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Motivation: Fault-tolerant quantum computation

‚ Topological quantum computation is very promising for scalable,
fault-tolerant QC.

‚ Fault-tolerance overheads still very large.
§ Logic gates heavily restricted: Eastin–Knill ’08, Bravyi–Koenig ’12, Beverland et al. ’14

‚ Rich topological phases in 2D and 3D still relatively unexplored.



Main result

‚ For an abelian anyon theory C (e.g. 3-Fermion) with symmetry S

Generalises the 3D cluster state scheme of Raussendorf, Harrington, Goyal ’07



Ingredients of topological quantum computation
‚ Anyons “ excitations of 2D local Hamiltonians (e.g. toric code).

ZZ ee

X

X

X

X

m

m

‚ Strings can be interpreted as
the world-lines of anyons

Wen ’89. Kitaev ’97. Bravyi, Kitaev ’98. Freedman, Larsen, Wang ’00. Kitaev ’03.



The 3-Fermion theory
‚ Set of anyons:

C “ t1, ψr, ψg, ψbu

‚ Abelian (Z2 ˆ Z2) fusion rules:

ψα ˆ ψα “ 1 , ψr ˆ ψg “ ψb , α “ r,g,b.

‚ Self (exchange) and mutual (braiding) statistics captured by
modular S and T matrices (up to normalisation):
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Bombı́n ’10. Also known as SOp8q1 theory - Rowell, Stong, Wang ’09. Khan, Teo, Hughes ’14. Teo, Hughes, Fradkin ’15.
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3-Fermion – where’s the lattice?

‚ No 2D stabilizer model realising 3-Fermion
§ More generally, no 2D commuting projector model

§ Obstruction due to chiral central charge

‚ Can be realised on the surface of a 3D spin model (later..)

Burnell, Chen, Fidkowski, Vishwanath ’13. Haah, Fidkowski, Hastings ’18.



‚ Problem:
§ Abelian anyon theories offer no computational power.

‚ Solution:
§ Enrich the theory with symmetry.
§ Find non-abelian behaviour in “twist defects”.

Bombı́n ’10. Lan, Wang, Wen ’15. Barkeshli, Bonderson, Cheng, Wang ’19.



3-Fermion anyon symmetry

‚ An automorphism S : C Ñ C preserving braiding and fusion rules.

‚ For the 3-Fermion theory, all three fermions are identical – can
be permuted

S3 – tpq, prgq, pgbq, prbq, prgbq, prbgqu ,

s ¨ 1 “ 1, s ¨ ψc “ ψs¨c , s P S3, c P tr,g,bu.
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Bombı́n ’10. Lan, Wang, Wen ’15. Barkeshli, Bonderson, Cheng, Wang ’19.



Twist defects

‚ Symmetry enriched theory C “ C3F ‘ CS3

‚ CS3 describes theory of twists
§ Labelled by elements s P S3
§ Can be represented on the lattice as defects

‚ Non-abelian fusion and braiding rules.
‚ Interaction with 3-fermion anyons upon monodromy.
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α g · α

Bombı́n ’10. Barkeshli, Bonderson, Cheng, Wang ’19.



Encoding in symmetry defects
‚ Twists Ts labelled by s P S3.
‚ Encode logical information in two pairs of twists, e.g.

Tprgq ˆ Tprgq “ 1` ψb,

Tprgbq ˆ Tprbgq “ 1` ψr ` ψg ` ψb.
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§ Encode one logical qubit if s “ prgq, pgbq, prbq
§ Encode two logical qubits if s “ prgbq, prbgq

Bombı́n ’10.



3-Fermion Clifford completeness

Clifford completeness of symmetry enriched 3-Fermion theory.

§ All n-qubit Clifford operations can be generated by
braiding and fusing twist defects of the 3-Fermion theory.

Hadamard S-gate Controlled-Z gate

‚ Universal fault-tolerant gateset via distillation ρbn
T ÝÝÝÝÑ

Clifford
ρ1

T u |T y xT |.

‚ Ask later for comparison to toric-code / Raussendorf topological cluster scheme
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Walker–Wang measurement-based quantum
computation



Walker–Wang states

‚ Input:
§ Anyon theory C with braiding and fusion rules.
§ 3-Manifold discretized on a lattice

‚ Output: commuting projector Hamiltonian H with
§ Ground state consists of superposition over anyon trajectories.
§ C appearing as excitations on the boundary.

Walker, Wang, ’11.



The 3-Fermion Walker–Wang Hamiltonian

‚ Two qubits per link on a cubic lattice
‚ Stabilizer model
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The 3-Fermion Walker–Wang ground state

‚ Consistent with the 3-fermion braid relations

‚ Enforced by star and plaquette terms

A(ψr)
v = σX σX

σX

σX

σX

σX

σX σX

σX

σX

σX

σX

B
(ψr)
f =

σZ

σZ

σZσZ

σZ

σZ

σZσZ σXσX
σXτXσXτX



3-Fermion Walker–Wang MBQC
‚ To prepare and propagate surface states, we measure in the

local anyon basis on each link
§ Measure σX and τX , random outcome from

t|1y “ |``y , |ψry “ |´`y ,
ˇ

ˇψg
D

“ |`´y , |ψry “ |´´yu

‚ Prepare surface state with random configurations of fermions.



3-Fermion Walker–Wang MBQC

‚ For logical gates

Quantum Circtuit C Ñ Defect Hamiltonian H3FpCq



Symmetries and defects – domain walls
‚ First lift anyon symmetry to (Clifford) lattice symmetry

s P S3 : tψr, ψg, ψbu Ñ tψr, ψg, ψbu :

UpsqH3FUpsq: “ H3F.

‚ Domain wall creation – apply restriction of symmetry Upsq|R

H3F Ñ Upsq|RH3FUpsq:|R
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Symmetries and defects – twist defects

‚ Twist defect creation – create domain wall and gap out 1D
boundary

‚ Twist can be made translationally invariant.
§ Utilizing theorem of Haah, Fidkowski, Hastings ’18.
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Errors and error-correction

‚ Pauli errors and measurement errors lead to creation of fermion
string segments

§ Detected by violations of fermion parity
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‚ Decode by restoring anyon parity: vertex matching
§ Minimum weight pair matching Dennis, Kitaev, Landahl, Preskill ’02



Errors and error-correction

‚ Logical error ðñ Error Y Recovery alters twist charge
§ Suppressed exponentially in twist separation.

‚ Bulk decoding problem identical to that of the toric code and
topological cluster model.

§ Threshold of 4.4% for depolarizing noise.

Wang, Harrington, Preskill ’03. Raussendorf, Harrington, Goyal ’07.



Remark: implementable in a 2D architecture

‚ Only a constant width window of the 3D Walker–Wang ground
state needs to active at any time-step.

Raussendorf, Harrington ’06



Summary
‚ New classes of models for topological MBQC.
‚ Stepping stone to exploring more interesting phases for

computation.
‚ Can embed defect theory in 2D subsystem code of Bombı́n.

Future work
‚ Non-abelian anyon theories?

§ talk on Fibonacci by Schotte, Zhu, Burgelman, Verstraete.

‚ Adiabatic measurement-based quantum computation.
‚ Domain walls between different phases for non-Clifford?
‚ Comparison of distillation overheads to toric-based.
‚ MBQC throughout 1-form symmetry-protected topological phase.



Questions?



Comparison with toric code Walker–Wang
‚ Can reproduce the Raussendorf et al. cluster-state model using

toric code anyon theory CTC “ t1,e,m, εu as input.

3-Fermion Walker–Wang
‚ Surface state = 3-fermion
‚ Global symmetry S3

‚ 1-form symmetry Z2 ˆ Z2

‚ No p1` 1qD gapped
boundaries .............

‚ Clifford complete braiding and
fusion of twists
............................................

Toric Code Walker–Wang
‚ Surface state = Toric code
‚ Global symmetry Z2

‚ 1-form symmetry Z2 ˆ Z2

‚ Two types of p1` 1qD gapped
boundaries

‚ Topological charge
projections required to
complete Cliffords

Raussendorf, Harrington, Goyal ’07


