The XZZX surface code
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We show that a variant of the surface code—the XZZX code—offers remarkable performance
for fault-tolerant quantum computation. The error threshold of this code matches what can
be achieved with random codes (hashing) for every single-qubit Pauli noise channel; it is the
first explicit code shown to have this universal property. We present numerical evidence that
the threshold even exceeds this hashing bound for an experimentally relevant range of noise
parameters. Focusing on the common situation where qubit dephasing is the dominant noise,
we show that this code has a practical, high-performance decoder and surpasses all previously
known thresholds in the realistic setting where syndrome measurements are unreliable. We
go on to demonstrate the favorable sub-threshold resource scaling that can be obtained
by specializing a code to exploit structure in the noise. We show that it is possible to
maintain all of these advantages when we perform fault-tolerant quantum computation. We
finally suggest some small-scale experiments that could exploit noise bias to reduce qubit
overhead in two-dimensional architectures. The complete version of this paper can be found
at arXiv:2009.07851.

Background

A large-scale quantum computer must be able to reliably process data encoded in a nearly noiseless
quantum system. To build such a quantum computer using physical qubits that experience errors
from noise and faulty control, we require an architecture that operates fault-tolerantly [1, 18, 20, 29,
using quantum error correction to repair errors that occur throughout the computation. We do not
know the best way to realize a scalable quantum computer, nor do we have good bounds on the
optimal performance that is achievable with a quantum fault-tolerant architecture.

The discovery of the surface code [5, 7, 19] heralded very high thresholds compared with other
families of codes [29]. Moreover, it was shown quickly that it could be decoded efficiently using
minimum-weight perfect matching [9, 21|, and that the thresholds obtained with this decoder
were near optimal [7] for commonly studied noise models such as independent and identically
distributed bit-flip noise. Furthermore, this decoder generalized readily to the fault-tolerant case
where measurements were unreliable |7, 36|, with near-optimal thresholds [22, 26] also obtained
with respect to a phenomenological noise model. It was shown [28] that a threshold near to 1% is
obtained with respect to the gate error model using the minimum-weight perfect-matching algorithm
where the circuit to measure the stabilizers is simulated, and errors are introduced with probability
p by each circuit element. Beyond this original work, ongoing progress [11-13] has not demonstrated
significant improvements in the threshold.

In this paper, we introduce and analyze a variant of the surface code that dramatically improves
over this state of the art. Our main result is a highly efficient fault-tolerant architecture design that
exploits the common structures in the noise experienced by physical qubits. Our central tool is a
tailored version of the surface code [5, 7, 19] where the stabilizer checks are given by the product
XZZX of Pauli operators across each face on a square lattice [37]. This seemingly innocuous local
change of basis offers a number of significant advantages over its more conventional counterpart for
structured noise models that deviate from depolarizing noise.

Overcoming the hashing bound

We first consider preserving a logical qubit in a quantum memory using this XZZX code. While
some 2D codes have been shown to have high error thresholds for certain types of biased noise [24, 33|,
we find that the XZZX code gives exceptional thresholds for all single-qubit Pauli noise channels,
matching what is known to be achievable with random coding [4], [38, Theorem 24.6.2]. It is
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FIG. 1: (a) Optimal code-capacity threshold estimates for surface code variants over all single-qubit Pauli
channels. Threshold estimates are found using approximate maximum-likelihood decoding for the XZZX
code. The gray triangle represents a parametrization of all single-qubit Pauli channels, where the center
corresponds to depolarizing noise, the labeled vertices correspond to pure X and Z noise, and the third
vertex corresponds to pure Y noise. For the XZZX code, estimates closely match or exceed the hashing
bound (not shown) for all single-qubit Pauli channels. (b) Phenomenological threshold error rates using our
matching decoder for the XZZX code as a function of noise bias 1, where the measurement error rate g is
defined in the main text. The results found using our matching decoder for the XZZX code experiencing
Pauli-Z biased noise (blue) are compared with the results found using the matching decoder presented in
Ref. [34] experiencing Pauli-Y biased noise for the CSS surface code (red). Equivalent results to the red points
are obtained with Pauli-Z biased noise using the tailored code of Ref. [33]. The XZZX code significantly
outperforms the CSS code for all noise biases with both noise models. The gray line shows the threshold
found using a conventional matching decoder for the CSS surface code for the phenomenological noise model
where bit-flip and dephasing errors are decoded independently as in Ref. [36].

particularly striking that the XZZX code can match the threshold performance of a random code,
for any single-qubit Pauli error model, while retaining the practical benefits of local stabilizers
and an efficient decoder. Intriguingly, for noise that is strongly biased towards X or Z, we have
numerical evidence to suggest that the XZZX threshold ezceeds this random coding (hashing)
bound, meaning it can correct errors when the noise entropy per qubit exceeds one bit. Thus,
this code could potentially provide a practical demonstration of the superadditivity of coherent
information |3, 8, 10, 30, 31].

An important lesson we learn from the example we present is that thresholds can be substantially
improved by specializing the quantum error-correcting code to the noise the system experiences.
Indeed, using the results of Ref. [27], it is reasonable to anticipate that highly biased noise will
remain physically relevant even when using circuits that perform basis-changing gates such as CNOT
without having to use the special methods of Ref. [2].

Low-overhead quantum computation

For a fault-tolerant architecture to be practical, it will need to correct for physically relevant errors
with only a modest overhead. That is, quantum error correction can be used to create near-perfect
logical qubits if the rate of relevant errors on the physical qubits is below some threshold, and
a good architecture should have a sufficiently high threshold to be achievable in practice. These
fault-tolerant designs should also be efficient, using a reasonable number of physical qubits to achieve
the desired logical error rate. The most common architecture for fault-tolerant quantum computing
is based on the surface code [12]|. It offers thresholds against depolarizing noise that are already



high, and encouraging recent results have shown that its performance against more structured
noise can be considerably improved by tailoring the code to the noise model [32-35, 39]. While the
surface code has already demonstrated promising thresholds, its overheads are daunting [12, 14]. For
fault-tolerant quantum computing to become practical, we need to design architectures that provide
high thresholds against relevant noise models while minimizing overheads through efficiencies in
physical qubits and logic gates.

We show that the high thresholds demonstrated with the XZZX code persist with efficient,
practical decoders, by using a generalization of a matching decoder in the regime where dephasing
noise is dominant. In the fault-tolerant setting when stabilizer measurements are unreliable, we
obtain thresholds in the biased-noise regime that surpass all previously known thresholds.

Once we have qubits and operations that perform below the threshold error rate, the practicality
of scalable quantum computation is determined by the overhead, i.e., the number of physical qubits
we need to obtain a target logical failure rate. Along with offering high thresholds against structured
noise, we show that architectures based on the XZZX code require very low overhead to achieve a
given target logical failure rate. We consider a biased noise model, where dephasing errors occur
more frequently than other errors, by a factor 7. In general, for large system sizes and low error
rates p with noise bias 7, the logical failure rate scales like O((p//7)%?), where d is the distance of
the code. This improves the logical failure rate by a factor of ~ n‘d/ 4 meaning we can achieve a
target logical failure rate using considerably fewer qubits at large bias. We also show that near-term
devices, i.e., small sized systems with error rates near to threshold, the logical failure rate has a
quadratically improved scaling with code distance, as O(de/ 2). This scaling has been demonstrated
at infinite bias with a tailored surface code in prior work [35]. Thus, we should expect to achieve
low logical failure rates using a modest number of physical qubits for experimentally plausible values
of the noise bias where, say 10 S n < 1000 [15, 23].

Finally, we consider fault-tolerant quantum computation with biased noise [2, 16, 27|, and we
show that the advantages of the XZZX code persist in this context. We show how to implement
low-overhead fault-tolerant Clifford gates by taking advantage of the noise structure as the XZZX
code undergoes measurement-based deformations [6, 17, 25]. With an appropriate lattice orientation,
noise with bias 7 is shown to yield a reduction in the required number of physical qubits by a factor
of ~logn in a large-scale quantum computation. These advantages already manifest at code sizes
attainable using present-day quantum devices.

Why QIP?

This paper will appeal to the broad QIP audience for several reasons. First, it offers a surprising
connection to quantum Shannon theory by providing an example of a practical code family that seems
to exceed the hashing bound for a significant regime of the parameter space we examine. Moreover, its
thresholds approximately meet the hashing bound “universally”, for every single-qubit Pauli channel.
Second, it gives a huge “best yet” parameter improvement to the phenomenological noise threshold
for a quantum memory. In the practical range of noise biases (around 10 < 1 < 1000 [15, 23]), the
threshold is around 6%-8%, a remarkable improvement over numbers that have been essentially
stagnant for a decade. Third, the code itself is an almost shockingly trivial modification of existing
mainstream code ideas. This means that the ideas are easily accessible to the broad audience, and
it offers the tantalizing promise that inspired audience members can find similarly low-hanging fruit
by using the simple design principles. Lastly, by showing that the XZZX code reduces the overhead
for fault-tolerant quantum computation by a factor of ~ logn and the logical failure rate by a factor
of ~ n%*, these results are likely to be of practical relevance in the near future.
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