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Scaling quantum computers
To scale a quantum computer we must:

Control a large number of qubits below threshold as they perform
repeated stabilizer measurements1,2.

Furthermore, there is a huge overhead cost to perform
fault-tolerant quantum logic operations.3

1M. Takita et al., Phys. Rev. Lett. 119, 180501 (2017)
2C. Kraglund Andersen et al, Nat. Phys. 16, 875 (2020)
3C. Gidney and A. Fowler, Quantum 3, 135 (2019)



Scaling quantum computers
Cat qubits 4, 5 (that experience highly biased noise) have been
proposed as high-quality qubits (with bias preserving gates 6, 7) for
surface code implementations8.
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4A. Grimm et al. Nature 584, 205 (2020)
5R. Lescanne et al., Nat. Phys. 16, 509 (2020)
6J. Guillaud and M. Mirrahimi, Phys. Rev. X 9, 041053 (2019)
7S. Puri et al. Sci. Adv. 6, eaay5901 (2020)
8C. Chamberland et al. arXiv:2012.04108 (2020)



The XZZX surface code

The XZZX surface code9 is locally equivalent to the standard
surface code10
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9X.-G. Wen, Phys. Rev. Lett. 90 16803 (2003)
10A. Kitaev, Ann. Phys. 303, 2 (2003)



The XZZX surface code

. . . except every other qubit is rotated by a hadamard gate.
(the green qubits are rotated)
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The XZZX surface code
The XZZX code demonstrates:

I Thresholds that match the hashing bound for all uniform
single-qubit Pauli noise channels.

I Exceptionally high fault-tolerant thresholds for biased noise
models

I Reduced overheads (by a factor O
(
1/ηd/4

)
) at low error rates

and high bias η

I We also argue that we can maintain these advantages while
performing computation
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Error correction with the surface code

We use stabilizers to measure (Pauli) errors E .

SE |ψ〉 = (−1)E |ψ〉

On the surface code, errors appear as strings, and defects appear
in pairs at their endpoints11.

This can be viewed as a defect parity conservation law12,13.
11E. Dennis et al., J. Math. Phys. 43, 4452 (2002)
12A. Kitaev, Ann. Phys. 303, 2 (2003)
13BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)



Symmetries and conservation laws
MWPM is possible because the surface code respects a defect
conservation symmetry14,15

Mathematically, the symmetry is apparent in the stabilizer group∏
v

Av = 1 ⇒
∏
v

av = 1

(av = ±1 eigenvalues of stabilizers Av . )

⇒ #v with av = −1 is even ≡ defect conservation (mod2)

14E. Dennis et al., J. Math. Phys. 43, 4452 (2002)
15BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)



A symmetry with respect to Pauli-Z errors16, 17

We find a richer space of symmetries if we restrict our error model.
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Pauli-Z errors commute with the product of stabilizers along the
diagonal and therefore respect a 1D symmetry on the XZZX code.

Decoding Z errors is therefore equivalent to decoding the
repetition code (50% threshold).

16BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)
17D. K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)



Symmetries for all Pauli errors18, 19

The XZZX code has many symmetries for other error models.
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The XZZX code has symmetries with respect to Pauli-X errors
along perpendicular diagonals to those for Pauli-Z errors.

Pauli-Y errors have the same symmetry as the CSS surface code
(we exploited these symmetries in earlier work)

18BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)
19D. K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)



High threshold error rates
The XZZX code has a threshold that matches the zero-rate
hashing bound for all uniform single-qubit Pauli channels.
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XZZX CSS

R ≡ k/n ≥ 1− H(~p), (1)

H(~p) - Shannon entropy.

~p = (pX , pY , pZ ) with pO the probability that Pauli error O occurs.

R - rate with R = 0 the zero-rate hashing bound.



Numerics exceeding hashing

At high bias, our numerics demonstrate a threshold above the
zero-rate hashing bound
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See also other work on exceeding hashing for instance20,21,22

20D. DiVincenzo et al., Phys. Rev. A 57, 830 (1998)
21G. Smith and J. Smolin, Phys. Rev. Lett. 98, 030501 (2007)
22J. Bausch and F. Leditzky, arXiv:1910.00471 (2019)



Exceeding hashing

A zero-rate code with a threshold above hashing implies we can
send information at non-zero rate with p above hashing.

We need the following:

I A finite rate code Rout = Kout/Nout > 0

I An inner code of constant size Nin with threshold pth. > ph.b.

Concatenating gives a family of codes with rate:

R ′ = Rout/Nin > 0. (2)

using qubits with ph.b. < p < pth. for some constant Nin.



Numerics exceeding hashing

We also exceed hashing with a suboptimal matching decoder
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We achieved this using XZZX codes with different boundary
conditions.

The high-speed matching decoder allows us to probe very large
system sizes



Fault-tolerant thresholds with biased noise

Matching decoders generalise readily to the fault-tolerant
setting.23, 24, 25
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We find exceptional fault-tolerant thresholds for the XZZX code
under phenomenological biased noise.

23E. Dennis et al., J. Math. Phys. 43, 4452 (2002)
24BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)
25D. K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)



Logical failure rates below threshold
We need a low logical failure rate P
with a small number of qubits n.

At low error rate p we can generically achieve

P ∼ pd/2 (3)

To leading order, this is the probability of d/2 errors occurring.
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The surface code uses n = O(d2) qubits.



Logical failure rates below threshold

We can choose an XZZX code with a weight n Pauli-Z logical.
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At infinite bias26, we can expect a logical failure rate like

P ∼ pn/2. (4)

. . . but what happens at finite bias?

26D. Tuckett et al. Phys. Rev. X 9, 041031 (2019)



Logical failure rates below threshold

In practice we find errors of
d/4 low rate errors
and d/4 high rate errors.
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Logical failure rates below threshold
We test the ansatz at low p using the splitting method27,28
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27C. Bennett, J. Comput. Phys. 22, 245 (1976)
28Bravyi and Vargo, Phys. Rev. A 88,062308 (2013)



Logical failure rates below threshold
For small n and high bias we identify signatures of pd

2
logical

failure rate scaling
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Logical failure rates below threshold
It is favourable to find codes with open boundary conditions.

Changing the lattice geometry means we have logical failure rates
like

PX ∼
(
p

η

)dX /2

and PZ ∼ pdZ/2, (8)

at low p.

X

Z

Z

X ZZXdX

dZ

X X

Z

X

Z

X

(a)

(b)

(c)

We can therefore save resources by choosing small dX
without compromising PZ .



Fault-tolerant quantum computation

We can perform computations using code deformations29,30, e.g.,

Braiding twists31,32
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29R. Raussendorf et al. Phys. Rev. Lett. 98, 190504 (2007)
30H. Bombin and M. A. Martin-Delgado, J. Phys. A 42, 095302 (2009)
31H. Bombin, Phys. Rev. Lett. 105, 030403 (2010)
32BJB et al., Phys. Rev. X 7, 021029 (2017)
33C. Horsman et al., New J. Phys. 14, 123011 (2012)



Fault-tolerant quantum computation

We can maintain these advantages undergoing fault-tolerant
quantum computation34.
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The one-dimensional symmetries we need for high thresholds are
maintained under initialisation and XZZX codes with twists.

34D. Litinski, Quantum 3, 128 (2019)



Forthcoming work:
XZZX thresholds with cat qubit circuits
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work with A. Darmawan, A. Grimsmo, S. Puri and D. Tuckett.



Outlook

We have shown the XZZX code:

I has threshold error rates that match hashing

I has exceptionally high fault-tolerant thresholds

I significantly reduced resource costs below threshold

I can maintain its performance during computational operations
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Outlook

Our work raises questions in several areas, such as:

I Have we really exceeded the hashing bound?

I How do we specialise codes for a given noise model in general?

I What is the potential for non-CSS codes?
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Backup slide: Different geometries
Previous work35 has shown negligible difference in logical error
rates against bit-flip noise for modest p as a function of number of
qubits n.
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35M. Beverland et al. J. Stat. Mech.:Theo. Exp. 2019, 073404 (2019)


