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I. MOTIVATION AND BACKGROUND

In the past few decades, one of the triumphs in the domain of quantum information theory has been the
characterization of quantum many-body systems using information-theoretic methods. The advancements
have enabled rigorous analysis of various heuristic classical and quantum algorithms, such as the Density
Matrix Renormalization Group algorithm [1, 2]. Much of this success has come from the information-
theoretic characterization of the correlations present between quantum systems. Motivated by this idea,
the fundamental question answered in this study is the following: How much information is shared
between two complementary parts of a system? This simple problem has received significant interest from
researchers from various backgrounds, since it is closely related to the quest for efficient algorithms to
simulate physical systems. Answers have, in many instances, established profound connections between
information theory, computer science, and physics.

The amount of the information in quantum states is measured in terms of various quantities (e.g.,
entanglement entropy, mutual information, entanglement of purification, etc.). One of the most famous
examples is the area law of the entanglement entropy in non-critical ground states [3, 4]. It argues
that when we decompose a total system into two subsystems, the shared information is proportional to
the boundary area of the subregion. Despite the extensive studies that have been conducted over the
past twenty years, a rigorous proof remains completely open beyond 1D quantum systems. On the other
hand, the area law in thermal equilibrium (hereafter referred to as the thermal area law) has been already
established in a much simpler manner, in 2008 [5]. This work shows that the mutual information between
two subsystems L and R is upper-bounded by the boundary area |OL| times the inverse temperature
B, namely B|OL|. This suggests that the non-local quantum effect increases linearly with the inverse
temperature 8. The result was expected to be tight as it seems to be physically natural and consistent
with the theory of belief propagation [6] which argues the quantum non-locality spreads over a distance
of O(B) at finite temperatures. Subsequent studies [7-9] have also shown that the time complexity
of preparing a classical description of 1D thermal states on n spins is bounded by n®®) . The linear
dependence of the exponent on f is thus consistent with that of the area law S|0L|. This highlights the
very close connection between area laws and algorithms for many-body systems.

II. SUMMARY OF MAIN RESULTS AND APPLICATIONS

Improved thermal area law.— In this work, we establish a new area law for mutual information in
arbitrary quantum Gibbs states, which defies the intuition stemming out of most previous works. Our
new area law improves the temperature dependence from O(3) to O(5%/3).

Theorem 1. For an arbitrary cut A = L U R, the mutual information Ig(L : R) is upper-bounded by
I(L: R),, < CB**|0A| (log?*(|0A]) + log(B)) , (1)
where C'is a constant of O(1). In particular, for one-dimensional systems (|JOA| = 1), we have
I(L: R),, < Cp**log(B) = O(5*?). (2)

The central technical aspects of our study are a refined polynomial approximation of the exponential
function and a Schmidt rank analysis of the polynomials of Hamiltonian. These enable powerful ideas
from approximation theory to be used for studying quantum Gibbs states. Our techniques also allow us
to put bounds on other measures of correlations, namely:



o The so-called Renyi entanglement of purification [10, 11], which we show is bounded by

By o) < Coma [ 32105(8), "= 104 (ﬁ)] , (3)

where Cy is an O(1) constant.

o Convex combination of matrix product states [12] (which has been linked to the success of certain
algorithms for non-equilibrium dynamics [13]). That is, there exists a set of MPS {|Mi>}?:A1 (Dy:
total Hilbert space dimension) with bond dimension D such that
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At the conceptual level, our result identifies a fundamental difference between imaginary time evolution
and real time evolution. Based on the well-known small-incremental-entangling theorem [14-17], the
entropy production via real time evolution is proportional to time. On the other hand, our result implies
that the entropy production via imaginary time evolution is sublinear in imaginary time, thus spreading
in a sub-ballistic fashion. In experimental level, imaginary time evolution has been realized using the
Noisy Intermediate Scale Quantum (NISQ) device [20, 21]. Our result suggests the possibility of the
behavior of the imaginary time evolution being more “spooky” than ever considered, which is of interest
both in theoretical and experimental studies. We partially explain this point by focusing on the fact that
imaginary time evolution has a strong relationship with random walks. In fact, this random walk aspect
is a key ingredient in the polynomial approximations used here (see Sec. III).

To summarize our contribution, we shed light on the new fundamental problem of “what is the critical
e for establishing the thermal area law scaling of B¢ in generic quantum many-body systems.” We expect
future studies to further pursue the value of v, (which we conjecture to be 1/2) and also, consequently,
obtain better approximation algorithms. Importantly, the improvement cannot be below 1/5, which we
show by providing an explicit family of examples [22]. Our work shows that the established thermal area
law, which had been believed to be tight, can in fact be improved. This shows that previous intuitions on
this subject may have been incomplete, and that there is a deeper structure that warrants exploration.
We expect this pursuit will contribute to our better understanding of the structure an simulation of
quantum thermal states, which are of the greatest importance to both quantum condensed matter and
quantum simulation and computation.

Quasi-linear time algorithm for 1D quantum Gibbs state.— The improved area law is not only a topic of
fundamental interest but also offers various practical applications for qualitatively improving important
established results. Most importantly, in the computation of 1D quantum Gibbs states at arbitrary
temperatures, our result achieves the first improvement from polynomial time complexity to quasi-linear
time complexity, consistent with what is expected from heuristic algorithms. Thus far, there was no
rigorous proof for a quasi-linear scaling of such an algorithm. The approach is based on approximations
of thermal states with MPOs. The result is as follows.

Theorem 2. For arbitrary 3, we can efficiently compute a matrix product operator Mg which approxi-
mates e # in the sense that || Ms—e PH||; < e|le P ||; (e < 1) where the bond dimension of Mg is given

by exp(Q¢) with Q. := C max [,8, wﬁlog(n/e)} log[flog(n/e)] (C: constant). Also, the computational

time to calculate Mpa is nfexp(Q.). When § < log(n/e) and € = 1/poly(n), the time complexity is
quasi-linear with respect to the system size n:

n exp {@ < ﬂlog(n))] : (5)

With our technique, we can also obtain the quasi-linear time complexity neCth+0(/Itlogn) o the
simulation of real time evolution e which is better than the existing result [18] for ¢ = o(log(n)).

This is the first rigorous algorithmic result in many-body physics that achieves a runtime close to
that of practical (but heuristic) methods, such as TEBD or METTS. This algorithm, which can be
considered as the imaginary-time version of [23], converges in quasi-linear time, a scaling that matches
the performance of some of the leading numerical techniques.



III. KEY TECHNIQUES

Improved thermal area law implies that the entanglement generation rate is sublinear with the imag-
inary time. So, it also indicates that the imaginary time evolution inherently induces a sub-ballistic
propagation of entanglement. In order to rigorously justify it, we utilize the polynomial expansion by
Sachdeva and Vishnori [19]. The point of their analysis is expanding of the exponential function e~
(r € [0,b]) by using the Chebyshev polynomials: e™* = 3> P(ry)Ty,(y), where z = b(1 + y)/2
(y € [-1,1]) and T, is the rth order Chebyshev polynomial. Here, the coefficient P(rp) is constructed
from the b-step random walk and is strongly concentrated around r, &~ v/b (see Eq. (17) in the technical
paper). In applying it to the quantum Gibbs state, we choose = as SH and b is equal to the norm of SH,
which is as large as An. However, the polynomial degree vb &~ /Bn is still too large. For the proof of the
improved thermal area law, we need a combinatorial approach from several techniques (Lemmas 13, 14, 15
and 16 in the technical paper) such as the quantum belief propagation [6], connection of approximations
by general Schatten-p norms [8], refined Schmidt rank estimations [24, 25] and so on.

Finally, we will show the essential idea to obtain the quasi-linear time algorithm (Theorem 2). Our
method is similar to the Haah-Hastings-Kohtari-Low algorithm [23]. The key technique therein is the
block decomposition of the unitary time operator based on the Lieb-Robinson bound [26]. We adopt
a similar idea for the quantum Gibbs state. We first decompose the Gibbs state to the pieces of high-
temperature Gibbs state e % namely e #H = (6*30[{ )ﬁ/ Po. Here, the inverse temperature §y is suffi-
ciently small such that the imaginary-time Lieb-Robinson bound exists. Furthermore, we approximate
the quantum Gibbs state of e % by using a product of appropriate polynomials (Fig. 1):

n
e P ~ Mg, = [ T(BoHj—1) Ton(—Bo(Hj—1 + Hj)),
j=1

where the system is decomposed into blocks of length Iy = O(log(n/e€)), H; is the Hamiltonian in the
jth block, and T, (z) = >0t 2™ /m! is the truncated Taylor expansion of order m = O(log(n/e€)). Now,
the approximation error is estimated by using the imaginary-time Lieb-Robinson bound, and the bond
dimension of Mg, is derived by using the technique in Ref. [24] (see Proposition 4 and Lemma 5 in the
technical paper, respectively). By combining these analyses, we can achieve the desired time complexity.
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FIG. 1. Our algorithm proceeds by iterated approximations of e~ performed j /Bo times. In each step, we
approximate the Gibbs operator e #0f by the operator M, 8,- For this, we establish a decomposition of e PoH a5
a product of operators shown on the right-hand side. This uses an imaginary-time version of the Lieb-Robinson
bound and the Taylor truncation of the exponential function.
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