

Improved thermal area law and quasi-linear time algorithm for quantum Gibbs states

Tomotaka Kuwahara
RIKEN AIP, RIKEN iTHEMS, Keio Univ.
QIP2021, 2nd Feb. (2021)

Joint work with
Alvaro Alhambra (Max Planck Institute), Anurag Anshu (UC Berkley)

arXiv:2007.11174, to appear in Physical Review X

Outline

- Background
- Main results
- Proof techniques

Quantum Gibbs state

- Local Hamiltonian (system size: n , spatial dimension: d)

$$H = \sum_{\langle i,j \rangle} h_{i,j}, \quad \|h_{i,j}\| \leq 1$$

|| · · · ||: operator norm
 $\langle i,j \rangle$: pairs of adjacent spins

- Gibbs state : $\rho_\beta = e^{-\beta H} / \text{tr}(e^{-\beta H})$
- Target : **Efficient simulation of quantum Gibbs states**

→ Classical/Quantum simulation of thermal equilibrium

Verstraete, García-Ripoll and Cirac, PRL (2004). B-B Chen et al., PRX (2018).
M. Motta et al., Nature Physics (2020).

→ Quantum Machine learning

M. H. Amin et al., PRX (2018). Anshu, Arunachalam, Kuwahara and Soleimanifar, FOCS (2020).

→ Exponential speed up of Semidefinite Programming

Brandão and Svore, FOCS (2017). J. V. Apeldoorn et al., FOCS (2017)

High temperatures v.s. Low temperatures

■ Above a temperature threshold

- Clustering property (exponential decay of correlations)

M. Kliesch, et al., PRX (2014). Fröhlich and Ueltschi, J. Math. Phys. (2015).

- Approximate quantum Markov property

→ Efficient classical simulation (existence of FPTAS)

→ Construction by constant-depth quantum circuit

Kuwahara, Kato and Brandao, RRL (2020). M. Soreimanifar et al., STOC2020

■ Low-temperatures

- Computationally hard to simulate

F Barahona, J. Phys. A (1982). Aharonov, Arad, and Vidick ACM SIGACT (2013).

- Low temperature regime is important in practical applications

➡ $\beta = \mathcal{O}(\log(n))$ is required for Semidefinite Programming

Brandão and Svore, FOCS (2017).

High temperatures v.s. Low temperatures

- Above a temperature threshold
 - Clustering property (exponential decay of correlations)

• **What universally hold at low temperatures?**

Kuvala and Brandao, RRL (2020). M. Soreimanifar et al., STOC2020
 - What universally hold at low temperatures?
- Low-temperatures
 - Computationally hard to simulate

F Barahona, J. Phys. A (1982). Aharonov, Arad, and Vidick ACM SIGACT (2013).
 - Low temperature regime is important in practical applications

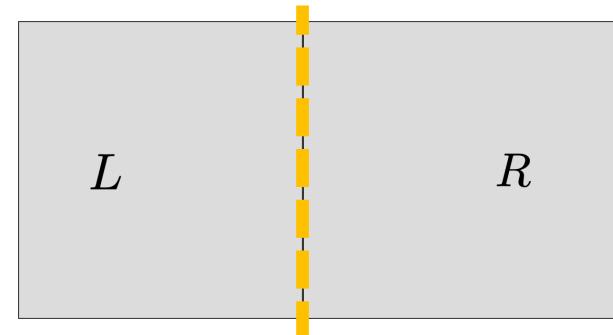
→ $\beta = \mathcal{O}(\log(n))$ is required for Semidefinite Programming

Thermal area law

- Mutual information

$$I(L : R)_{\rho_\beta} := S(\rho_\beta^L) + S_R(\rho_\beta^R) - S(\rho_\beta)$$

$\rho_\beta^L, \rho_\beta^R$: reduced density matrix

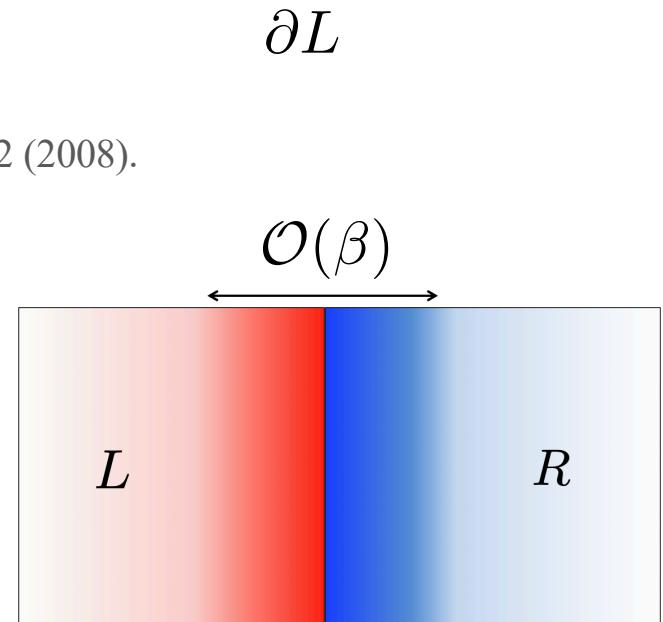


- Thermal Area law: $I(L : R)_{\rho_\beta} \lesssim \beta |\partial L|$

M. M. Wolf et al., Phys. Rev. Lett. **100**, 070502 (2008).

[Remarks]

- Derived from the minimization of the free energy by the quantum Gibbs state
- Quantum correlations spread over distance $\mathcal{O}(\beta)$
- Applicable to arbitrary dimensional systems



Physical interpretation in terms of imaginary time evolution

- Quantum Gibbs state

→ Imaginary time evolution for the uniform mixed state (i.e., $\rho_{\beta=0}$)

$$\rho_{\beta} \propto e^{-\beta H/2} \rho_{\beta=0} e^{-\beta H/2}$$

→ $I(L : R)_{\rho_{\beta}}$: entanglement generation by the imaginary-time evolution

→ $I(L : R)_{\rho_{\beta}} \lesssim \beta |\partial L|$

Entanglement rate is linear for the imaginary time

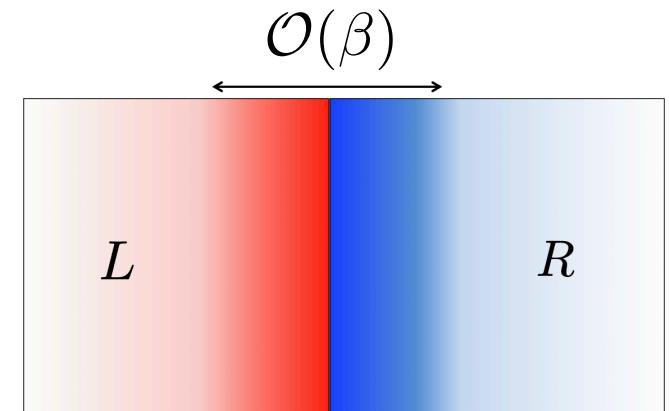
- Real time evolution: entanglement rate is linear

(SIE theorem) K. V. Acoleyen et al., PRL (2013).

- Hastings' quantum belief propagation

→ quantum effect spreads over distance $\mathcal{O}(\beta)$

M. B. Hastings, Phys. Rev. B **76**, 201102 (2007).



Physical interpretation in terms of imaginary time evolution

- Quantum Gibbs

→ Imaginary time

$$\rho_\beta \propto e^{-\beta H / }$$

→ $I(L : R)_{\rho_\beta} :$

→ $I(L : R)_{\rho_\beta} \lesssim \beta |\partial L|$

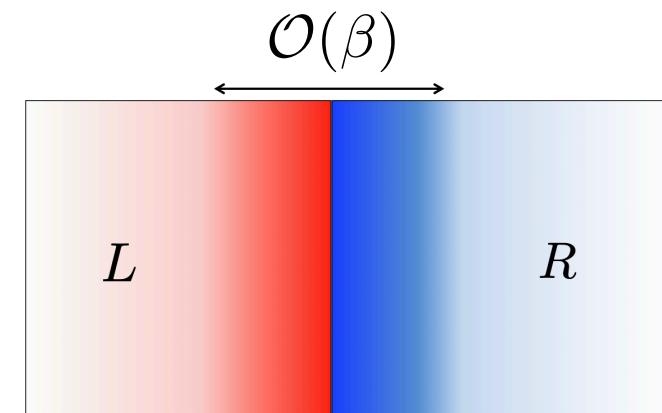
Our result: Entanglement rate is sublinear unlike the real time evolution!

Entanglement rate is linear for the imaginary time

- Real time evolution: entanglement rate is linear (SIE theorem) K. V. Acoleyen et al., PRL (2013).

- Hastings' quantum belief propagation
→ quantum effect spreads over distance $\mathcal{O}(\beta)$

M. B. Hastings, Phys. Rev. B 76, 201102 (2007).



Outline

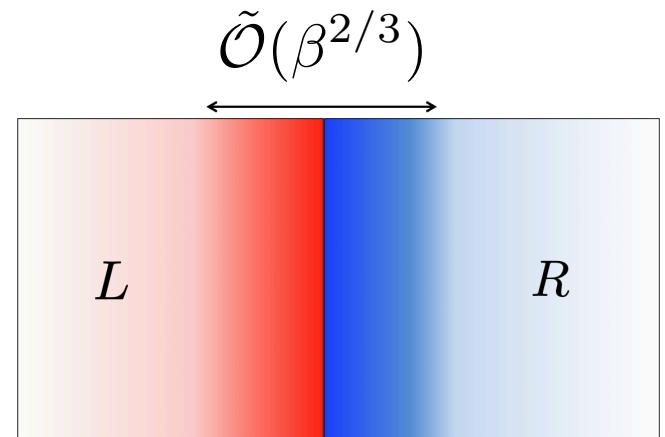
- Background
- Main results
- Proof techniques

Our result

- **Improved thermal area law**

$$I(L : R)_{\rho_\beta} = \tilde{\mathcal{O}}(\beta^{2/3} |\partial L|)$$

$$\tilde{\mathcal{O}}(x) = \mathcal{O}(x \log x)$$



- ➡ Applicable to all the finite-dimensional systems
- ➡ Quantum correlations spread over distance $\tilde{\mathcal{O}}(\beta^{2/3})$
- ➡ It is not clear whether the exponent (2/3) can be further improved.

What is the optimal γ such that $I(L : R)_{\rho_\beta} \lesssim \beta^\gamma |\partial L|$?

- ➡ Gottesman-Hastings example : 1D Gibbs state such that $\gamma \geq 1/5$

$1/5 \leq \gamma \leq 2/3$

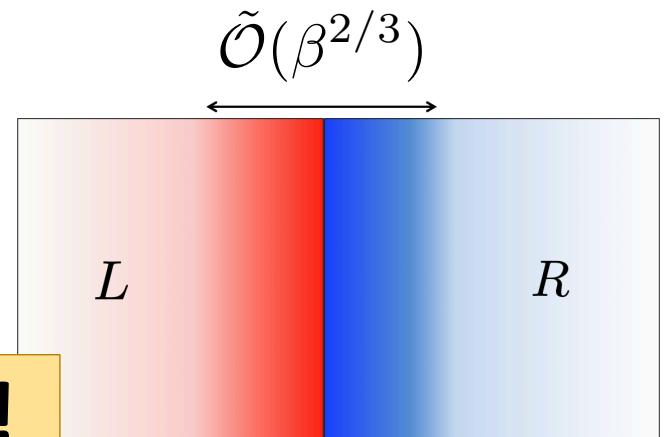
Gottesman and Hastings, NJP (2010).

Our result

- Improved thermal area law

$$I(L : R)_{\rho_\beta} = \tilde{\mathcal{O}}(\beta^{2/3} |\partial L|)$$

$$\tilde{\mathcal{O}}(x) = \mathcal{O}(x \log x)$$



We can get practical implications!

MPO approximation

and

Quasi-linear time algorithm

)

other improved.

What is the optimal γ such that $I(L : R)_{\rho_\beta} \lesssim \beta^\gamma |\partial L|$?

→ Gottesman-Hastings example : 1D Gibbs state such that $\gamma \geq 1/5$

$1/5 \leq \gamma \leq 2/3$

Gottesman and Hastings, NJP (2010).

Our result: MPO approximation by sublinear bond dimension

- Matrix product operator approximation (D : bond dimension)

$$M_D = \sum_{\substack{s_1, s_2, \dots, s_n=1 \\ s'_1, s'_2, \dots, s'_n=1}}^{\varsigma} \text{tr} \left(A_1^{[s_1, s'_1]} A_2^{[s_2, s'_2]} \dots A_n^{[s_n, s'_n]} \right) |s_1, s_2, \dots, s_n\rangle \langle s'_1, s'_2, \dots, s'_n|,$$

ς : dimension of local Hilbert space
 $A_j^{[s_j, s'_j]}$: $D \times D$ matrix

- MPO approximation for 1D quantum Gibbs state**

$$\|\rho_\beta - M_D\|_1 \leq \epsilon \quad \text{if} \quad D = e^{\tilde{\mathcal{O}}(\beta^{2/3}) + \tilde{\mathcal{O}}\left(\sqrt{\beta \log(n/\epsilon)}\right)}$$

- For $\beta = o(\log(n))$, sublinear bond dimension is enough for good approximation
- Better than the state-of-the-art estimation as $D = (n/\epsilon)^{\mathcal{O}(\beta)}$

M.B. Hastings, PRB 73, 085115 (2006).
 M. Kliesch et al., PRX (2014).
 A. Molnar et al., PRB (2015).

Our result: quasi-linear time algorithm

- Existence of MPO approximation and finding it are different problem
 - ➡ (Imaginary TEBD algorithm) truncating the bond dimension iteratively
 Verstraete, García-Ripoll and Cirac, PRL (2004).
 B-B Chen et al., PRX (2018). **No efficiency guarantees!!!**
- Cluster-expansion-based algorithm: Computational cost= $n^{\mathcal{O}(\beta)}$
 for finding the MPO s.t. $\|\rho_\beta - M_D\|_1 \leq 1/\text{poly}(n)$
 A. Molnar et al., PRB (2015).
 - ➡ Polynomial time complexity as long as $\beta = \mathcal{O}(1)$
- **Our new algorithm: Computational cost= $n \exp \left[\tilde{\mathcal{O}} \left(\sqrt{\beta \log(n)} \right) \right]$**
 for finding the MPO s.t. $\|\rho_\beta - M_D\|_1 \leq 1/\text{poly}(n)$
 - ➡ Quasi-linear time complexity as long as $\beta = o(\log(n))$

Outline

- Background
- Main results
- Proof techniques

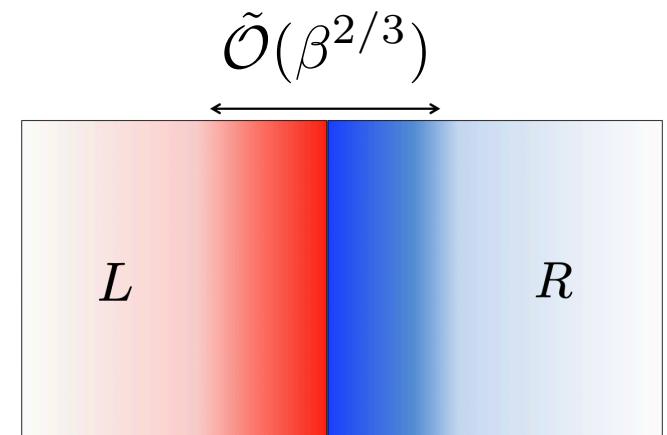
Imaginary-time evolution v.s. random walk

- Improved thermal area law:
sub-ballistic propagation of entanglement by imaginary time evolution

→ Rigorously justified?

- Toy model: tight-binding model

$$H = \sum_{x=-R}^R (|x\rangle\langle x+1| + |x+1\rangle\langle x| - 2|x\rangle\langle x|)$$



→ Real-time evolution: ballistic propagation of the particle

→ Imaginary-time evolution: diffusive propagation of the particle

Schrodinger eq. is formally equivalent to the random walk eq.

Imaginary-time evolution v.s. random walk

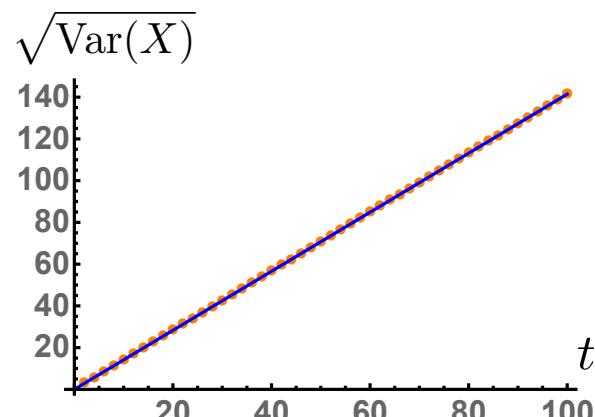
- Improved thermal area law:
sub-ballistic propagation of entanglement by imaginary time evolution

→ Rigorously justified?

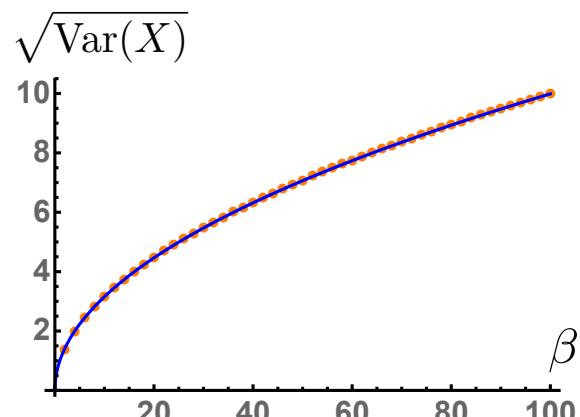
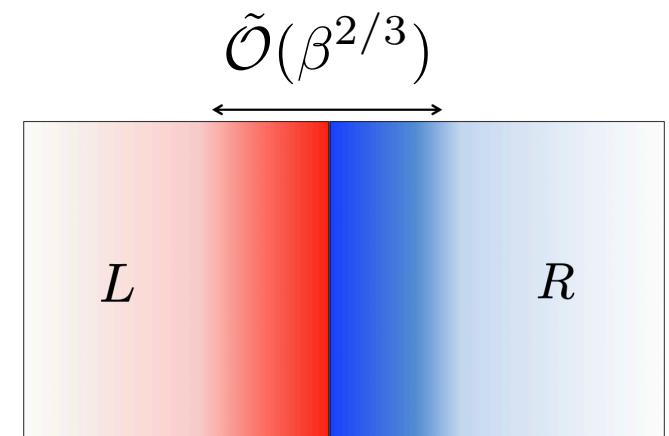
- Toy model: tight-binding model

$$H = \sum_{x=-R}^R (|x\rangle\langle x+1| + |x+1\rangle\langle x| - 2|x\rangle\langle x|)$$

(real time)



(Imaginary time)



Imaginary-time evolution v.s. random walk

- Improved thermalization
sub-ballistic propagation

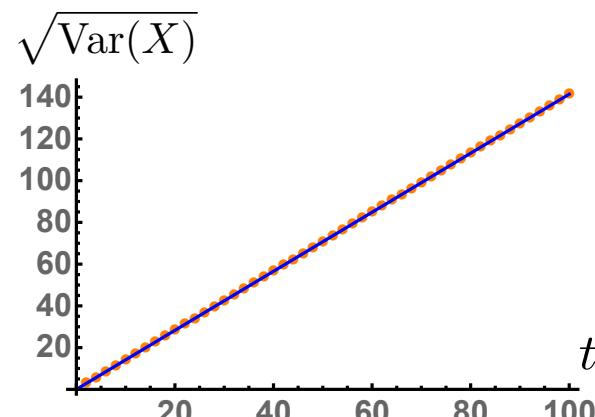
→ Rigorously justified

How to generalize to many-body Hamiltonian?

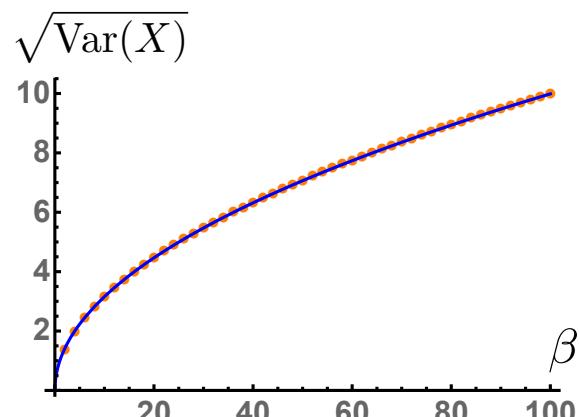
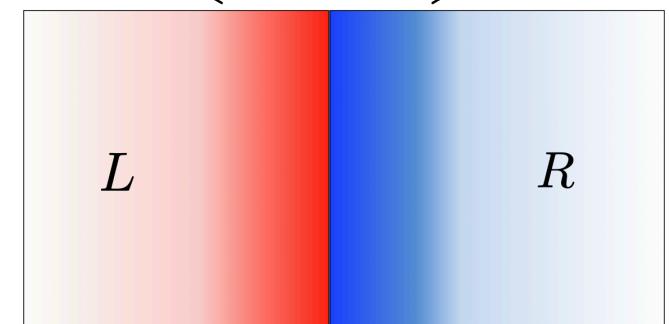
- Toy model: tight-binding model

$$H = \sum_{x=-R}^R (|x\rangle\langle x+1| + |x+1\rangle\langle x| - 2|x\rangle\langle x|)$$

(real time)



(Imaginary time)



Imaginary-time evolution v.s. random walk

- Polynomial expansion by Sachdeva and Vishnori

Sushant Sachdeva and Nisheeth K. Vishnoi, “*Faster Algorithms via Approximation Theory*,” Foundations and Trends® in Theoretical Computer Science **9**, 125– 210 (2014).

→ Expanding e^{-x} ($x \in [0, b]$, $b \in \mathbb{N}$) by **Chebyshev polynomials**

$$\rightarrow e^{-\frac{b}{2}(1+y)} = \sum_{r_b=-\infty}^{\infty} P(r_b) T_{r_b}(y) \quad x = \frac{b(1+y)}{2} \quad (y \in [-1, 1])$$

→ $P(r_b)$ is **constructed from the b-step random walk**

$$P(r_b) \approx 0 \quad \text{for} \quad r_b \gg \sqrt{b}$$

→ e^{-x} is well approximated by
 $\mathcal{O}(\sqrt{b})$ -degree polynomial !

Imaginary-time evolution v.s. random walk

■ Polynomial expansion by Sachdeva and Vishnori

Sush
and

Quantum Gibbs state: $x = \beta H, \quad b = \|\beta H\| = \mathcal{O}(\beta n)$

- \sqrt{b} is still too large..., also the approximation holds only in terms of operator norm
- For the proof, combining several techniques of

Belief propagation, M. B. Hastings, Phys. Rev. B **76**, 201102 (2007).

Connection of approximations by general Schatten norms

Refined Schmidt rank estimation, etc.,

A. Molnar et al., PRB (2015).

Arad et al., arXiv:1301.1162, Anshu et al., STOC (2020),

→ e^{-x} is well approximated by

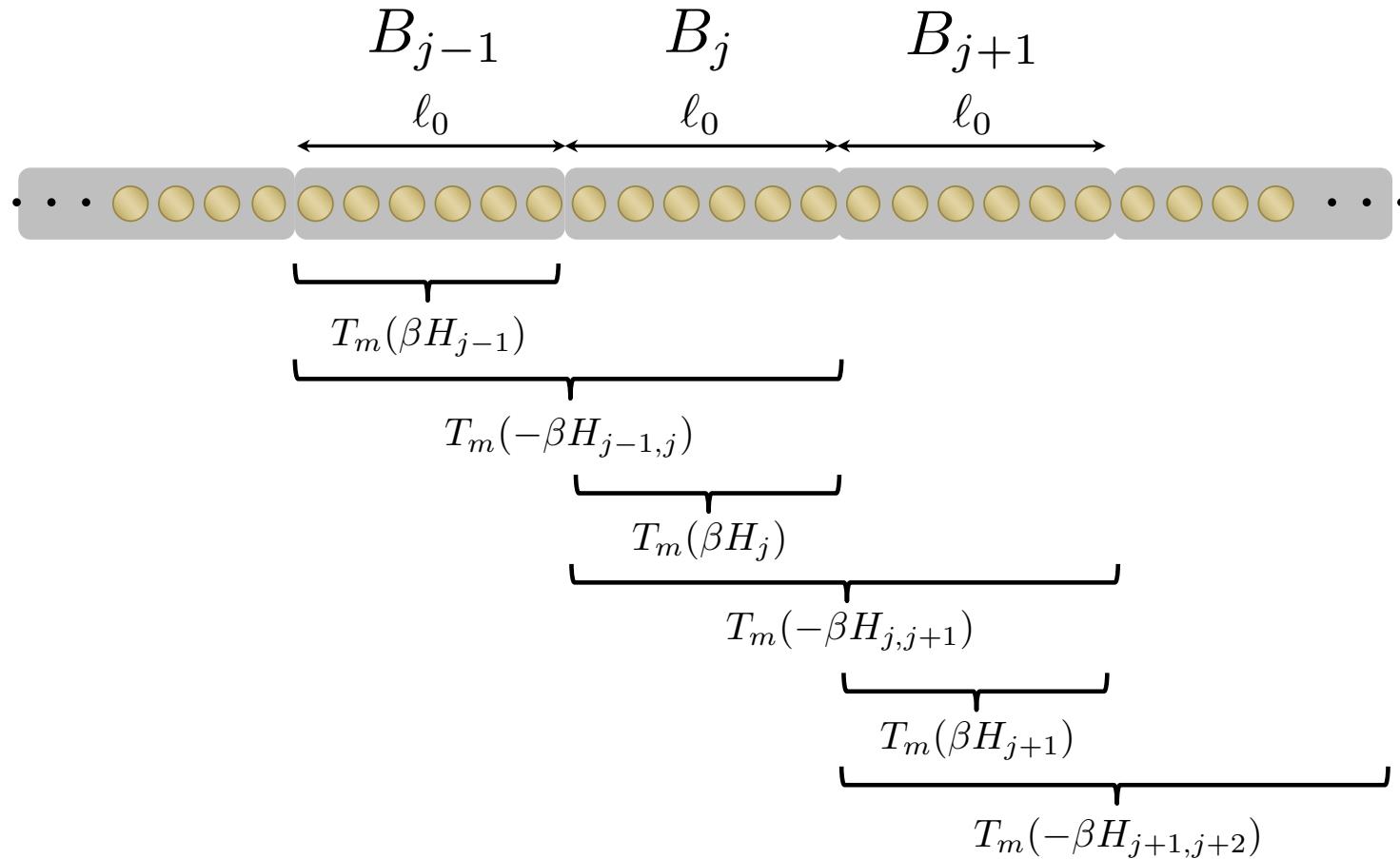
$\mathcal{O}(\sqrt{b})$ -degree polynomial !

Quasi-linear time algorithm: Block decomposition of Gibbs state

- Haah-Hastings-Kohtari-Low (FOCS2018, QIP2019)
 - ➡ Decomposition of the unitary time operator based on the Lieb-Robinson bound
- Similar idea for the quantum Gibbs state
 - ➡ Decomposing the Gibbs state as $e^{-\beta H} = (e^{-\beta_0 H})^{\beta/\beta_0}$
 β_0 : sufficiently small such that the imaginary-time Lieb-Robinson bound exists
 - ➡ Approximate $e^{-\beta_0 H}$ by **product of appropriate polynomials**

$$e^{-\beta_0 H} \approx M_{\beta_0} = T_m(-\beta_0 H_1)T_m(\beta_0 H_1)T_m(-\beta_0 H_{1,2}))T_m(\beta_0 H_2))T_m(-\beta_0 H_{2,3}))T_m(\beta_0 H_3)) \cdots$$

Quasi-linear time algorithm: Block decomposition of Gibbs state



$$e^{-\beta_0 H} \approx M_{\beta_0} = T_m(-\beta_0 H_1) T_m(\beta_0 H_1) T_m(-\beta_0 H_{1,2}) T_m(\beta_0 H_2) T_m(-\beta_0 H_{2,3}) T_m(\beta_0 H_3) \cdots$$

Quasi-linear time algorithm: Block decomposition of Gibbs state

- Haah-Hastings-Kohtari-Low (FOCS2018, QIP2019)
 - ➡ Decomposition of the unitary time operator based on the Lieb-Robinson bound
- Similar idea for the quantum Gibbs state
 - ➡ Decomposing the Gibbs state as $e^{-\beta H} = (e^{-\beta_0 H})^{\beta/\beta_0}$
 β_0 : sufficiently small such that the imaginary-time Lieb-Robinson bound exists
 - ➡ Approximate $e^{-\beta_0 H}$ by **product of appropriate polynomials**
- $$e^{-\beta_0 H} \approx M_{\beta_0} = T_m(-\beta_0 H_1)T_m(\beta_0 H_1)T_m(-\beta_0 H_{1,2}))T_m(\beta_0 H_2))T_m(-\beta_0 H_{2,3}))T_m(\beta_0 H_3)) \cdots$$
 - Approximation error is estimated by **the imaginary-time Lieb-Robinson bound**
 - Bond dimension is derived by using **the technique by Arad-Kitaev-Landau-Vazirani**
 Arad et al., arXiv:1301.1162
 - ➡ Desired time complexity

Summary

- Original thermal area law is improved as

$$I(L : R)_{\rho_\beta} \lesssim \beta |\partial L| \rightarrow I(L : R)_{\rho_\beta} \lesssim \beta^{2/3} |\partial L|$$

Sub-ballistic entanglement propagation by imaginary time evolution

- Bond dimension for approximation by the MPO is improved as

$$D = (n/\epsilon)^{\mathcal{O}(\beta)} \rightarrow D = e^{\tilde{\mathcal{O}}(\beta^{2/3}) + \tilde{\mathcal{O}}(\sqrt{\beta \log(n/\epsilon)})}$$

Sub-linear bond dimension is enough for the approximation

- Time complexity for simulating the 1D Gibbs state is improved as

$$n^{\mathcal{O}(\beta)} \rightarrow n \exp \left[\tilde{\mathcal{O}} \left(\sqrt{\beta \log(n)} \right) \right]$$

Quasi-linear time algorithm is achieved

Thank you for listening