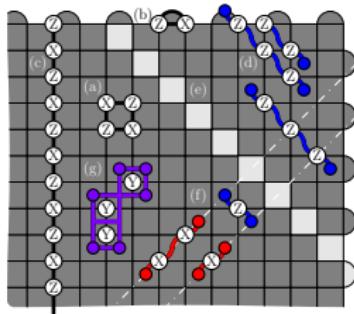
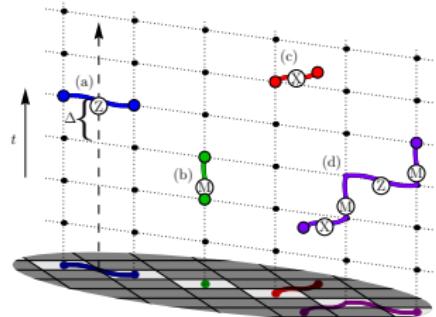


The XZZX surface code

Benjamin J. Brown

arXiv:2009.07851

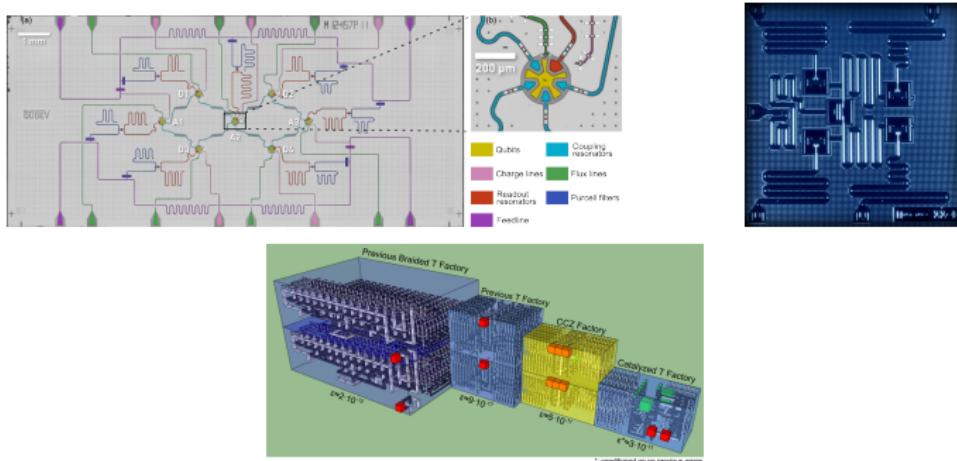


With thanks to my coauthors:
J. Pablo Bonilla Ataides,
David K. Tuckett,
Stephen D. Bartlett
and Steven T. Flammia

Scaling quantum computers

To scale a quantum computer we must:

Control a large number of qubits below threshold as they perform repeated stabilizer measurements^{1,2}.



Furthermore, there is a huge overhead cost to perform fault-tolerant quantum logic operations.³

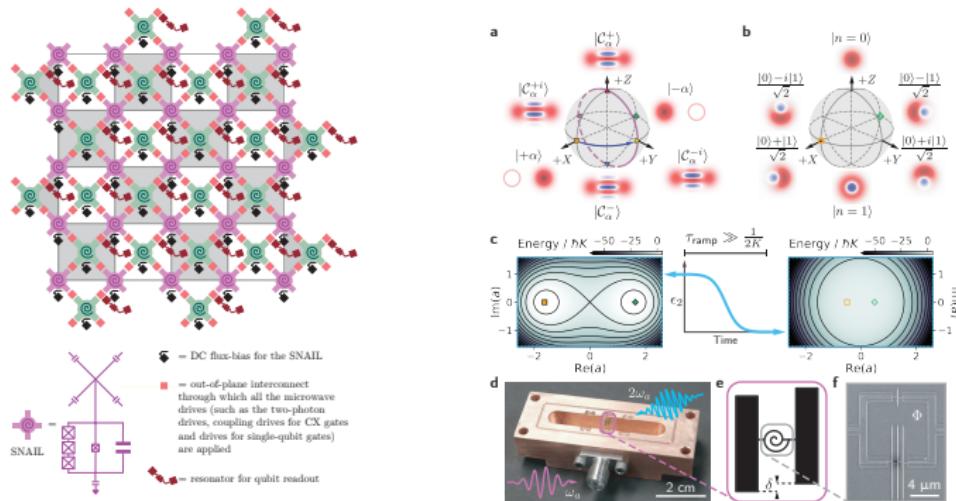
¹M. Takita *et al.*, Phys. Rev. Lett. **119**, 180501 (2017)

²C. Kraglund Andersen *et al.*, Nat. Phys. **16**, 875 (2020)

³C. Gidney and A. Fowler, Quantum **3**, 135 (2019)

Scaling quantum computers

Cat qubits ^{4, 5} (that experience highly biased noise) have been proposed as high-quality qubits (with bias preserving gates ^{6, 7}) for surface code implementations⁸.



⁴A. Grimm *et al.* *Nature* **584**, 205 (2020)

⁵R. Lescanne *et al.*, *Nat. Phys.* **16**, 509 (2020)

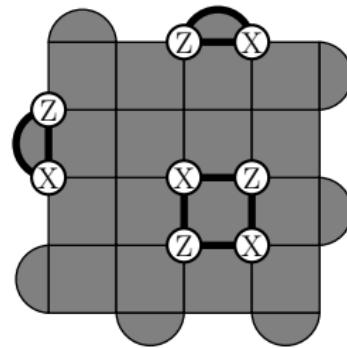
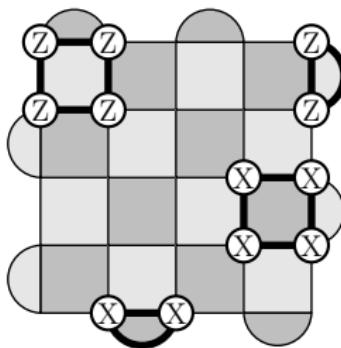
⁶J. Guillaud and M. Mirrahimi, *Phys. Rev. X* **9**, 041053 (2019)

⁷S. Puri *et al.* *Sci. Adv.* **6**, eaay5901 (2020)

⁸C. Chamberland *et al.* *arXiv:2012.04108* (2020)

The XZZX surface code

The XZZX surface code⁹ is locally equivalent to the standard surface code¹⁰

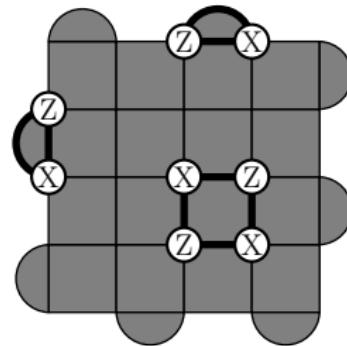
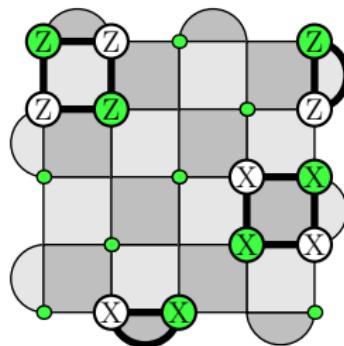


⁹X.-G. Wen, Phys. Rev. Lett. **90** 16803 (2003)

¹⁰A. Kitaev, Ann. Phys. **303**, 2 (2003)

The XZZX surface code

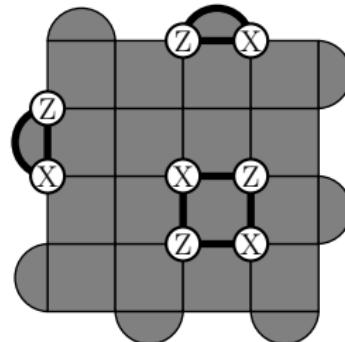
... except every other qubit is rotated by a hadamard gate.
(the green qubits are rotated)



The XZZX surface code

The XZZX code demonstrates:

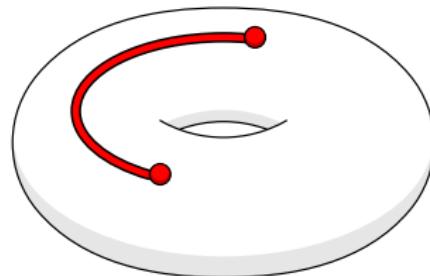
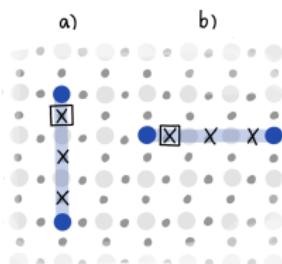
- ▶ Thresholds that match the hashing bound for all uniform single-qubit Pauli noise channels.
- ▶ Exceptionally high fault-tolerant thresholds for biased noise models
- ▶ Reduced overheads (by a factor $O(1/\eta^{d/4})$) at low error rates and high bias η
- ▶ We also argue that we can maintain these advantages while performing computation



Error correction with the surface code

We use stabilizers to measure (Pauli) errors E .

$$SE|\psi\rangle = (-1)E|\psi\rangle$$



On the surface code, errors appear as strings, and defects appear in pairs at their endpoints¹¹.

This can be viewed as a defect parity conservation law^{12,13}.

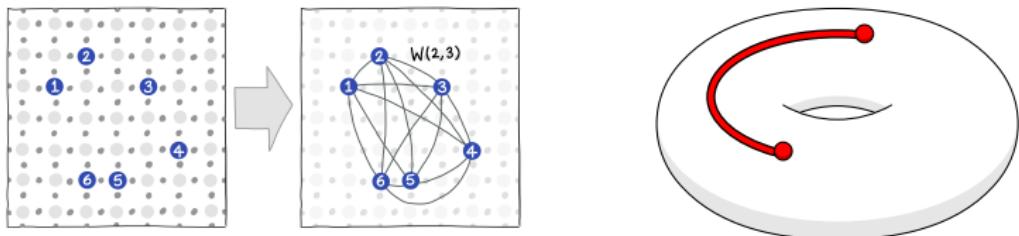
¹¹E. Dennis *et al.*, J. Math. Phys. **43**, 4452 (2002)

¹²A. Kitaev, Ann. Phys. **303**, 2 (2003)

¹³BJB and D. J. Williamson, Phys. Rev. Research **2**, 013303 (2020)

Symmetries and conservation laws

MWPM is possible because the surface code respects a defect conservation symmetry^{14,15}



Mathematically, the symmetry is apparent in the stabilizer group

$$\prod_v A_v = 1 \Rightarrow \prod_v a_v = 1$$

($a_v = \pm 1$ eigenvalues of stabilizers A_v .)

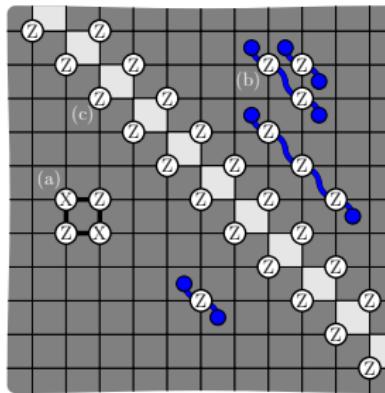
\Rightarrow $\#v$ with $a_v = -1$ is even \equiv defect conservation (mod2)

¹⁴E. Dennis *et al.*, J. Math. Phys. **43**, 4452 (2002)

¹⁵BJB and D. J. Williamson, Phys. Rev. Research **2**, 013303 (2020)

A symmetry with respect to Pauli-Z errors^{16, 17}

We find a richer space of symmetries if we restrict our error model.



Pauli-Z errors commute with the product of stabilizers along the diagonal and therefore respect a 1D symmetry on the XZZX code.

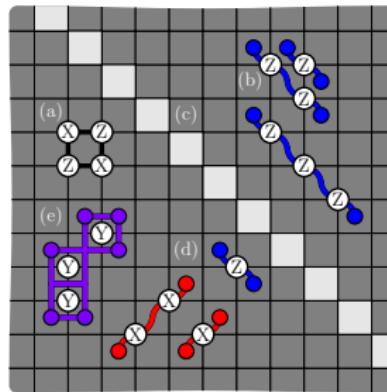
Decoding Z errors is therefore equivalent to decoding the repetition code (50% threshold).

¹⁶ BJB and D. J. Williamson, Phys. Rev. Research **2**, 013303 (2020)

¹⁷ D. K. Tuckett, Phys. Rev. Lett. **124**, 130501 (2020)

Symmetries for all Pauli errors^{18, 19}

The XZZX code has many symmetries for other error models.



The XZZX code has symmetries with respect to Pauli-X errors along perpendicular diagonals to those for Pauli-Z errors.

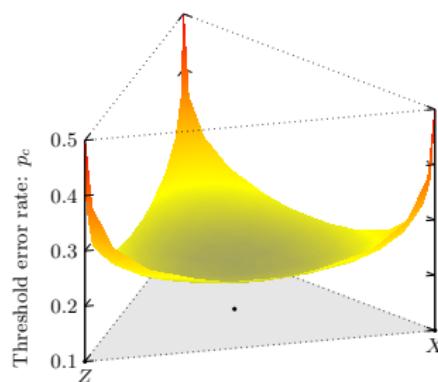
Pauli-Y errors have the same symmetry as the CSS surface code (we exploited these symmetries in earlier work)

¹⁸ BJB and D. J. Williamson, Phys. Rev. Research **2**, 013303 (2020)

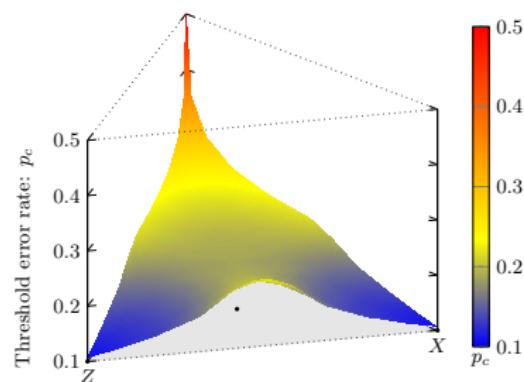
¹⁹ D. K. Tuckett, Phys. Rev. Lett. **124**, 130501 (2020)

High threshold error rates

The XZZX code has a threshold that matches the zero-rate hashing bound for all uniform single-qubit Pauli channels.



XZZX



CSS

$$R \equiv k/n \geq 1 - H(\vec{p}), \quad (1)$$

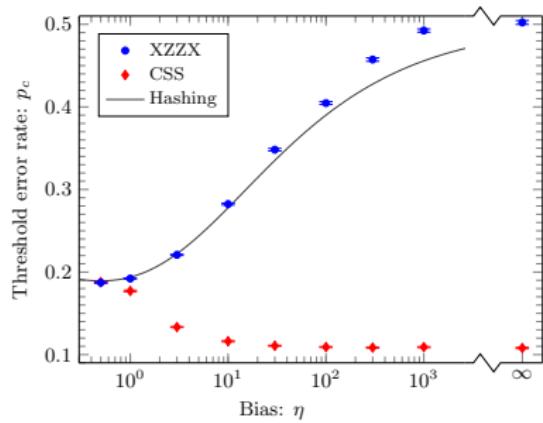
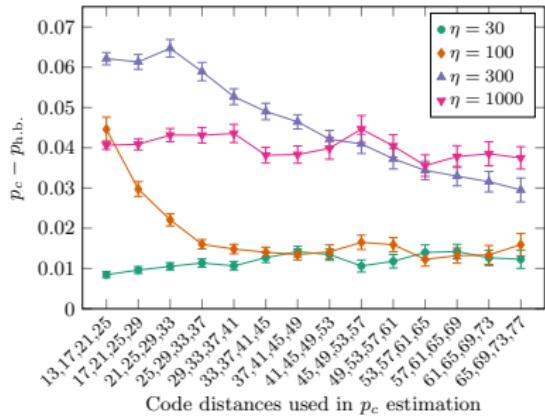
$H(\vec{p})$ - Shannon entropy.

$\vec{p} = (p_X, p_Y, p_Z)$ with p_O the probability that Pauli error O occurs.

R - rate with $R = 0$ the zero-rate hashing bound.

Numerics exceeding hashing

At high bias, our numerics demonstrate a threshold above the zero-rate hashing bound



See also other work on exceeding hashing for instance^{20,21,22}

²⁰D. DiVincenzo *et al.*, Phys. Rev. A **57**, 830 (1998)

²¹G. Smith and J. Smolin, Phys. Rev. Lett. **98**, 030501 (2007)

²²J. Bausch and F. Leditzky, arXiv:1910.00471 (2019)

Exceeding hashing

A zero-rate code with a threshold above hashing implies we can send information at non-zero rate with p above hashing.

We need the following:

- ▶ A finite rate code $R_{\text{out}} = K_{\text{out}}/N_{\text{out}} > 0$
- ▶ An inner code of constant size N_{in} with threshold $p_{\text{th.}} > p_{\text{h.b.}}$

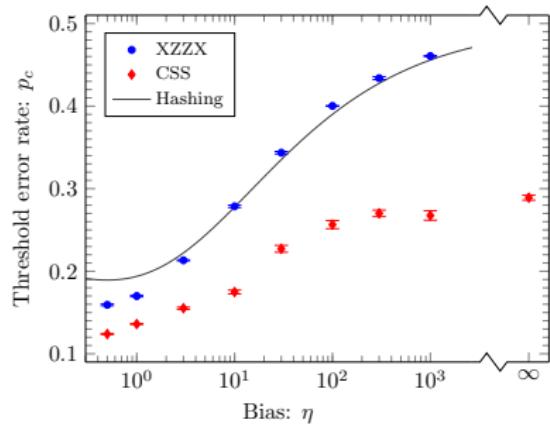
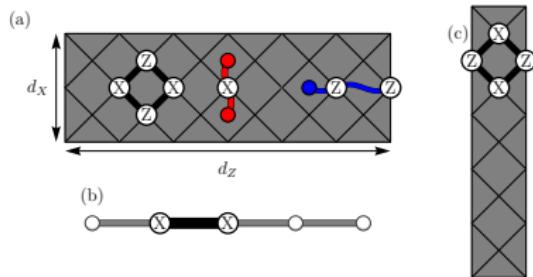
Concatenating gives a family of codes with rate:

$$R' = R_{\text{out}}/N_{\text{in}} > 0. \quad (2)$$

using qubits with $p_{\text{h.b.}} < p < p_{\text{th.}}$ for some constant N_{in} .

Numerics exceeding hashing

We also exceed hashing with a suboptimal matching decoder

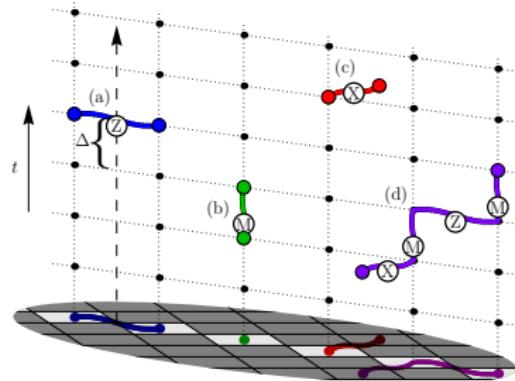
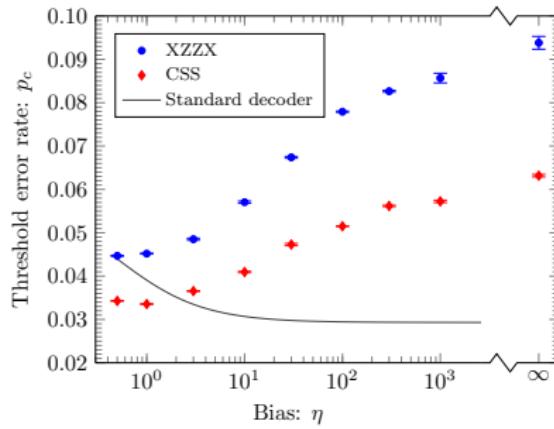


We achieved this using XZZX codes with different boundary conditions.

The high-speed matching decoder allows us to probe very large system sizes

Fault-tolerant thresholds with biased noise

Matching decoders generalise readily to the fault-tolerant setting.^{23, 24, 25}



We find exceptional fault-tolerant thresholds for the XZZX code under phenomenological biased noise.

²³E. Dennis *et al.*, J. Math. Phys. **43**, 4452 (2002)

²⁴BJB and D. J. Williamson, Phys. Rev. Research **2**, 013303 (2020)

²⁵D. K. Tuckett, Phys. Rev. Lett. **124**, 130501 (2020)

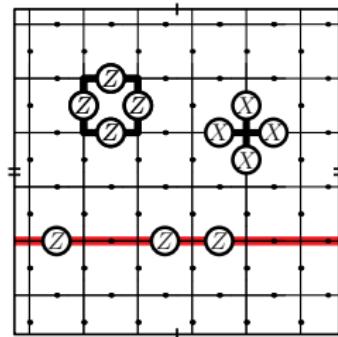
Logical failure rates below threshold

We need a low logical failure rate \bar{P}
with a small number of qubits n .

At low error rate p we can generically achieve

$$\bar{P} \sim p^{d/2} \quad (3)$$

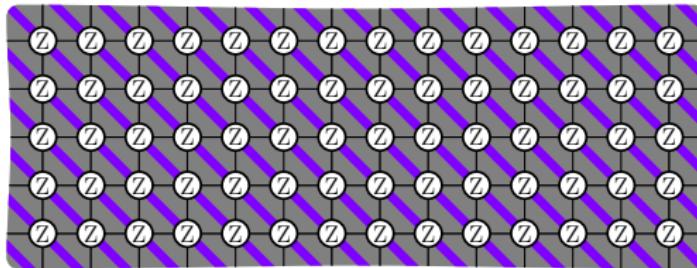
To leading order, this is the probability of $d/2$ errors occurring.



The surface code uses $n = O(d^2)$ qubits.

Logical failure rates below threshold

We can choose an XZZX code with a weight n Pauli-Z logical.



At infinite bias²⁶, we can expect a logical failure rate like

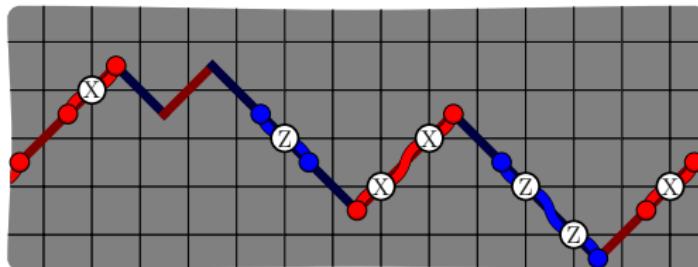
$$\overline{P} \sim p^{n/2}. \quad (4)$$

... but what happens at finite bias?

²⁶D. Tuckett *et al.* Phys. Rev. X **9**, 041031 (2019)

Logical failure rates below threshold

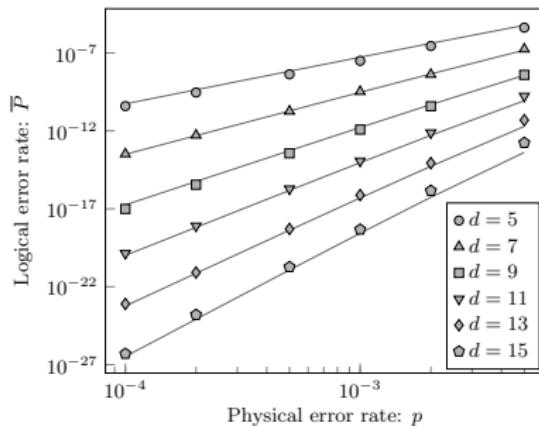
In practice we find errors of
 $d/4$ low rate errors
and $d/4$ high rate errors.



$$\overline{P} \sim \underbrace{p^{d/4}}_{d/4 \text{ high rate errors}} \times \underbrace{\left(\frac{p}{\eta}\right)^{d/4}}_{d/4 \text{ low rate errors}} = \underbrace{\left(\frac{1}{\eta}\right)^{d/4}}_{\text{factor of improvement}} p^{d/2}. \quad (5)$$

Logical failure rates below threshold

We test the ansatz at low p using the splitting method^{27,28}



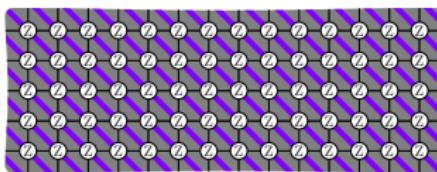
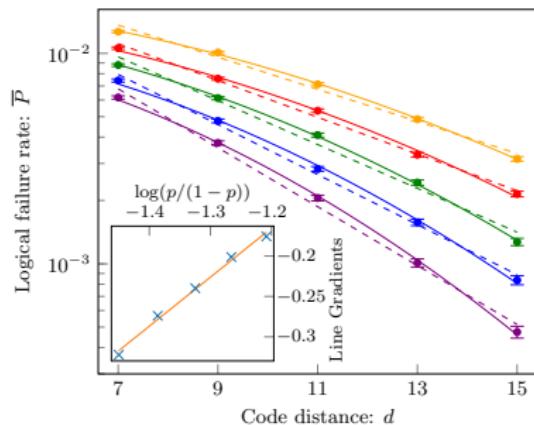
$$\bar{P} \sim \underbrace{p^{d/4}}_{d/4 \text{ high rate errors}} \times \underbrace{\left(\frac{p}{\eta}\right)^{d/4}}_{d/4 \text{ low rate errors}} = \underbrace{\left(\frac{1}{\eta}\right)^{d/4}}_{\text{factor of improvement}} p^{d/2}. \quad (6)$$

²⁷C. Bennett, J. Comput. Phys. **22**, 245 (1976)

²⁸Bravyi and Vargo, Phys. Rev. A **88**, 062308 (2013)

Logical failure rates below threshold

For small n and high bias we identify signatures of p^{d^2} logical failure rate scaling



We observe this when

$$p^{d^2} \gg \left(\frac{1}{\eta}\right)^{d/4} p^{d/2} \quad (7)$$

(in other words, at moderate p and small-ish n)

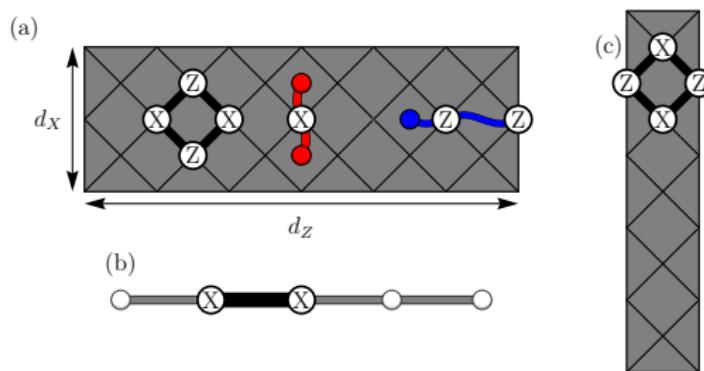
Logical failure rates below threshold

It is favourable to find codes with open boundary conditions.

Changing the lattice geometry means we have logical failure rates like

$$\overline{P}_X \sim \left(\frac{p}{\eta}\right)^{d_X/2} \quad \text{and} \quad \overline{P}_Z \sim p^{d_Z/2}, \quad (8)$$

at low p .

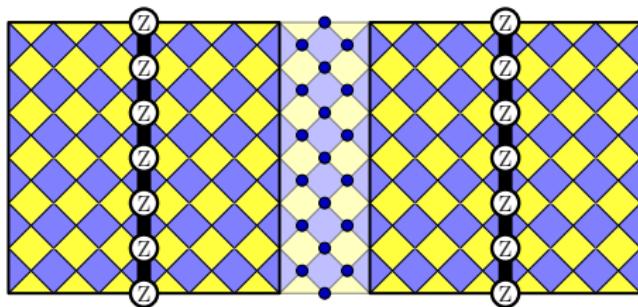
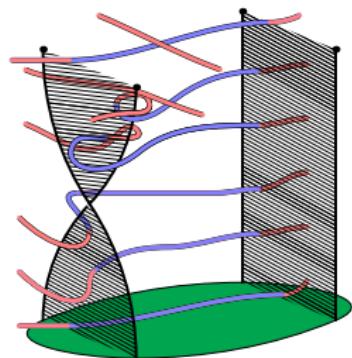


We can therefore save resources by choosing small d_X without compromising \overline{P}_Z .

Fault-tolerant quantum computation

We can perform computations using code deformations^{29,30}, e.g.,

Braiding twists^{31,32}



Lattice surgery³³

²⁹R. Raussendorf *et al.* Phys. Rev. Lett. **98**, 190504 (2007)

³⁰H. Bombin and M. A. Martin-Delgado, J. Phys. A **42**, 095302 (2009)

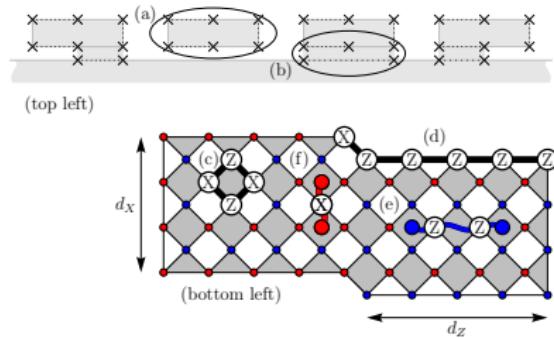
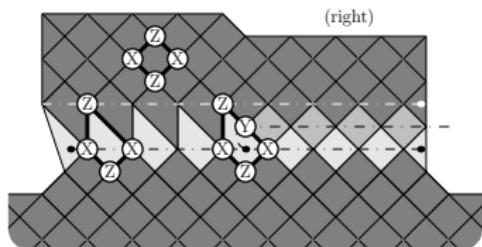
³¹H. Bombin, Phys. Rev. Lett. **105**, 030403 (2010)

³²BJB *et al.*, Phys. Rev. X **7**, 021029 (2017)

³³C. Horsman *et al.*, New J. Phys. **14**, 123011 (2012)

Fault-tolerant quantum computation

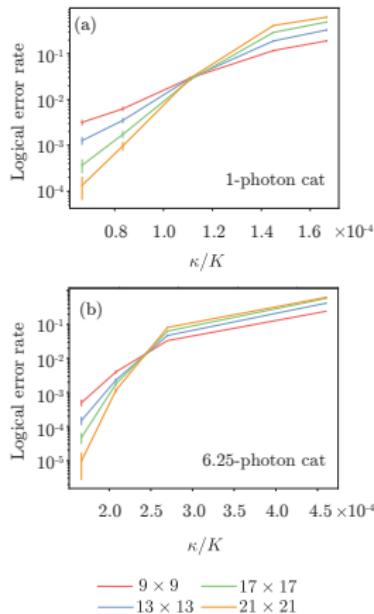
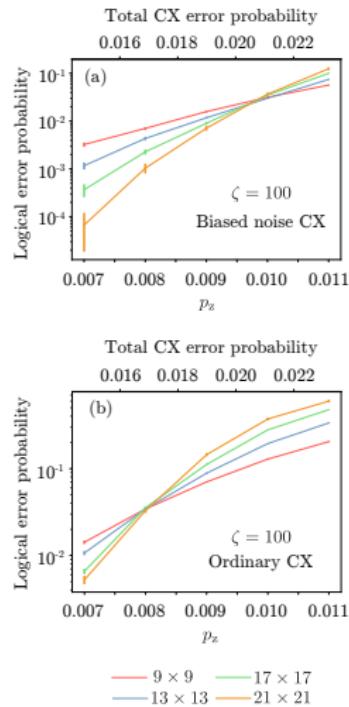
We can maintain these advantages undergoing fault-tolerant quantum computation³⁴.



The one-dimensional symmetries we need for high thresholds are maintained under initialisation and XZZX codes with twists.

³⁴D. Litinski, Quantum 3, 128 (2019)

Forthcoming work: XZZX thresholds with cat qubit circuits

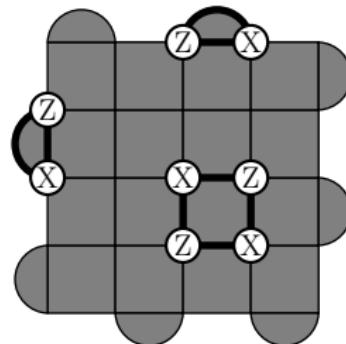
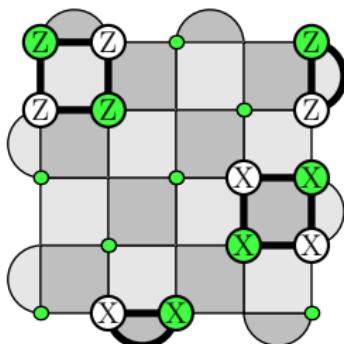


work with A. Darmawan, A. Grimsmo, S. Puri and D. Tuckett.

Outlook

We have shown the XZZX code:

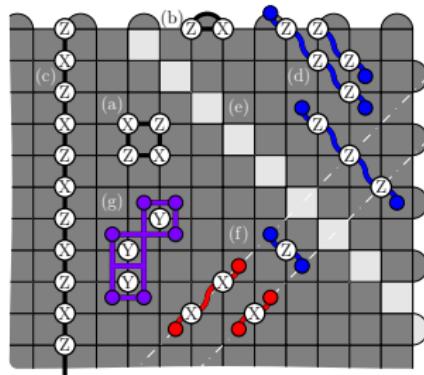
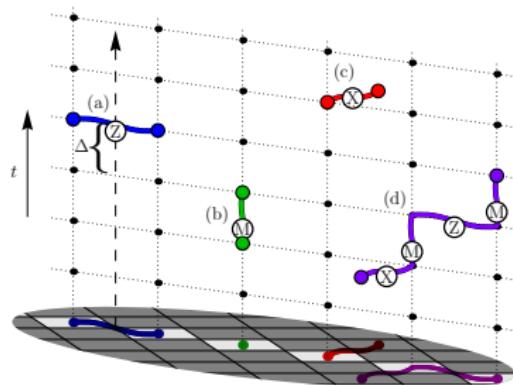
- ▶ has threshold error rates that match hashing
- ▶ has exceptionally high fault-tolerant thresholds
- ▶ significantly reduced resource costs below threshold
- ▶ can maintain its performance during computational operations



Outlook

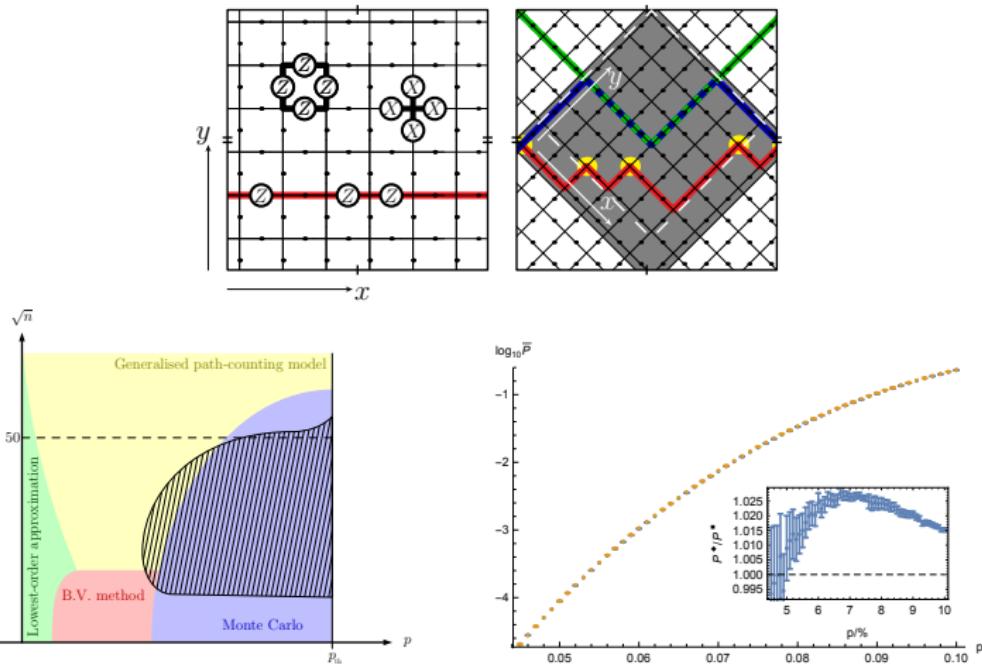
Our work raises questions in several areas, such as:

- ▶ Have we really exceeded the hashing bound?
- ▶ How do we specialise codes for a given noise model in general?
- ▶ What is the potential for non-CSS codes?



Backup slide: Different geometries

Previous work³⁵ has shown negligible difference in logical error rates against bit-flip noise for modest p as a function of number of qubits n .



³⁵M. Beverland *et al.* J. Stat. Mech.:Theo. Exp. 2019, 073404 (2019)