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Motivation: Fault-tolerant quantum computation

« Topological quantum computation is very promising for scalable,
fault-tolerant QC.

o Fault-tolerance overheads still very large.
> Logic gates heavily restricted: Eastin—Knill ‘08, Bravyi—Koenig '12, Beverland et al. ‘14

¢ Rich topological phases in 2D and 3D still relatively unexplored.



Main result

o For an abelian anyon theory C (e.g. 3-Fermion) with symmetry S
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Generalises the 3D cluster state scheme of Raussendorf, Harrington, Goyal '07



Ingredients of topological quantum computation

e Anyons = excitations of 2D local Hamiltonians (e.g. toric code).

, B o Set of anyons
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o Fusion rules

e Braiding rules
o Strings can be interpreted as

the world-lines of anyons (. % e -)
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Wen ’89. Kitaev '97. Bravyi, Kitaev '98. Freedman, Larsen, Wang '00. Kitaev '03.



The 3-Fermion theory

» Set of anyons:

C= {13(Q>I’,/Ls’yga¢b} . ° °

o Abelian (Zy x Zy) fusion rules:
¢a><¢a:17 T/)rxz”QZT/Jb) Oé:r,g,b.

« Self (exchange) and mutual (braiding) statistics captured by
modular S and T matrices (up to normalisation):
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Bombin '10. Also known as SO(8)4 theory - Rowell, Stong, Wang '09. Khan, Teo, Hughes "14. Teo, Hughes, Fradkin '15.



The 3-Fermion theory

» Set of anyons:

C= {1a(¢>f,1"yga¢b} ° ° °

o Abelian (Zy x Zy) fusion rules:
¢a><¢a:17 T/)rx“g:wb) Oé:r,g,b.

« Self (exchange) and mutual (braiding) statistics captured by
modular S and T matrices (up to normalisation):

J o
|| 5

<

Y Uy vy Uy vy Uy

time

Bombin '10. Also known as SO(8)4 theory - Rowell, Stong, Wang '09. Khan, Teo, Hughes "14. Teo, Hughes, Fradkin '15.



The 3-Fermion theory

» Set of anyons:

C= {13(@I’7/L'vgawb} ° °

o Abelian (Zy x Zy) fusion rules:
7/)a><¢a:17 ’h9r><’l/‘g:¢b> a:r,g,b.

« Self (exchange) and mutual (braiding) statistics captured by
modular S and T matrices (up to normalisation):

1 Uy Pg Yo 1 Uy Pg Yo
1 1 1 1 1 1 1
1 " 1 1 -1 1)
T= r, S= Pr
—1 (0 1 -1 1 -1 g
— 1 1/}b 1 — 1 — 1 1 ’(/}b

Bombin '10. Also known as SO(8)4 theory - Rowell, Stong, Wang '09. Khan, Teo, Hughes "14. Teo, Hughes, Fradkin '15.



3-Fermion — where’s the lattice?

e No 2D stabilizer model realising 3-Fermion
» More generally, no 2D commuting projector model

» Obstruction due to chiral central charge

o Can be realised on the surface of a 3D spin model (later..)

Burnell, Chen, Fidkowski, Vishwanath '13. Haah, Fidkowski, Hastings ’18.



e Problem:
» Abelian anyon theories offer no computational power.
e Solution:

» Enrich the theory with symmetry.
» Find non-abelian behaviour in “twist defects”.

Bombin '10. Lan, Wang, Wen ’15. Barkeshli, Bonderson, Cheng, Wang ’19.




3-Fermion anyon symmetry

e An automorphism S : C — C preserving braiding and fusion rules.

« For the 3-Fermion theory, all three fermions are identical — can
be permuted

83 = {()7 (rg)7 (gb)7 (rb)a (rgb)a (I’bg)} )
s-1=1, s-19;=1s.c, seS;, ce{rqg,b}.
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Bombin '10. Lan, Wang, Wen ’15. Barkeshli, Bonderson, Cheng, Wang ’19.



Twist defects

o Symmetry enriched theory C = C3r @ Cs,

e Cg, describes theory of twists
» Labelled by elements s € S;
» Can be represented on the lattice as defects

o Non-abelian fusion and braiding rules.
¢ Interaction with 3-fermion anyons upon monodromy.

Bombin '10. Barkeshli, Bonderson, Cheng, Wang ’'19.



Encoding in symmetry defects

o Twists 7 labelled by s € Ss.
e Encode logical information in two pairs of twists, e.g.

7Erg) x T(rg) =14 1y,
Tirgo) X Tiiog) = 1+ thr + Vg + Vp.

—
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» Encode one logical qubit if s = (rg), (gb), (rb)
» Encode two logical qubits if s = (rgb), (rbg)

Bombin '10.



3-Fermion Clifford completeness

Clifford completeness of symmetry enriched 3-Fermion theory.

» All n-qubit Clifford operations can be generated by
braiding and fusing twist defects of the 3-Fermion theory.
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Hadamard S-gate Controlled-Z gate

e Universal fault-tolerant gateset via distillation p?" G P = | TH]T.
ITTor
o Ask later for comparison to toric-code / Raussendorf topological cluster scheme
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Walker—Wang measurement-based quantum
computation
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Walker—Wang states

e Input:
» Anyon theory C with braiding and fusion rules.
» 3-Manifold discretized on a lattice

e Output: commuting projector Hamiltonian H with

» Ground state consists of superposition over anyon trajectories.
» C appearing as excitations on the boundary.

Walker, Wang, ’11.



The 3-Fermion Walker—Wang Hamiltonian

oT
. . . . — 1=|++
» Two qubits per link on a cubic lattice y | +;
— = |-
Stabilizer model
’ — Y= +-)
Yo = |——)
Heg=—> A —>.B,
v P
oX ! o?
A(z“”") _ O_X__a:)( B(u:,,) _ o o XX oX o
v X f z i
a/\’
TX N ! TZ
AWg) — TX__TiX BWa) _ o UTX TZ
v x f 7 |
X
T
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The 3-Fermion Walker—Wang ground state

anyon
diagrams

(_1 )Iinking#+writhe#

o Consistent with the 3-fermion braid relations
¢(H)=(—1)¢(U) #(2)=vec| )

» Enforced by star and plaquette terms
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3-Fermion Walker—-Wang MBQC

« To prepare and propagate surface states, we measure in the
local anyon basis on each link

» Measure X and ¥, random outcome from
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o Prepare surface state with random configurations of fermions.



3-Fermion Walker—-Wang MBQC

o For logical gates
Quantum Circtuit C — Defect Hamiltonian Hzg(C)



Symmetries and defects — domain walls
o First lift anyon symmetry to (Clifford) lattice symmetry

Se 83 : {lbr» Ugawb} - {/Z/}I‘a Ugawb} :
U(S)H?,':U(S)Jr = Haf.

o Domain wall creation — apply restriction of symmetry U(s)|
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Symmetries and defects — domain walls
o First lift anyon symmetry to (Clifford) lattice symmetry
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Modified Hamiltonian terms
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Symmetries and defects — twist defects

» Twist defect creation — create domain wall and gap out 1D

boundary
..... =R |-
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o Twist can be made translationally invariant.
» Utilizing theorem of Haah, Fidkowski, Hastings '18.



Symmetries and defects — twist defects

» Twist defect creation — create domain wall and gap out 1D
boundary

Find maximal set of
commuting terms
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o Twist can be made translationally invariant.
» Utilizing theorem of Haah, Fidkowski, Hastings '18.



Symmetries and defects — twist defects

» Twist defect creation — create domain wall and gap out 1D

boundary
Find maximal set of
commuting terms
I/I _—
1 1 1 1 1 1 Correct symmetry
transformation
upon braid

o Twist can be made translationally invariant.
» Utilizing theorem of Haah, Fidkowski, Hastings '18.



Errors and error-correction

o Pauli errors and measurement errors lead to creation of fermion
string segments

» Detected by violations of fermion parity
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o Decode by restoring anyon parity: vertex matching
» Minimum weight pair matching Dennis, Kitaev, Landahl, Preskill "02



Errors and error-correction

e Logical error < Error u Recovery alters twist charge
» Suppressed exponentially in twist separation.

e Bulk decoding problem identical to that of the toric code and
topological cluster model.

» Threshold of 4.4% for depolarizing noise.

Wang, Harrington, Preskill '03. Raussendorf, Harrington, Goyal '07.



Remark: implementable in a 2D architecture

e Only a constant width window of the 3D Walker—Wang ground
state needs to active at any time-step.

time

( T\l

Raussendorf, Harrington ‘06



Summary
« New classes of models for topological MBQC.
« Stepping stone to exploring more interesting phases for
computation.
o Can embed defect theory in 2D subsystem code of Bombin.

Future work

e Non-abelian anyon theories?

» talk on Fibonacci by Schotte, Zhu, Burgelman, Verstraete.
Adiabatic measurement-based quantum computation.
Domain walls between different phases for non-Clifford?
Comparison of distillation overheads to toric-based.
MBQC throughout 1-form symmetry-protected topological phase.







Comparison with toric code Walker—Wang

« Can reproduce the Raussendorf et al. cluster-state model using
toric code anyon theory Crc = {1, e, m, ¢} as input.
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3-Fermion Walker—Wang Toric Code Walker-Wang
e Surface state = 3-fermion o Surface state = Toric code
o Global symmetry S3 o Global symmetry Z,
o 1-form symmetry Z, x Z, e 1-form symmetry Z, x Zs
e No (1 + 1)D gapped » Two types of (1 + 1)D gapped
boundaries boundaries
o Clifford complete braiding and « Topological charge
fusion of twists projections required to

complete Cliffords
Raussendorf, Harrington, Goyal '07



