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I. INTRODUCTION

Topological quantum computation (TQC) is currently the most promising approach to scalable, fault-tolerant

quantum computation. In recent years, the focus has been on TQC with Kitaev’s toric code [2], due to it’s high

threshold to noise [3, 4], and amenability to planar architectures with nearest neighbour interactions. To encode and

manipulate quantum information in the toric code, a variety of techniques drawn from condensed matter contexts

have been utilised. In particular, some of the efficient approaches for TQC with the toric code rely on creating and

manipulating gapped-boundaries, symmetry defects and anyons of the underlying topological phase of matter [5–

10]. Despite great advances, the overheads for universal fault-tolerant quantum computation remain a formidable

challenge. It is therefore important to analyse the potential of TQC in a broad range of topological phases of matter,

and attempt to find new computational substrates that require fewer quantum resources to execute fault-tolerant

quantum computation.

In this work we present an approach to TQC for more general anyon theories based on the Walker–Wang mod-

els [11]. This provides a rich class of spin-lattice models in three-dimensions whose boundaries can naturally be

used to topologically encode quantum information. The two-dimensional boundary phases of Walker–Wang models

accommodate a richer set of possibilities than stand-alone two-dimensional topological phases realized by commuting

projector codes [12, 13]. The Walker–Wang construction prescribes a Hamiltonian for a given input (degenerate)

anyon theory, whose ground-states can be interpreted as a superposition over all valid worldlines of the underlying

anyons. Focusing on a particular instance of the Walker–Wang model [13] based on the 3-Fermion anyon theory

(3F theory) [14, 15], we show that that the associated ground states can be utilised for fault-tolerant measurement-

based quantum computation (MBQC) [5, 16–18] via a scheme based on the braiding and fusion of lattice defects

constructed from the symmetries of the underlying anyon theory. The Walker–Wang MBQC paradigm that we

introduce provides a general framework for finding resource states for computation. For example, we show that the

well-known topological cluster state scheme for MBQC of Ref. [5] is produced when the toric code anyon theory is

used as input to the Walker–Wang construction.

II. MAIN CONTRIBUTIONS AND RESULTS

• A topological quantum computation scheme using symmetry defects of the 3F theory.

We find a universal scheme for TQC where all Clifford gates can be fault-tolerantly implemented and magic states

can be noisily prepared and distilled [19]. In contrast to the 2D toric code, the full Clifford group is obtained by

braiding and fusing symmetry twist defects, owing to the richer symmetry group of 3F.

The 3F anyon theory describes superselection sectors {1, ψr, ψg, ψb} with Z2 × Z2 fusion rules ψα × ψα = 1,

ψr × ψg = ψb, where α = r, g, b, and modular matrices

S =


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 , T =


1

−1

−1

−1

 . (1)

The above S matrix matches the one for the anyonic excitations in the toric code, but the topological spins in

the T matrix differ as ψr, ψg, ψb are all fermions. These modular matrices suffice to specify the gauge invariant

braiding data of the theory [20], while the F symbols are trivial. The 3F theory has an S3 group of global

symmetries corresponding to arbitrary permutations of the three fermion species, all of which leave the gauge

invariant data of the theory invariant. We denote the group action on the three fermion types r,g,b, using cycle

notation S3
∼= {(), (rg), (gb), (rb), (rgb), (rbg)} with the usual composition, e.g. (rg) · (gb) = (rgb). The action on

the anyons is then given by g · 1 = 1, g · ψc = ψg·c.
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Domain walls and twist-defects corresponding to these symmetries can be constructed, and can be used to encode

quantum information. The main type of encoding we consider for our computational scheme is called a g-encoding,

g ∈ S3, which consists of four twist defects, as shown in Fig. 1. Logical operations on these encoded qubits are

achieved by performing fusions and braids of these twists. For the 3F theory, we can achieve all Clifford operations

(including Clifford unitaries, Pauli preparations and measurements) by manipulating the symmetry defects.

Proposition 1. (Clifford universality of 3F defect theory). For any 2-cycles g 6= h ∈ S3 any Clifford operation can

be implemented on g, h-encoded qubits by braiding and fusion of twists. A generating set of Clifford unitaries is

shown in Fig. 1.
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FIG. 1. (Top row) Representative fermionic string operators for logical Pauli operators for a g-encoding. (top left) A
single qubit is encoded in four twists defined by (rg) ∈ S3. (top right) Two qubits are encoded in four twists defined by
(rgb), (rbg) ∈ S3. (Bottom row) Space-time defect configurations for Clifford unitaries, with simulated time moving upwards.
(bottom left) The Hadamard gate. (bottom middle) The S gate. (bottom right) The two qubit CZ gate. Domain walls for
g ∈ S3 are colored according to the fermion that they leave invariant.

• Fault-tolerant measurement based quantum computation with Walker–Wang ground-states.

We give a general prescription for using ground states of Walker–Wang models based on abelian anyon theories as

resources for fault-tolerant measurement-based quantum computation. The Walker–Wang construction prescribes a

Hamiltonian for a given input (degenerate) anyon theory, whose ground-states can be interpreted as a superposition

over all valid worldlines of the underlying anyons. For abelian anyon theories, we show how symmetries of the

anyon theory can be promoted to symmetries of the Walker–Wang Hamiltonian, and subsequently used to construct

symmetry defects.

To perform a computation using Walker–Wang resource states, we first prepare the states with symmetry defects

for a specific computation. To drive the computation, measurements in the local anyon basis are performed. In

this computational framework, errors that occur during the computation (e.g. errors on the state or measurement)

manifest as violations of the local anyon conservation law in the post measured state (called the history state). We

can decode such errors using standard decoding methods such as minimum weight perfect matching. Errors and

the corresponding syndromes are shown in Fig. 3. The scheme be achieved in a 2D architecture by preparing (and

measuring) the state layer by layer. This process is shown in Fig. 2.

FIG. 2. Fault-tolerant MBQC with the 3F Walker–Wang model. (left) We prepare the ground state of the Walker–Wang
model with defects and twists. The ground state is given by a weighted superposition of all braided anyon worldlines (middle)
The computation is driven by performing local measurements in the local anyon basis (as shaded in blue). In the case of
3-fermion, the measurement that achieves this is the Pauli-X basis. (right) The post measured state is given by a fixed anyon
worldline string-net called a history state.
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• Performance of fault-tolerant measurement-based quantum computation with 3F Walker–Wang ground-states.

We explicitly provide a prescription for how to implement symmetry defects for the 3F Walker–Wang model –

which can be realised as a stabilizer model in 3-dimensions – and how to use it for fault-tolerant MBQC. For a simple

(toy) error model consisting of IID Pauli errors and measurement errors with rate p, we show that the threshold for

the scheme is identical to the well-known toric code memory threshold in with the same error model [3] (equivalently

the threshold for topological cluster state MBQC [5]).

s3

s1

s1

FIG. 3. Errors and error-correction in Walker–Wang MBQC. Syndromes observed in Walker–Wang MBQC. (left) Syndromes
are observed as violations of local anyon conservation. For the 3F model, lines are color-coded according to the observed
measurement outcomes corresponding to the basis |1〉 := |++〉, |ψr〉 := |−+〉, |ψg〉 := |+−〉, |ψb〉 := |−−〉. Possible errors
producing the observed syndrome are displayed by dashed lines. Nontrivial syndromes sv = (a, b) ∈ Z2

2 on each vertex are
observed due to violations of local anyon conservation. For example, s1 = (1, 0) and s3 = (1, 1) arises from ψr and ψb string
errors, as depicted. (right) Undetectable errors in Walker–Wang MBQC depicted by dashed lines. The homologically trivial
loops do not result in a logical error. The central error depicted in blue that extends between different twists results in a
logical error.

• Symmetry-protected computational phases of matter

We ground our computational framework in the context of symmetry-protected topological (SPT) phases of

matter. In particular, we explore the relationship between the fault-tolerance properties of our MBQC scheme and

the underlying 1-form symmetry-protected topological order of the Walker–Wang resource state. While the 3D

topological cluster state (of Ref. [5]) has the same Z2
2 1-form symmetries as the 3F Walker–Wang ground state, they

belong to distinct SPT phases. These examples provide steps toward a more general understanding of fault-tolerant,

computationally universal phases of matter [21–29].

• Realisation of 3F defects in a 2D subsystem code

Finally, we find another setting for the implementation of our computation scheme by demonstrating how sym-

metry defects can be introduced into the 2D subsystem color code of Bomb́ın [30, 31], which supports a 3F 1-form

symmetry and a 3F anyon phase. By demonstrating how the symmetries of the emergent anyons are represented

by lattice symmetries, we open up the possibility of an alternative formulation of the 3F TQC scheme based on

deformation of a subsystem code in (2+1)D – this may be of practical advantage for 2D architectures where 2-body

measurements are preferred. Our construction of symmetry defects in this subsystem code may be of independent

interest.

III. IMPACT AND FUTURE DIRECTIONS

We have presented a new universal scheme for topological quantum computation based on the 3F state. We give

an explicit recipe for how to realise this scheme, and other based on abelian anyon theories and their symmetries

in the context of MBQC using Walker–Wang ground states. Our computation scheme based on the defects of the

3F anyon theory provides a nontrivial example of the power of the Walker–Wang approach, as the 3F anyon theory

is chiral and cannot be realized as the emergent anyon theory of a 2D commuting projector model. Further, our

results lead to a wide class of potential resource states for fault-tolerant MBQC.

Looking forward, these results provide a new avenue to find more resource efficient schemes for quantum compu-

tation. We hope that this example provides an intriguing step into topological quantum computation using more

general anyon schemes and a launch point for the study of further non-stabilizer models. For instance, using a recent

extension of the Walker-Wang model which is capable of realizing an arbitrary symmetry-enriched topological order

on the boundary under a global on-site symmetry action [32].
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