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$



recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$

claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

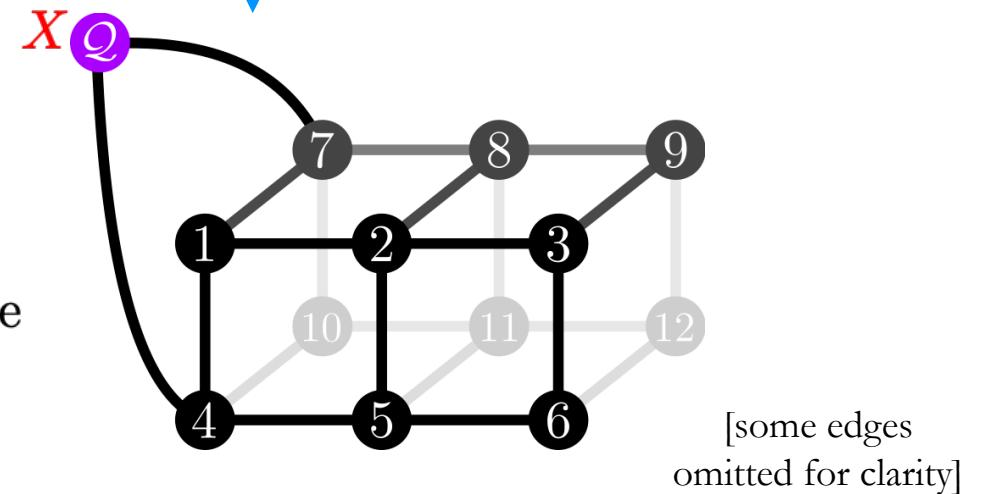
proof idea:



key observations:

1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$

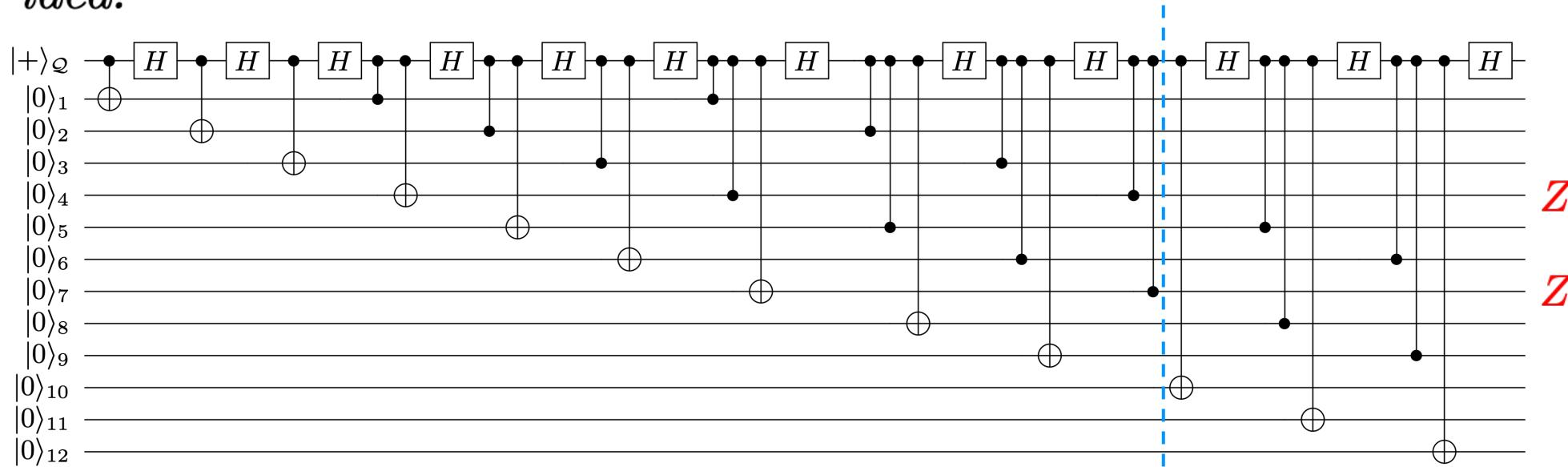
recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$



[some edges omitted for clarity]

claim: single-qubit circuit-level error \Rightarrow error within $\{i\} \cup N(i)$

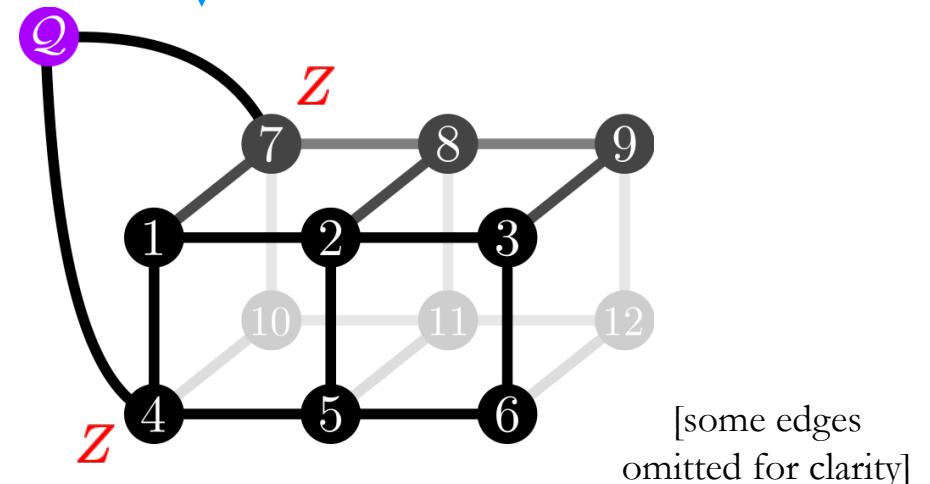
proof idea:



key observations:

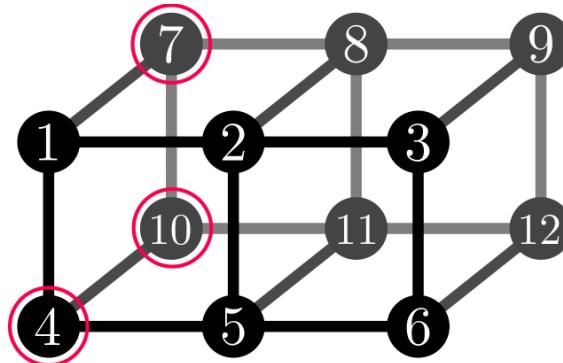
1. Z_i error \Rightarrow no effect, or Z_i on final state
($Z|0\rangle = |0\rangle$; Z commutes with controlled- Z)
2. at every point, the instantaneous state is a cluster state
 - data qubits form a subgraph of the target graph G
 - \mathcal{Q} has edges with $S \subseteq N(i)$

recall stabilisers: $X_i \bigotimes_{j \in N(i)} Z_j$



all effective errors are local!

claim: *any* single-qubit circuit-level error \Rightarrow error supported within $\{i\} \cup N(i)$ on the prepared cluster state, for some data qubit i



more generally, m single-qubit circuit-level errors $\Rightarrow m$ local errors on the prepared cluster state

potential concerns

1. propagation of circuit-level errors

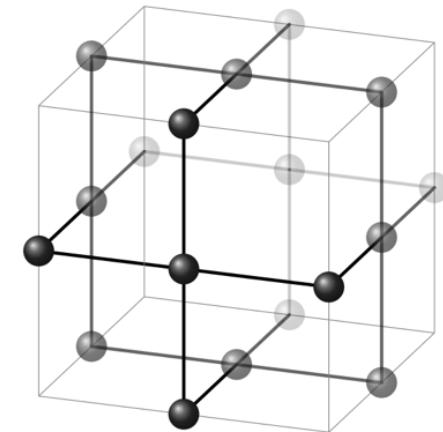
effective errors are actually local (\Rightarrow weight $O(1)$ for bcc lattice)

potential concerns

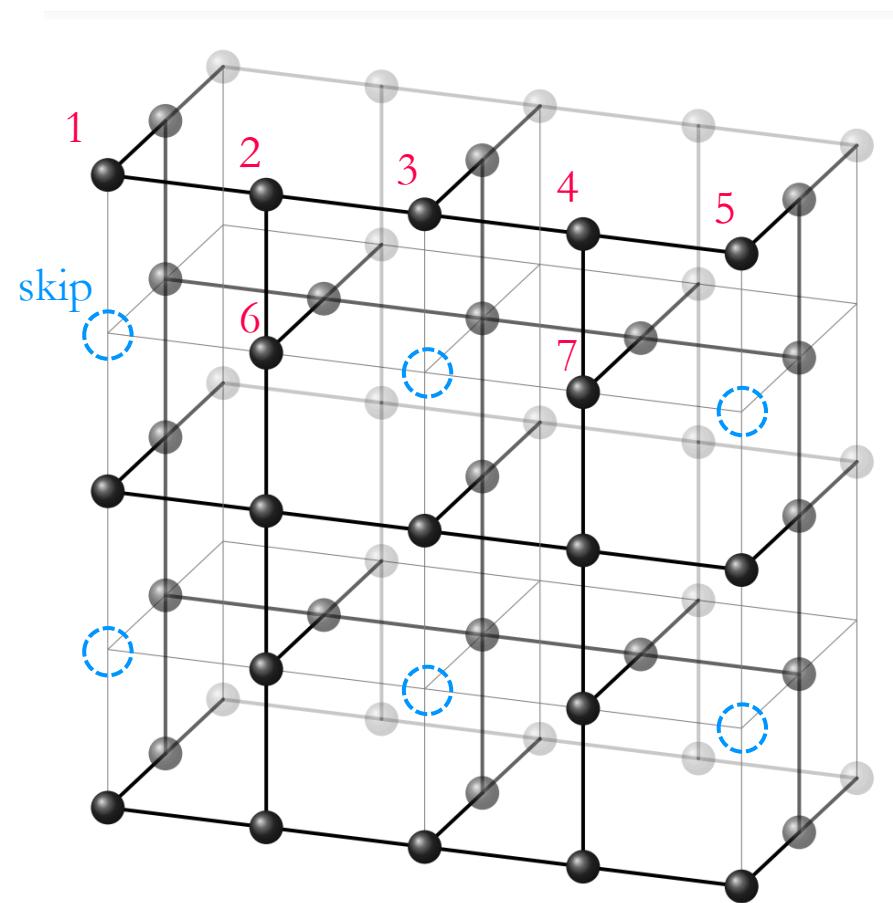
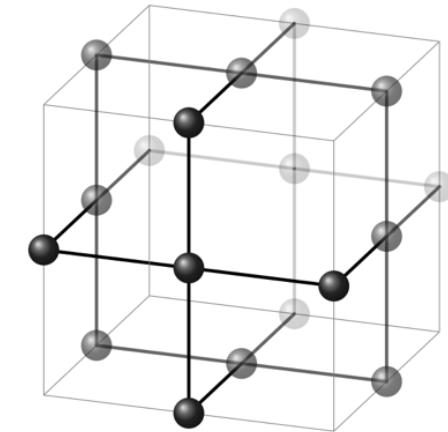
0. cubic lattice \rightarrow bcc lattice

1. propagation of circuit-level errors

effective errors are actually local (\Rightarrow weight $O(1)$ for bcc lattice)



0. cubic lattice \rightarrow bcc lattice



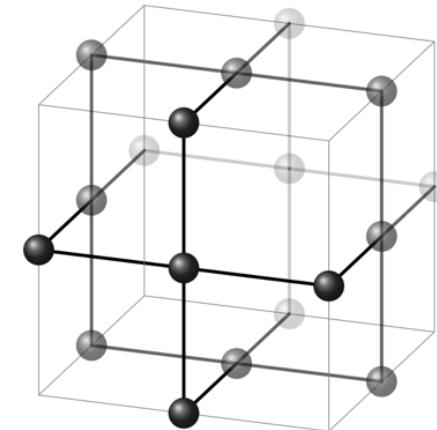
potential concerns

0. cubic lattice \rightarrow bcc lattice

$G_{\text{bcc}} \subset G_{\text{cubic}}$, so omit qubits in $G_{\text{cubic}} \setminus G_{\text{bcc}}$

1. propagation of circuit-level errors

effective errors are actually local (\Rightarrow weight $O(1)$ for bcc lattice)

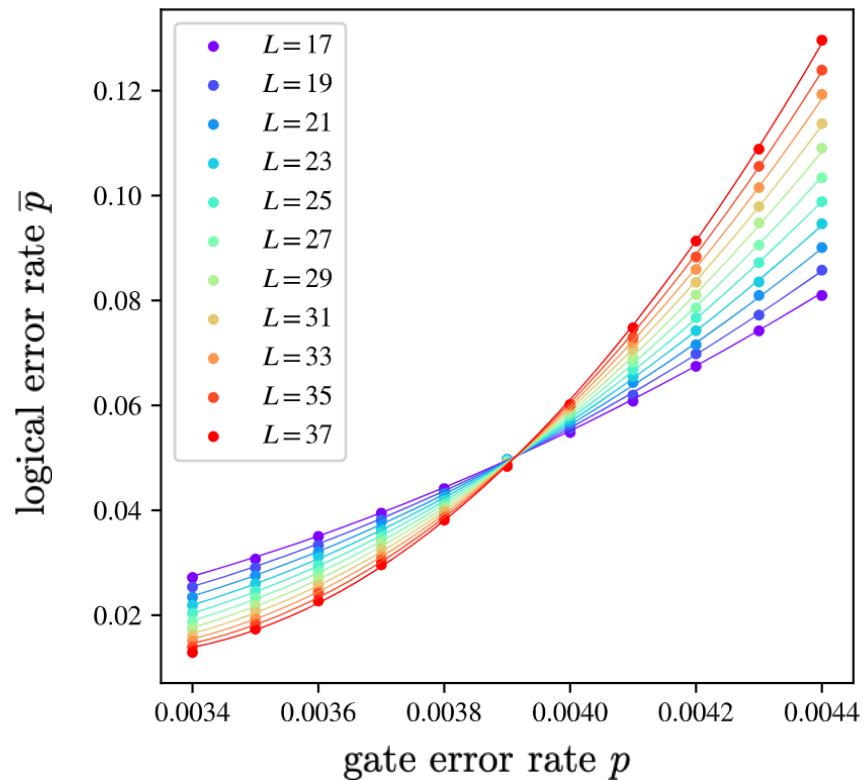


thresholds

- standard depolarising noise model for “gate errors” (error rate p):
 - single-qubit depolarising noise after each single-qubit operation (gate, measurement, state preparation)
 - two-qubit depolarising noise after each two-qubit gate

thresholds

- standard depolarising noise model for “gate errors” (error rate p)
- standard MWPM decoder

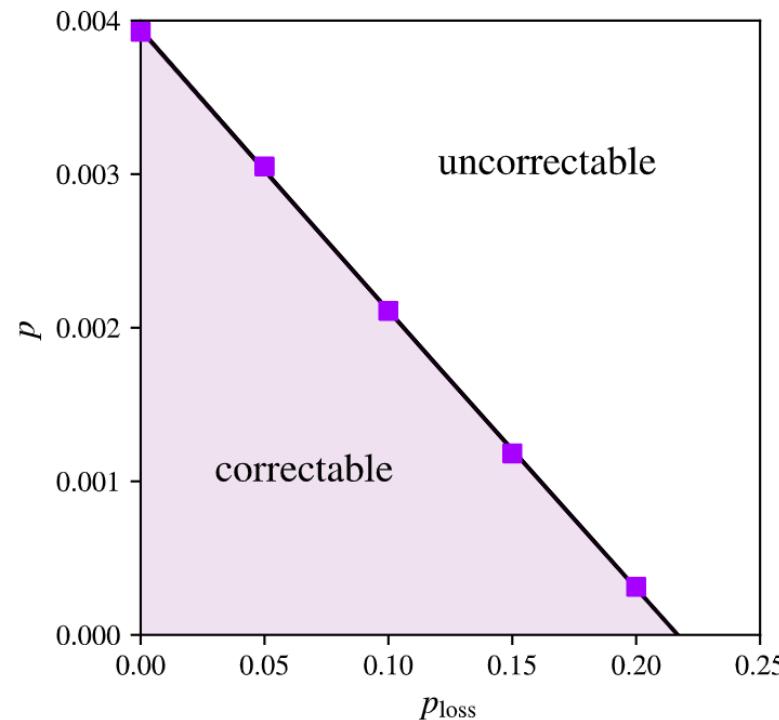


$$\rightarrow p_{\text{th}} \approx 0.39\%$$

[Raussendorf *et al.*]: $\approx 0.58\%$
(cZ circuit)

thresholds

- standard depolarising noise model for “gate errors” (error rate p)
+ each qubit lost with probability p_{loss}
- generalised MWPM decoder of [\[Barrett & Stace '10\]](#)



potential concerns

0. cubic lattice \rightarrow bcc lattice

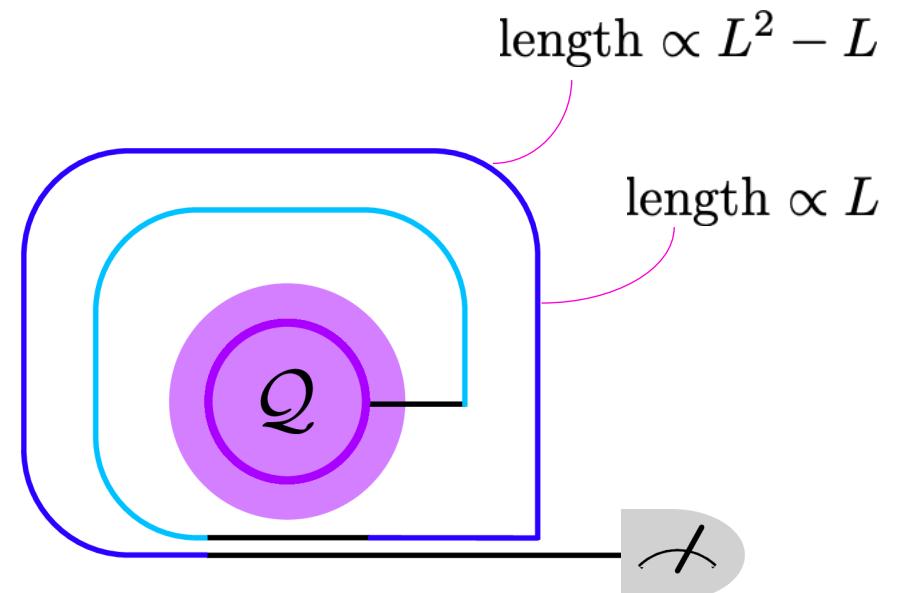
$G_{\text{bcc}} \subset G_{\text{cubic}}$, so omit qubits in $G_{\text{cubic}} \setminus G_{\text{bcc}}$

1. propagation of circuit-level errors

effective errors are actually local (\Rightarrow weight $O(1)$ for bcc lattice)

2. noisy delay lines \rightarrow errors on idle qubits

total delay line length $\propto L^2$



potential concerns

0. cubic lattice \rightarrow bcc lattice

$G_{\text{bcc}} \subset G_{\text{cubic}}$, so omit qubits in $G_{\text{cubic}} \setminus G_{\text{bcc}}$

1. propagation of circuit-level errors

effective errors are actually local (\Rightarrow weight $O(1)$ for bcc lattice)

2. noisy delay lines \rightarrow errors on idle qubits

total delay line length $\propto L^2$

logical error probability $\sim \exp(-\sqrt{\text{delay line error rate}})$

delay line errors

η = delay line error rate

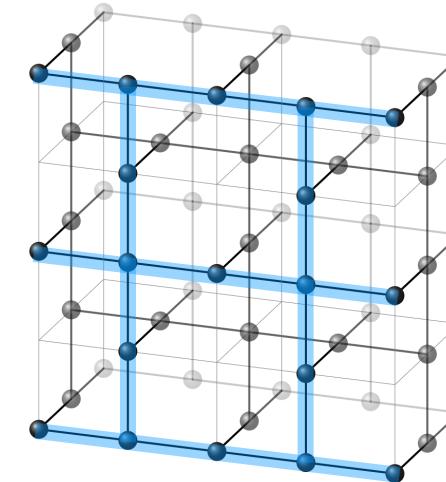
total delay line error probability $\approx \eta L^2$

code distance $\propto L$

↳ for each η and gate error rate p , \exists an optimal logical error rate \bar{p}_*

for fixed gate error rate p , expect \bar{p}_* to scale with η as

$$\bar{p}_* \propto \exp(-c\sqrt{\eta})$$



$$d = \frac{1}{2}(L + 1)$$

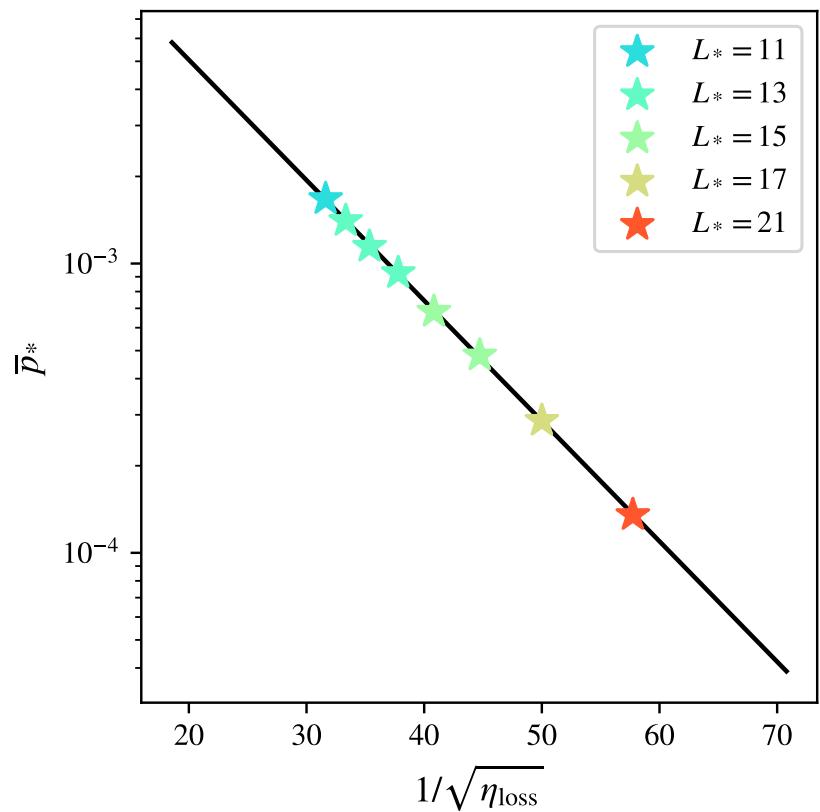
delay line errors

e.g.,

- fix gate error $p = 10^{-3}$
- suppose $\eta = \eta_{\text{loss}}$

→ “break-even point” (at which $\bar{p}_* = p = 10^{-3}$)
occurs at $\eta_{\text{loss}} = 7.4 \times 10^{-4}$

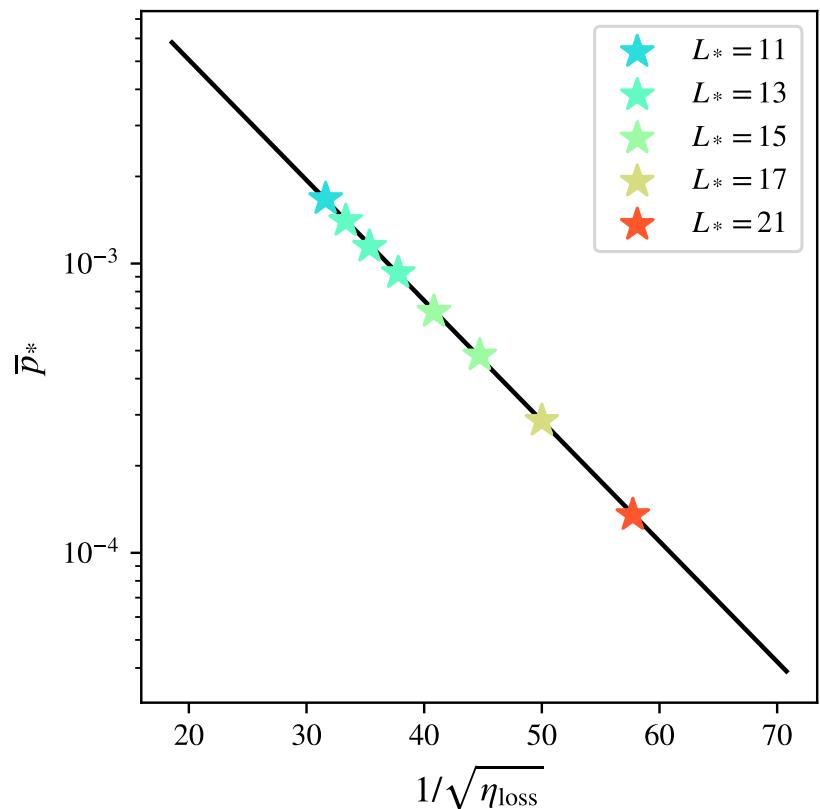
optical fibres: $\eta_{\text{loss}} \approx 9.6 \times 10^{-4}$
(assuming 17 ns between photons)



delay line errors

e.g.,

- fix gate error $p = 10^{-3}$
- suppose $\eta = \eta_{\text{loss}}$



→ “break-even point” (at which $\bar{p}_* = p = 10^{-3}$) occurs at $\eta_{\text{loss}} = 7.4 \times 10^{-4}$

optical fibres: $\eta_{\text{loss}} \approx 9.6 \times 10^{-4}$
(assuming 17 ns between photons)

dephasing

“break-even point” occurs at $\eta_{\text{dephasing}} = 6.5 \times 10^{-5}$

phononic waveguide: $\eta_{\text{dephasing}} \approx 4.8 \times 10^{-4}$
(160 ns between phonons)

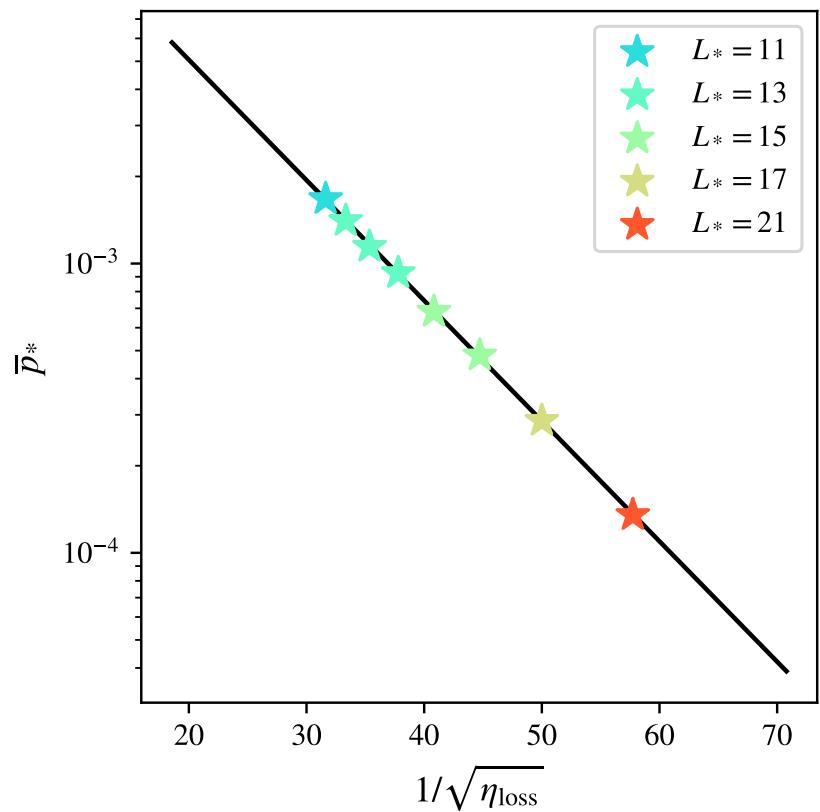
delay line errors

e.g.,

- fix gate error $p = 10^{-3}$
- suppose $\eta = \eta_{\text{loss}}$

→ “break-even point” (at which $\bar{p}_* = p = 10^{-3}$)
occurs at $\eta_{\text{loss}} = 7.4 \times 10^{-4}$

optical fibres: $\eta_{\text{loss}} \approx 9.6 \times 10^{-4}$
(assuming 17 ns between photons)



$$\eta_{\text{loss}} = 1.4 \times 10^{-4} \rightarrow \bar{p}_* = 10^{-5} \quad (L_* \approx 30)$$

$$\eta_{\text{loss}} = 2.4 \times 10^{-5} \rightarrow \bar{p}_* = 10^{-10} \quad (L_* \approx 75)$$

$$\eta_{\text{loss}} = 9.5 \times 10^{-6} \rightarrow \bar{p}_* = 10^{-15} \quad (L_* \approx 115)$$

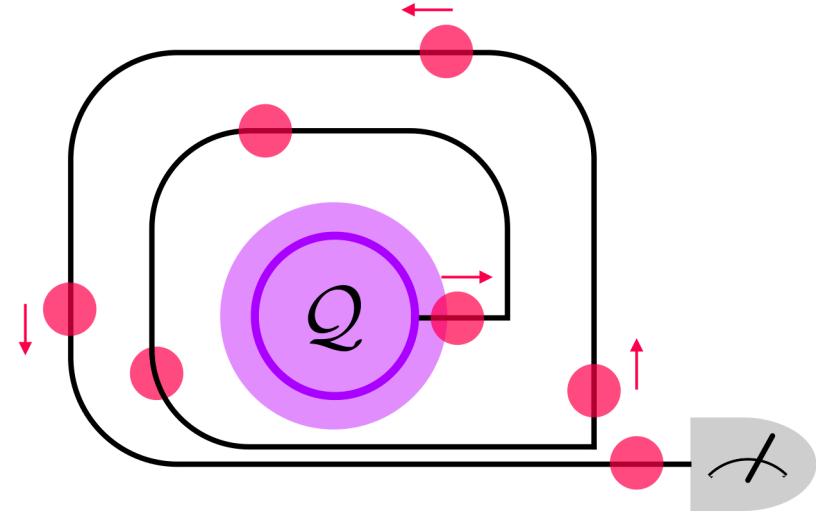
summary

1. constant component overhead

2. local error propagation

[open questions: can similar ideas be exploited in other contexts?
better characterisation of these circuits?]

↳ 3. FTQC could potentially be achieved through incremental improvements to a small number of key components



thanks for listening!
😊

arXiv:2011.08213
✉ kianna@stanford.edu