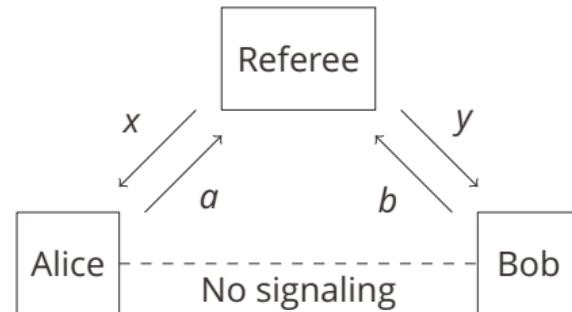


The Quantum Supremacy Tsirelson Inequality

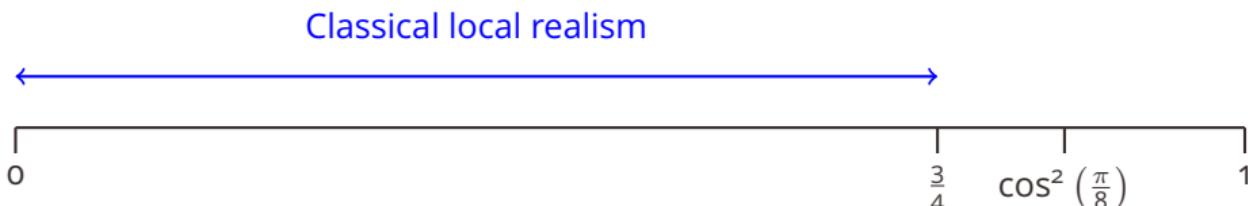
QIP 2021

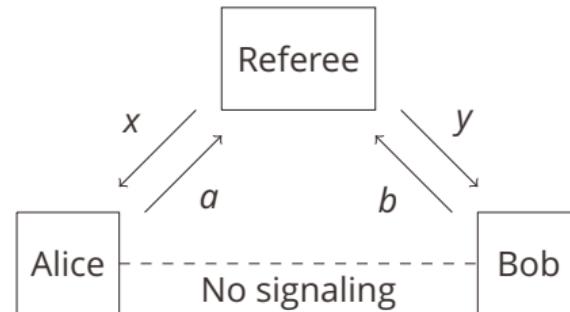
William Kretschmer
arXiv:2008.08721



CHSH game: output a, b such that $a \oplus b = xy$.

Bell inequality: $\Pr[a \oplus b = xy] \leq \frac{3}{4}$

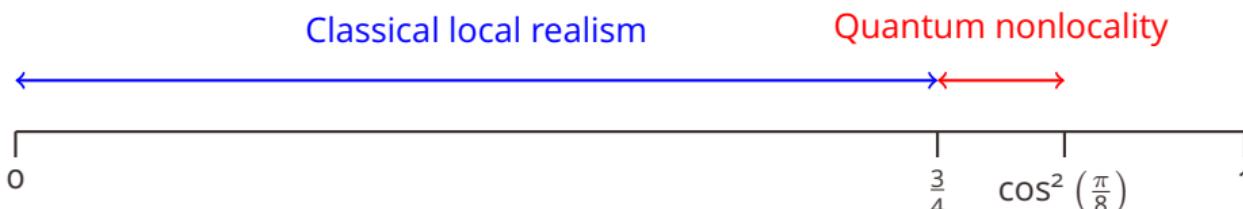


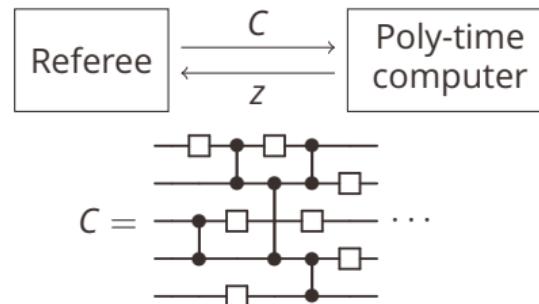


CHSH game: output a, b such that $a \oplus b = xy$.

Bell inequality: $\Pr[a \oplus b = xy] \leq \frac{3}{4}$

Tsirelson inequality: $\Pr[a \oplus b = xy] \leq \cos^2\left(\frac{\pi}{8}\right)$

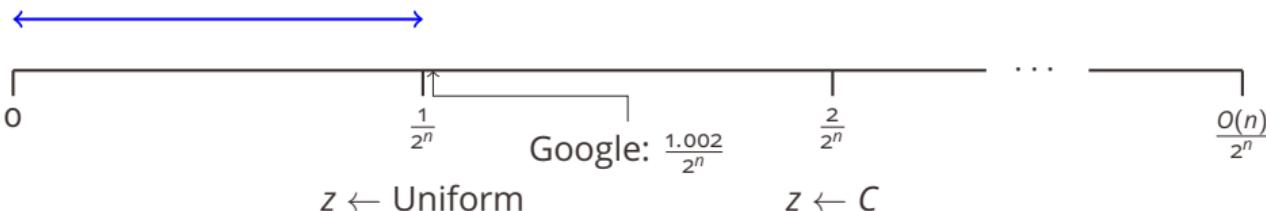


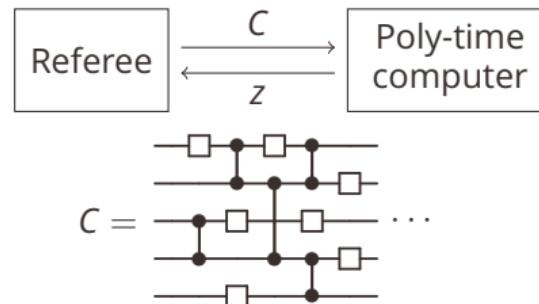


XHOG task: output $z \in \{0,1\}^n$ such that $|\langle z|C|0^n\rangle|^2$ is large.

“Bell” inequality: $\mathbb{E}[|\langle z|C|0^n\rangle|^2] \leq \frac{1}{2^n}$

Classical computation

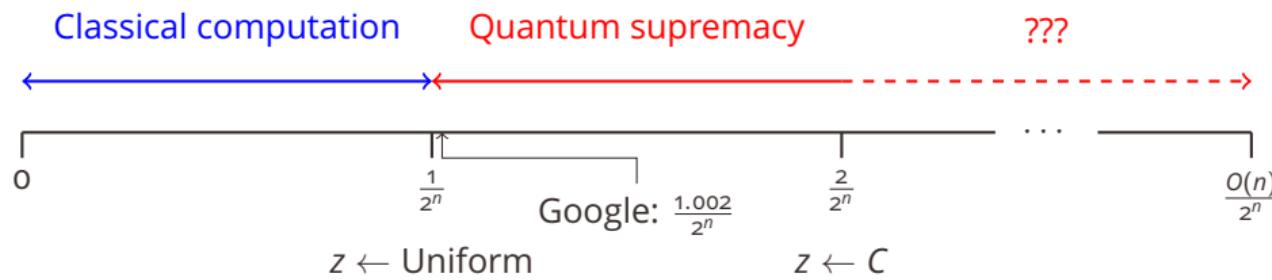




XHOG task: output $z \in \{0,1\}^n$ such that $|\langle z|C|0^n\rangle|^2$ is large.

“Bell” inequality: $\mathbb{E}[|\langle z|C|0^n\rangle|^2] \leq \frac{1}{2^n}$

“Tsirelson” inequality: $\mathbb{E}[|\langle z|C|0^n\rangle|^2] \stackrel{?}{\leq} \frac{b}{2^n}$



Theorem (This work)

Let C be a Haar-random n -qubit unitary. Let $\varepsilon \geq \frac{1}{\text{poly}(n)}$. Then any quantum algorithm that outputs a string z such that $\mathbb{E} [|\langle z | C | 0^n \rangle|^2] \geq \frac{2+\varepsilon}{2^n}$ requires $\Omega \left(\frac{2^{n/4}}{\text{poly}(n)} \right)$ queries to C .

Theorem (This work)

Let C be a Haar-random n -qubit unitary. Let $\varepsilon \geq \frac{1}{\text{poly}(n)}$. Then any quantum algorithm that outputs a string z such that $\mathbb{E} [|\langle z | C | 0^n \rangle|^2] \geq \frac{2+\varepsilon}{2^n}$ requires $\Omega \left(\frac{2^{n/4}}{\text{poly}(n)} \right)$ queries to C .

- + Similar results for other oracles.

Theorem (This work)

Let C be a Haar-random n -qubit unitary. Let $\varepsilon \geq \frac{1}{\text{poly}(n)}$. Then any quantum algorithm that outputs a string z such that $\mathbb{E} [|\langle z | C | 0^n \rangle|^2] \geq \frac{2+\varepsilon}{2^n}$ requires $\Omega \left(\frac{2^{n/4}}{\text{poly}(n)} \right)$ queries to C .

- + Similar results for other oracles.
- + $O(2^{n/3})$ upper bound, by collision finding.

- Real-world relevance

- Real-world relevance
- Random unitary oracles

- Real-world relevance
- Random unitary oracles
- Not a decision problem

- Real-world relevance
- Random unitary oracles
- Not a decision problem
- Needs new tools

Canonical

$$\mathcal{U}|\perp\rangle = |\psi\rangle$$

$$\mathcal{U}|\psi\rangle = |\perp\rangle$$

$$\mathcal{U}|\varphi\rangle = |\varphi\rangle$$

Random

$$\mathcal{V} = \begin{bmatrix} | & ? & ? \\ |\psi\rangle & ? & ? \\ | & ? & ? \end{bmatrix}$$

Canonical

$$\mathcal{U}|\perp\rangle = |\psi\rangle$$

$$\mathcal{U}|\psi\rangle = |\perp\rangle$$

$$\mathcal{U}|\varphi\rangle = |\varphi\rangle$$

Random

$$\mathcal{V} = \begin{bmatrix} | & ? & ? \\ |\psi\rangle & ? & ? \\ | & ? & ? \end{bmatrix}$$

\longleftrightarrow

Theorem (Ambainis-Rosmanis-Unruh 2014)

T queries to \mathcal{U} can be simulated with a “resource state”:

$$|R\rangle := \bigotimes_{j=1}^k \alpha_j |\psi\rangle + \beta_j |\perp\rangle$$

where $k \sim T^2$.

- ➡ Consider algorithms that just have copies of $|\psi\rangle$
- ➡ Easy lower bound, by symmetry

Tighter bounds? Between $2^{n/4}$ and $2^{n/3}$

Tighter bounds? Between $2^{n/4}$ and $2^{n/3}$

Stronger evidence of **real-world** hardness?

Tighter bounds? Between $2^{n/4}$ and $2^{n/3}$

Stronger evidence of **real-world** hardness?

Computational **pseudorandomness** of
random quantum circuits?

William Kretschmer

<https://www.cs.utexas.edu/~kretsch/>
kretsch@cs.utexas.edu

The University of Texas at Austin
Computer Science