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Quantum Gibbs state

Local Hamiltonian (system size:n , spatial dimension: d )

H = Zhi,ja HhZ,jH <1 |---|: operator norm
(4,5)

Gibbs state : pg = 6_6H/t1"(6_6H)

(1,7): pairs of adjacent spins

Target : Efficient simulation of quantum Gibbs states

Classical/Quantum simulation of thermal equilibrium
Verstraete, Garcia-Ripoll and Cirac, PRL (2004). B-B Chen et al., PRX (2018).

M. Motta et al., Nature Physics (2020).

Quantum Machine learning
M. H. Amin et al., PRX (2018). Anshu, Arunachalam, Kuwahara and Soleimanifar, FOCS (2020).

Exponential speed up of Semidefinite Programming
Brandao and Svore, FOCS (2017). J. V. Apeldoorn et al., FOCS (2017)



High temperatures v.s. Low temperatures

Above a temperature threshold

* Clustering property (exponential decay of correlations)
M. Kliesch, et al., PRX (2014). Frohlich and Ueltschi, J. Math. Phys. (2015).

- Approximate quantum Markov property

— Efficient classical simulation (existence of FPTAS)
— Construction by constant-depth quantum circuit

Kuwahara, Kato and Brandao, RRL (2020). M. Soreimanifar et al., STOC2020

Low-temperatures

*Computationally hard to simulate
F Barahona, J. Phys. A (1982). Aharonov, Arad, and Vidick ACM SIGACT (2013).

Low temperature regime is important in practical applications

B = O(log(n)) is required for Semidefinite Programming
Brandao and Svore, FOCS (2017).
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Thermal area law

Mutual information

I(L: R),, = S(p5) + Sr(ps) — S(ps) 2

pé’, pg: reduced density matrix

Thermal Area law: I(L: R),, S B|OL]

M. M. Wolf et al., Phys. Rev. Lett. 100, 070502 (2008).

[Remarks]

*Derived from the minimization of the free energy
by the quantum Gibbs state

*Quantum correlations spread over distance (9(5)

 Applicable to arbitrary dimensional systems




Physical interpretation in terms of

imaginary time evolution

Quantum Gibbs state

Imaginary time evolution for the uniform mixed state (i.e., P3=0)

pp ox e P2 ps oe P/

I(L: R),, : entanglement generation by the imaginary-time evolution

I(L:R),, < B|OL]|

Entanglement rate is linear for the imaginary time

*Real time evolution: entanglement rate is linear

(SIE theorem) v acoleyen et al.. PRL (2013).

Hastings’ quantum belief propagation L R
—>quantum effect spreads over distance O(p)

M. B. Hastings, Phys. Rev. B 76, 201102 (2007).




Physical interpretation in terms of

imaginary time evolution

Quantum Gibb .
Our result: Entanglement rate is

sublinear unlike the real time

evolution!
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Imaginary tin

—BH/

pp X €
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Our result

Improved thermal area law

I(L: R),, = O(5**|oL))

O(z) = O(zlog x)

Applicable to all the finite-dimensional systems

Quantum correlations spread over distance @(52/3)

It is not clear whether the exponent (2/3) can be further improved.

What is the optimal ¥ suchthat I(L : R),, < B87(|0L| ?

Gottesman-Hastings example : 1D Gibbs state such that v > 1/5
]_/5 S Y S 2/3 Gottesman and Hastings, NJP (2010).



Our result

Improved thermal area law

I(L:R),, = O(8*°9L|)
O(z) = O(z log )
We can get practical implications!
MPO approximation
and )
Quasi-linear time algorithm
What is the optimal ¥ suchthat I(L : R),, < B87(|0L| ?

ner improved.

Gottesman-Hastings example : 1D Gibbs state such that v > 1/5
]_/5 S Y S 2/3 Gottesman and Hastings, NJP (2010).



Our result: MPO approximation by

sublinear bond dimension

Matrix product operator approximation (D: bond dimension)

S
[81781] [8278/2] [sn78/ ] / / /
Mp = E tr (A1 A, e AR ) 81,82, 400 S ) (ST, S5y k-5 Sy
81,8294+, Sn—
| ¢: dimension of local Hilbert space

Ag-sj’sj]: D x D matrix

MPO approximation for 1D quantum Gibbs state

) 2/ D ogln/e
log — Mplly <e if D= e2E/+0(VBlos(n/a))

For 5 = o(log(n)), sublinear bond dimension is enough for good approximation

Better than the state-of-the-art estimation as D = (n/e)®¥)

M.B. Hastings, PRB 73, 085115 (2006).
M. Kliesch et al., PRX (2014).
A. Molnar et al., PRB (2015).



Our result:

quasi-linear time algorithm

Existence of MPO approximation and finding it are different
problem

(Imaginary TEBD algorithm) truncating the bond dimension iteratively

Verstraete, Garcia-Ripoll and Cirac, PRL (2004). No effici t i
B-B Chen et al., PRX (2018). O efniciency guarantees:::

Cluster-expansion-based algorithm: Computational cost= n©(¥)

for finding the MPO s.t. |[ps — Mpl[1 < 1/poly(n)

A. Molnar et al., PRB (2015).
Polynomial time complexity as long as 5 = O(1)

Our new algorithm: Computational cost= nexp [@ (\/ﬁ log(n))]
for finding the MPO s.t. |lpg — Mp|1 < 1/poly(n)

Quasi-linear time complexity as long as 8 = o(log(n))
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Imaginary-time evolution v.s.

random walk

Improved thermal area law:
sub-ballistic propagation of entanglement by imaginary time evolution

Rigorously justified? @(52/3)

Toy model: tight-binding model

R
H = ;R(|x><x + 1+ |z 4+ 1) (] = 2[z)(z])

Real-time evolution: ballistic propagation of the particle

Imaginary-time evolution: diffusive propagation of the particle

Schrodinger eq. is formally equivalent to the random walk eq.



Imaginary-time evolution v.s.

random walk

Improved thermal area law:
sub-ballistic propagation of entanglement by imaginary time evolution

Rigorously justified? @(52/3)

Toy model: tight-binding model

R L R
H= > (l2){x+1]+ |z + 1){z| — 2Jz)(z])
r=—R
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Imaginary-time evolution v.s.

random walk

Improved thert .
sub-ballistic prop: HOW to generalize to many-body .,

. ~__Hamiltonian?
Rigorously justifi
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Imaginary-time evolution v.s.

random walk

Polynomial expansion by Sachdeva and Vishnori

Sushant Sachdeva and Nisheeth K. Vishnoi, “Faster Algorithms via Approximation Theory,” Foundations
and Trends® in Theoretical Computer Science 9, 125—210 (2014).

Expanding ¢~ (z € [0,b], b € N) by Chebyshev polynomials
0
b

e 205 = N" P(r)T, (y) =R

ms) P(rp) is constructed from the b-step random walk
P(ry) ~0 for > Vb

e L is well approximated by
O(v/b) -degree polynomial !



Imaginary-time evolution v.s.

random walk

Polynomial expansion by Sachdeva and Vishnori
s Quantum Gibbs state: * = 6H, b= ||fH| = O(n)

and |

- Vb s still too large..., also the approximation holds only in terms of
operator norm

* For the proof, combining several techniques of

Belief propagation, M. B. Hastings, Phys. Rev. B 76, 201102 (2007).

Connection of approximations by general Schatten norms

Refined Schmidt rank estimation, etc., A. Molnar et al., PRB (2015)
Arad et al., arXiv:1301.1162, Anshu et al., STOC (2020),

e_x is well approximated by
O(v/b) -degree polynomial !



Quasi-linear time algorithm: Block

decomposition of Gibbs state

Haah-Hastings-Kohtari-Low (FOCS2018, QIP2019)

Decomposition of the unitary time operator based on the Lieb-Robinson bound

Similar idea for the quantum Gibbs state
Decomposing the Gibbs state as ¢~ — (e—BoH)/B/BO

Bo : sufficiently small such that the imaginary-time Lieb-Robinson bound exists

Approximate e_ﬁoH by product of appropriate polynomials

e P ~ Mg, = Ty (—BoH1) T (BoH1 ) T (—Bo H1.2)) T (BoHz2)) T (— Bo Ha,3)) T (Bo H3)) - -



Quasi-linear time algorithm: Block
decomposition of Gibbs state

e Pt~ Mg, = Ty (—BoH1) Ty (BoH1) Ty (— BoH1,2)) T (BoHz2) ) T (— BoHa,3)) T (Bo H3)) - - -



Quasi-linear time algorithm: Block

decomposition of Gibbs state

Haah-Hastings-Kohtari-Low (FOCS2018, QIP2019)

Decomposition of the unitary time operator based on the Lieb-Robinson bound

Similar idea for the quantum Gibbs state

Decomposing the Gibbs state as ¢ =7 (e—BoH)/B/BO

Bo : sufficiently small such that the imaginary-time Lieb-Robinson bound exists

Approximate e_ﬁoH by product of appropriate polynomials
e oM~ Mg, = T (—=BoH1) Ton (BoH1) T (= Bo H1,2)) Ton (Bo H2) ) T (= Bo Ha,3)) T (Bo H) ) - - -
- Approximation error is estimated by the imaginary-time Lieb-Robinson bound

*Bond dimension is derived by using the technique by Arad-Kitaev-Landau-Vazirani
Arad et al., arXiv:1301.1162

Desired time complexity



Summary

Original thermal area law is improved as
I(L:R),, SBIOL| — I(L:R),, S BY?*0L

Y Y

Sub-ballistic entanglement propagation by imaginary time evolution

Bond dimension for approximation by the MPO is improved as

Sub-linear bond dimension is enough for the approximation

Time complexity for simulating the 1D Gibbs state is improved as

n®B) 5 nexp [@ (\/ﬁlog(n))}

Quasi-linear time algorithm is achieved
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