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Scaling quantum computers
To scale a quantum computer we must:

Control a large number of qubits below threshold as they perform
repeated stabilizer measurements!:?
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Furthermore, there is a huge overhead cost to perform
fault-tolerant quantum logic operations.’
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Scaling quantum computers

Cat qubits * 5 (that experience highly biased noise) have been

proposed as high-quality qubits (with bias preserving gates © ) for

surface code implementations®.
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The XZZX surface code

The XZZX surface code? is locally equivalent to the standard
surface code!®
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The XZZX surface code

... except every other qubit is rotated by a hadamard gate.
(the green qubits are rotated)




The XZZX surface code
The XZZX code demonstrates:

» Thresholds that match the hashing bound for all uniform
single-qubit Pauli noise channels.

> Exceptionally high fault-tolerant thresholds for biased noise
models

» Reduced overheads (by a factor O (1/17d/4)) at low error rates
and high bias n

» We also argue that we can maintain these advantages while
performing computation
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Error correction with the surface code

We use stabilizers to measure (Pauli) errors E.
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On the surface code, errors appear as strings, and defects appear
in pairs at their endpoints®!.

This can be viewed as a defect parity conservation law'?:13.
'E. Dennis et al., J. Math. Phys. 43, 4452 (2002)

127 Kitaev, Ann. Phys. 303, 2 (2003)

13BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)




Symmetries and conservation laws

MWPM is possible because the surface code respects a defect
14,15

conservation symmetry

Mathematically, the symmetry is apparent in the stabilizer group
[[A=1 = J]a =1
v v

(ay = %1 eigenvalues of stabilizers A, . )

= #v with a, = —1 is even = defect conservation (mod2)

E. Dennis et al., J. Math. Phys. 43, 4452 (2002)
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A symmetry with respect to Pauli-Z errors'® 7

We find a richer space of symmetries if we restrict our error model.

Pauli-Z errors commute with the product of stabilizers along the
diagonal and therefore respect a 1D symmetry on the XZZX code.

Decoding Z errors is therefore equivalent to decoding the
repetition code (50% threshold).

1*BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)
D, K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)



Symmetries for all Pauli errors!®: 1

The XZZX code has many symmetries for other error models.

The XZZX code has symmetries with respect to Pauli-X errors
along perpendicular diagonals to those for Pauli-Z errors.

Pauli-Y errors have the same symmetry as the CSS surface code
(we exploited these symmetries in earlier work)

¥BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)
9D, K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)



High threshold error rates

The XZZX code has a threshold that matches the zero-rate
hashing bound for all uniform single-qubit Pauli channels.
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Threshold error rate: p.
Threshold error rate: p,

R=k/n>1— H(p), (1)
H(p) - Shannon entropy.

P = (px, py, pz) with po the probability that Pauli error O occurs.

R - rate with R = 0 the zero-rate hashing bound.



Numerics exceeding hashing

At high bias, our numerics demonstrate a threshold above the
zero-rate hashing bound
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See also other work on exceeding hashing for instance??:21:22
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ZLG. Smith and J. Smolin, Phys. Rev. Lett. 98, 030501 (2007)
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Exceeding hashing

A zero-rate code with a threshold above hashing implies we can
send information at non-zero rate with p above hashing.

We need the following:
> A finite rate code Rout = Kout/Nout > 0
» An inner code of constant size N, with threshold pi,. > pnb.

Concatenating gives a family of codes with rate:
R = Rout/Nim > 0. (2)

using qubits with ppp. < p < pgn. for some constant Nyy,.



Numerics exceeding hashing

We also exceed hashing with a suboptimal matching decoder
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We achieved this using XZZX codes with different boundary
conditions.

The high-speed matching decoder allows us to probe very large
system sizes



Fault-tolerant thresholds with biased noise

Matching decoders generalise readily to the fault-tolerant
setting.

3

23, 24, 25

(c) ’ .

Threshold error rate: p.

0.10 greeee

0.09
0.08
0.07
0.06
0.05
0.04
0.03

0.02 =

o XZZX *
+ CSS =
Standard decoder he
-
-
-
- -+ *
-+
- *
-
+
+ & *
Ll i o 0 A
10° 10" 10? 10® o0
Bias: 7

We find exceptional fault-tolerant thresholds for the XZZX code
under phenomenological biased noise.
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Logical failure rates below threshold

We need a low logical failure rate P
with a small number of qubits n.

At low error rate p we can generically achieve

P~ p/? (3)

To leading order, this is the probability of d/2 errors occurring.

§®%

The surface code uses n = O(d?) qubits.



Logical failure rates below threshold

We can choose an XZZX code with a weight n Pauli-Z logical.

At infinite bias?®, we can expect a logical failure rate like
P ~ p"2.

... but what happens at finite bias?

%D, Tuckett et al. Phys. Rev. X 9, 041031 (2019)



Logical failure rates below threshold

In practice we find errors of
d/4 low rate errors
and d/4 high rate errors.

B d/4 1 d/4
P~ pd/4 % (B) _ (_) pd/2'
—~— n n
d/4 high S>—~— N——
rate errors d/4 low factor
rate errors of

improvement

(5)



Logical failure rates below threshold

We test the ansatz at low p using the splitting method?”28
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Logical failure rates below threshold

For small n and high bias we identify signatures of pd2 logical
failure rate scaling
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(in other words, at moderate p and small-ish n)



Logical failure rates below threshold
It is favourable to find codes with open boundary conditions.

Changing the lattice geometry means we have logical failure rates

like
. p dx /2 o
Px ~ (-) and Pz~ p%/2, (8)
n
at low p.
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We can therefore save resources by choosing small dx
without compromising Pz.



Fault-tolerant quantum computation

29,30

We can perform computations using code deformations , e.8.,

Braiding twists3!:32
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Lattice surgery33
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Fault-tolerant quantum computation

We can maintain these advantages undergoing fault-tolerant
quantum computation3*.
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The one-dimensional symmetries we need for high thresholds are
maintained under initialisation and XZZX codes with twists.

%D, Litinski, Quantum 3, 128 (2019)



Forthcoming work:

XZZX thresholds with cat qubit

Logical error rate
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Outlook

We have shown the XZZX code:

> has threshold error rates that match hashing
» has exceptionally high fault-tolerant thresholds
» significantly reduced resource costs below threshold

» can maintain its performance during computational operations




Outlook

Our work raises questions in several areas, such as:

» Have we really exceeded the hashing bound?
» How do we specialise codes for a given noise model in general?

» What is the potential for non-CSS codes?




Backup slide: Different geometries

Previous work3® has shown negligible difference in logical error

rates against bit-flip noise for modest p as a function of number of
qubits n.
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