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CHSH game: output a, b such that a⊕ b = xy.
Bell inequality: Pr[a⊕ b = xy] ≤ 3

4

Tsirelson inequality: Pr[a⊕ b = xy] ≤ cos2 (π8)

Classical local realism

Quantum nonlocality
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Theorem (This work)
Let C be a Haar-random n-qubit unitary. Let ε ≥ 1

poly(n).Then any quantum algorithm that outputs a string z
such that E [|〈z|C|0n〉|2] ≥ 2+ε2n requires Ω

( 2n/4
poly(n)

)
queries to C.

+ Similar results for other oracles.
+ O (2n/3) upper bound, by collision finding.
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• Real-world relevance

• Random unitary oracles
• Not a decision problem
• Needs new tools
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Canonical
U|⊥〉 = |ψ〉
U|ψ〉 = |⊥〉
U|ϕ〉 = |ϕ〉

Random
V =

 | ? ?
|ψ〉 ? ?
| ? ?



⇐⇒
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Theorem (Ambainis-Rosmanis-Unruh 2014)
T queries to U can be simulated with a “resource state”:

|R〉 :=
k⊗
j=1

αj|ψ〉 + βj|⊥〉

where k ∼ T2.
=⇒ Consider algorithms that just have copies of |ψ〉
=⇒ Easy lower bound, by symmetry
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Tighter bounds? Between 2n/4 and 2n/3

Stronger evidence of real-world hardness?
Computational pseudorandomness ofrandom quantum circuits?
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