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¡ Background

¡ Main results

¡ Proof techniques
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¡ Local Hamiltonian (system size：n , spa8al dimension: d )

¡ Gibbs state :

¡ Target : Efficient simula.on of quantum Gibbs states 
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k · · · k: operator normH =
X

hi,ji

hi,j , khi,jk  1

hi, ji: pairs of adjacent spins

Classical/Quantum simula8on of thermal equilibrium

Quantum Machine learning 

⇢� = e��H/tr(e��H)

Exponen8al speed up of Semidefinite Programming  

B-B Chen et al., PRX (2018). 

M. H. Amin et al., PRX (2018).    Anshu, Arunachalam, Kuwahara and Soleimanifar, FOCS (2020). 

Brandão and Svore, FOCS (2017).     J. V. Apeldoorn et al., FOCS (2017) 

Verstraete, García-Ripoll and Cirac, PRL (2004). 
M. Motta et al., Nature Physics (2020).



¡ Above a temperature threshold

¡ Low-temperatures
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・Clustering property (exponen8al decay of correla8ons)

・Approximate quantum Markov property
→ Efficient classical simula/on (existence of FPTAS)
→ Construc/on by constant-depth quantum circuit

M. Kliesch, et al., PRX  (2014).   Fröhlich and Ueltschi, J. Math. Phys. (2015).  

Kuwahara, Kato and Brandao, RRL (2020).   M. Soreimanifar et al., STOC2020

・Computa8onally hard to simulate

・Low temperature regime is important in prac8cal applica8ons 

F Barahona, J. Phys. A (1982).   Aharonov, Arad, and Vidick ACM SIGACT (2013).

is required for Semidefinite Programming  
Brandão and Svore, FOCS (2017).    

� = O(log(n))
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What universally hold at low 
temperatures?



¡ Mutual informa8on

¡ Thermal Area law: 
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@L

I(L : R)⇢� := S(⇢L� ) + SR(⇢
R
� )� S(⇢�)

⇢L� , ⇢
R
� : reduced density matrix

M. M. Wolf et al.,  Phys. Rev. Lett. 100, 070502 (2008).

I(L : R)⇢� . �|@L|I(L : R)⇢� . �|@L|I(L : R)⇢� . �|@L|

・Derived from the minimiza/on of the free energy 
by the quantum Gibbs state

・Applicable to arbitrary dimensional systems

・Quantum correla/ons spread over distance 

O(�)[Remarks]

O(�)



¡ Quantum Gibbs state  
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O(�)

Imaginary /me evolu/on for the uniform mixed state (i.e.,            )

⇢� / e��H/2⇢�=0e
��H/2

⇢�=0

I(L : R)⇢� : entanglement generation by the imaginary-time evolution

I(L : R)⇢� . �|@L|

Entanglement rate is linear for the imaginary /me

・Has/ngs’ quantum belief propaga/on
→quantum effect spreads over distance  

・Real /me evolu/on: entanglement rate is linear
(SIE theorem) K. V. Acoleyen et al., PRL (2013). 

O(�)

M. B. Hastings, Phys. Rev. B 76, 201102 (2007).



¡ Quantum Gibbs state  
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O(�)

Imaginary /me evolu/on for the uniform mixed state (i.e.,            )

⇢� / e��H/2⇢�=0e
��H/2

⇢�=0

I(L : R)⇢� : entanglement generation by the imaginary-time evolution

I(L : R)⇢� . �|@L|

Entanglement rate is linear for the imaginary /me

・Has/ngs’ quantum belief propaga/on
→quantum effect spreads over distance  

・Real /me evolu/on: entanglement rate is linear
(SIE theorem) K. V. Acoleyen et al., PRL (2013). 

O(�)

M. B. Hastings, Phys. Rev. B 76, 201102 (2007).

Our result: Entanglement rate is 
sublinear unlike the real ;me 
evolu;on! 



¡ Background

¡ Main results

¡ Proof techniques
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¡ Improved thermal area law 
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Applicable to all the finite-dimensional systems

I(L : R)⇢� = Õ(�2/3
|@L|)

Quantum correla/ons spread over distance Õ(�2/3)

Õ(�2/3)

It is not clear whether the exponent (2/3) can be further improved.

What is the op/mal       such that                                              ? 

Gottesman and Hastings, NJP (2010).

GoXesman-Has/ngs example : 1D Gibbs state such that 

� I(L : R)⇢� . �� |@L|

� � 1/5

1/5  �  2/31/5  �  2/31/5  �  2/3

Õ(x) = O(x log x)



¡ Improved thermal area law 

11

Applicable to all the finite-dimensional systems

I(L : R)⇢� = Õ(�2/3
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It is not clear whether the exponent (2/3) can be further improved.

What is the op/mal       such that                                              ? 

Gottesman and Hastings, NJP (2010).

GoXesman-Has/ngs example : 1D Gibbs state such that 

� I(L : R)⇢� . �� |@L|

� � 1/5

1/5  �  2/31/5  �  2/31/5  �  2/3

Õ(x) = O(x log x)

We can get prac;cal implica;ons!
MPO approxima;on
and
Quasi-linear ;me algorithm 



¡ Matrix product operator approxima8on (D: bond dimension)

¡ MPO approxima.on for 1D quantum Gibbs state 
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For                         , sublinear bond dimension is enough for good approxima/on 

MD =
&X

s1,s2,...,sn=1
s01,s

0
2,...,s

0
n=1

tr
⇣
A

[s1,s
0
1]

1 A
[s2,s

0
2]

2 · · ·A[sn,s
0
n]

n

⌘
|s1, s2, . . . , snihs01, s02, . . . , s0n|,

&: dimension of local Hilbert space

k⇢� �MDk1  ✏ if D = e
Õ(�2/3)+Õ

⇣p
� log(n/✏)

⌘

� = o(log(n))

BeXer than the state-of-the-art es/ma/on as 
M.B. Hastings, PRB 73, 085115 (2006). 
M. Kliesch et al., PRX (2014). 
A. Molnar et al., PRB (2015). 

D = (n/✏)O(�)

A
[sj ,s

0
j ]

j : D ⇥D matrix



¡ Existence of MPO approxima8on and finding it are different 
problem 

¡ Cluster-expansion-based algorithm:  Computa8onal cost=

for finding the MPO s.t.

¡ Our new algorithm: Computa.onal cost=

for finding the MPO s.t.
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(Imaginary TEBD algorithm) trunca/ng the bond dimension itera/vely

A. Molnar et al., PRB (2015). 

No efficiency guarantees!!!Verstraete, García-Ripoll and Cirac, PRL (2004). 
B-B Chen et al., PRX (2018). 

k⇢� �MDk1  1/poly(n)

nO(�)

Polynomial /me complexity as long as � = O(1)

n exp
h
Õ

⇣p
� log(n)

⌘i
n exp

h
Õ

⇣p
� log(n)

⌘i
n exp

h
Õ

⇣p
� log(n)

⌘i

k⇢� �MDk1  1/poly(n)k⇢� �MDk1  1/poly(n)k⇢� �MDk1  1/poly(n)

Quasi-linear /me complexity as long as � = o(log(n))
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¡ Improved thermal area law: 
sub-ballis8c propaga8on of entanglement by imaginary 8me evolu8on

¡ Toy model: 8ght-binding model
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Õ(�2/3)Rigorously jus/fied?

H =
RX

x=�R

(|xihx+ 1|+ |x+ 1ihx|� 2|xihx|)

Real-/me evolu/on: ballis/c propaga/on of the par/cle 

Imaginary-/me evolu/on: diffusive propaga/on of the par/cle 

Schrodinger eq. is formally equivalent to the random walk eq. 



¡ Improved thermal area law: 
sub-ballis8c propaga8on of entanglement by imaginary 8me evolu8on

¡ Toy model: 8ght-binding model
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Rigorously jus/fied?

H =
RX

x=�R

(|xihx+ 1|+ |x+ 1ihx|� 2|xihx|)

�

p
Var(X)
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How to generalize to many-body 
Hamiltonian?  



¡ Polynomial expansion by Sachdeva and Vishnori
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Sushant Sachdeva and Nisheeth K. Vishnoi, “Faster Algorithms via Approximation Theory,” Foundations 
and Trends® in Theoretical Computer Science 9, 125– 210 (2014). 

Expanding                                                  by Chebyshev polynomialse�x (x 2 [0, b], b 2 N)

x =
b(1 + y)

2
(y 2 [�1, 1])e�

b
2 (1+y) =

1X

rb=�1
P (rb)Trb(y)

is well approximated by

-degree polynomial !
e�x

O(
p

b)

is constructed from the b-step random walkP (rb)

P (rb) ⇡ 0 for rb �
p
b



¡ Polynomial expansion by Sachdeva and Vishnori
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Sushant Sachdeva and Nisheeth K. Vishnoi, “Faster Algorithms via Approximation Theory,” Foundations 
and Trends® in Theoretical Computer Science 9, 125– 210 (2014). 

Expanding                                                  by Chebyshev polynomialse�x (x 2 [0, b], b 2 N)

x =
b(1 + y)

2
(y 2 [�1, 1])e�

b
2 (1+y) =

1X

rb=�1
P (rb)Trb(y)

P (rb) : strongly concentrated around rb ⇡
p
b

Quantum Gibbs state:

・ is s/ll too large…, also the approxima/on holds only in terms of 
operator norm

・ For the proof, combining several techniques of

Belief propaga/on, 
Connec/on of approxima/ons by general SchaXen norms
Refined Schmidt rank es/ma/on,   etc., 

x = �H, b = k�Hk = O(�n)
p
b

M. B. Hastings, Phys. Rev. B 76, 201102 (2007).

A. Molnar et al., PRB (2015). 

Arad et al., arXiv:1301.1162, Anshu et al., STOC (2020), 

is well approximated by

-degree polynomial !
e�x

O(
p

b)



¡ Haah-Has8ngs-Kohtari-Low (FOCS2018, QIP2019)

¡ Similar idea for the quantum Gibbs state
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Decomposi/on of the unitary /me operator based on the Lieb-Robinson bound 

Decomposing the Gibbs state as e��H =
�
e��0H

��/�0

�0 : sufficiently small such that the imaginary-2me Lieb-Robinson bound exists

Approximate                  by product of appropriate polynomials  

e
��0H ⇡ M�0 = Tm(��0H1)Tm(�0H1)Tm(��0H1,2))Tm(�0H2))Tm(��0H2,3))Tm(�0H3)) · · ·

e��0H
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`0

· · · · · ·

Tm(�Hj)

Tm(��Hj,j+1)

Tm(�Hj+1)

Tm(��Hj+1,j+2)

`0 `0

Bj Bj+1Bj�1

Tm(��Hj�1,j)

Tm(�Hj�1)

e
��0H ⇡ M�0 = Tm(��0H1)Tm(�0H1)Tm(��0H1,2))Tm(�0H2))Tm(��0H2,3))Tm(�0H3)) · · ·



¡ Haah-Has8ngs-Kohtari-Low (FOCS2018, QIP2019)

¡ Similar idea for the quantum Gibbs state
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Decomposi/on of the unitary /me operator based on the Lieb-Robinson bound 

Decomposing the Gibbs state as e��H =
�
e��0H

��/�0

Approximate                  by product of appropriate polynomials  e��0H

e
��0H ⇡ M�0 = Tm(��0H1)Tm(�0H1)Tm(��0H1,2))Tm(�0H2))Tm(��0H2,3))Tm(�0H3)) · · ·

・Approxima5on error is es5mated by the imaginary-5me Lieb-Robinson bound

・Bond dimension is derived by using the technique by Arad-Kitaev-Landau-Vazirani
Arad et al., arXiv:1301.1162

Desired /me complexity

�0 : sufficiently small such that the imaginary-2me Lieb-Robinson bound exists
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¡ Original thermal area law is improved as

¡ Bond dimension for approxima8on by the MPO is improved as 

¡ Time complexity for simula8ng the 1D Gibbs state is improved as

I(L : R)⇢� . �|@L| ! I(L : R)⇢� . �2/3|@L|
Sub-ballis5c entanglement propaga5on by imaginary 5me evolu5on

D = (n/✏)O(�) ! D = e
Õ(�2/3)+Õ

⇣p
� log(n/✏)

⌘

Sub-linear bond dimension is enough for the approxima5on

nO(�)
! n exp

h
Õ

⇣p
� log(n)

⌘i

Quasi-linear 5me algorithm is achieved
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