THE PPT? CONJECTURE HOLDS FOR ALL CHOI-TYPE MAPS
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In the rapidly developing field of Quantum technologies, the task of entanglement distribution between two
parties occupies a central stage in many important protocols [BBCT93, Eke91]. However, as the distance
between the two parties increases, the error probability in any transmission channel gets larger, resulting in
degradation of the quality of the distributed entanglement. To overcome this problem, quantum repeater devices
are used [BDCZ98]. The basic idea of such a device is to split up the long transmission channel into shorter
manageable segments, each of which can be supplied with high fidelity entangled states. Then, the well-known
entanglement swapping technique [ZZHE93] can be used to transfer the entanglement from the intermediate
segments to the ends of the transmission channel. A key conjecture in this regard was proposed by M. Christandl
[Chr12], which states that all PPT (positive under partial transposition) entangled states are useless from the
perspective of repeater devices, since the swapping of entanglement in such states inevitably leads to a separable
(non-entangled) state. This conjecture has profound implications in the realm of quantum cryptography, where
it implies that although PPT states can be employed to distill secret key between two parties in a bipartite
setting [HHHOO5], the same cannot be done using PPT states in a repeater scenario [BCHW15, CF17]. The
conjecture admits an equivalent formulation in terms of linear maps between matrix algebras, where it amounts
to saying that the composition of any two PPT maps (these are the maps which are both completely positive
and completely copositive) is entanglement breaking.

Conjecture 1. [Chr12] The composition of two arbitrary PPT maps is entanglement breaking.

In the present submission, our primary contribution is a proof of the PPT? conjecture for linear maps between
matrix algebras which are (conjugate) covariant under the action of the diagonal unitary group. This class
of maps is quite rich and includes many notable names like the Choi-type maps, Schur multipliers, classical
channels, etc. The ingredients required in the proof are developed in three papers, which appeared in the
following chronological order:

(1) Diagonal unitary and orthogonal symmetries in quantum theory [SN20a]
(2) Can entanglement hide behind triangle-free graphs? [Sin20]
(3) The PPT? conjecture holds for all Choi-type maps [SN20b]

In [SN20a], we present the general theory of bipartite matrices and linear maps between matrix algebras
which are respectively, invariant and covariant, under the diagonal unitary and orthogonal groups’ actions.
Notably, we show that the separability of such bipartite matrices (or the entanglement breaking property of
the corresponding covariant maps) admits an equivalent description in terms of the cones of pairwise and
triplewise completely positive matrices, which generalize the well-studied cone of completely positive matrices
from combinatorics and optimization theory [BSMO03]. Building upon this link, a novel graph theoretic protocol
is devised in [Sin20] to detect and construct a new kind of entanglement in bipartite quantum states, which
dwells in peculiar “triangle-free” distribution of zeros on the states’ diagonals. Finally, the ideas used in
[Sin20] are more concretely formalized in [SN20b], using a generalization of the matrix-theoretic notion of
factor width for pairwise and triplewise completely positive matrices, which turns out to be instrumental in the
final proof of the PPT? conjecture for the aforementioned class of maps. Hence, in a nutshell, our work proves
the unsuitability of a large class of states (corresponding to the diagonal unitary covariant maps) from the
perspective of repeater protocols and hence provides significant contribution to the solution of a long-standing
open problem in quantum information theory.

1. DIAGONAL UNITARY AND ORTHOGONAL SYMMETRIES IN QUANTUM THEORY
Let us describe in more detail the classes of quantum states and channels that we consider. The key insight

of our work is to analyze the symmetry induced by the diagonal unitary (resp. orthogonal) groups, denoted
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by DU4, resp. DO,4. We investigate this symmetry in the realm of bipartite matrices and linear maps between
matrix algebras; the equivalence between the two scenarios is given by the Choi-Jamiotkowski isomorphism.

There are three different such classes of matrices and maps, corresponding respectively, to the action of D,
the conjugate action of DUy, and the action of DOy4. We introduce them in the following table, with bipartite
matrices and linear maps being segregated to the left and the right, respectively.

Local Diagonal Unitary Invariant (LDUI) Diagonal Unitary Covariant (DUC)
UU)X(U*eU*) =X VU € DU, O(UpU*) =U*®(p)U YU € DU,

Conjugate Local Diagonal Unitary Inv. (CLDUI) Conjugate Diagonal Unitary Covariant (CDUC)
UUHXU*eU)=X VU <€ DU,y O(UpU*) =UP(p)U* VU € DU,

Local Diagonal Orthogonal Invariant (LDOI) Diagonal Orthogonal Covariant (DOC)
(OR0)X(O®0)=X VYO DO, ®(0p0) = 02(p)O VO € DOy

Notably, we can identify the relevant parametrizations for the objects in each class. For example, CDUC
maps are parametrized by a pair of matrices A, B € M (C) having the same diagonal diag A = diag B:

04,5 (p) = diag(A [diag p)) + B © p,

where B = B — diag B, and ® denotes the Hadamard product.

We have identified in the literature a plethora of examples of such states and maps, showcasing the fact
that the set of diagonal symmetric objects is very rich and significant for quantum information theory. The
set of bipartite matrices that we consider contains diagonal states, Werner states [Wer89], isotropic states
[HH99], states which are diagonal in the Dicke basis of the symmetric subspace [Yul6, TAQ" 18], canonical
NPT states [DSST00], and C3 ® C? edge states [KO12]. Diagonal symmetric linear maps include the identity
channel, the transposition, classical channels, Schur multipliers, the Choi map and its many generalizations
[Cho75, CMR18], diagonal-preserving maps [Kye95, LW97], and maps related to the characterization of stable
subspaces of extremal bistochastic maps [MO15, RSC15].

We provide a complete toolkit to study the above classes of matrices and maps, which allows one to uniformly
explore a plethora of relevant questions about a large class of important quantum states and channels.

Theorem 2. Consider two matrices A, B € My(C) having the same diagonal. Then, the following statements
hold for a CLDUI bipartite matrix X and for the CDUC linear map ® corresponding to the pair (A, B):

(1) X is positive semi-definite <= ® is completely positive <= A =0 and B >0

(2) XU is positive semidefinite <= ® is completely copositive < A= 0,B = B*, A;;Aji > |Bi;|? Vi, j
(3) X is PPT <= the map ® is PPT <= A >0, B>0, and A;;A;; > ]Bijlz Vi, j.

(4) X is separable <= @ is entanglement breaking <= (A, B) is pairwise completely positive.

where A %= 0 and B > 0 denote that A is entrywise non-negative and B is positive semi-definite, respectively.

Notice that in the above theorem, the notion of pairwise completely positivity [JM19] (as well as its general-
ization to triples that we introduced) is related to the separability problem; we provide some basic facts about
these notions, and study in detail their convex structure. To be precise, given matrices A, B,C € M (C) with
equal diagonals, we say that (A, B) (resp. (A4, B,(C)) is pairwise completely positive (PCP) (resp. triplewise
completely positive (TCP)) if there exist vectors {|v,), |wy)}ner € C? (for a finite index set I) such that

A= on 0wy @Wa|  B=_ g ©wn)vn © wyl.
nel nel

resp. A=Y |vn O)wn O W  B= |[ug @wplvn Own|  C=Y_|vn © W )vy © W
nel nel nel
The well-studied cone of completely positive matrices [BSMO03] from combinatorics and optimization theory
corresponds to the A = B = C case in the above decompositions.

2. CAN ENTANGLEMENT HIDE BEHIND TRIANGLE-FREE GRAPHS?

We now proceed to briefly describe the ideas used in [Sin20] to establish a link between the entanglement of a
bipartite quantum state and the zero-pattern of its diagonal. Given an arbitrary state p € M (C) ® My(C), we
define matrices A, B,C € M,4(C) entrywise as A;; = (ij|plij), Bij = (ii|pljj), and Cj; = (ij|p|ji). A d-vertex
graph G(A) can then be associated to A in such a way that for i # j, {7, j} forms an edge in G(A) if both A;;
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and Aj; are non-zero. We say that p is A-free if G(A) does not contain any triangles. From this definition, it
is clear that the A-freeness of a state is nothing but a restriction on the zero-pattern of the state’s diagonal.
Now, by locally projecting p into the LDOI subpsace: p — Eo[(O ® O)p(O ® O)] = pa,p,c, we see that the
A-free property forces any set of vectors {|v,), |wn)nesr C C¢ forming the TCP decomposition of (A4, B, C) (if
it exists at all) to have small common support, i.e. o(v, ® wy) < 2 for each n € I, where o(v) denotes the size
of the support of |v) € C? This leads us to a non-trivial necessary condition for the separability of p in terms
of positivity of the associated comparison matrices M (B) and M (C') [Sin20, Theorem III.2], which can easily
be exploited to devise a simple entanglement detection strategy in bipartite states (recall that for Z € My(C),
its comparison matrix M (Z) is defined entrywise as M(Z);; = |Z;;| for i = j and M(Z);; = —|Z;j| otherwise).

Theorem 3. Let p be an arbitrary d @ d A-free state with the associated matrices A, B,C defined as above.
Then, p is entangled if either M (B) or M(C) is not positive semi-definite.

Since the conditions stated in the above theorem are very easy to verify in practice (efficient classical al-
gorithms exist to check both the A-freeness of a graph and the positivity of a given matrix), one can deduce
that Theorem 3 provides a highly non-trivial yet computationally efficient entanglement test. As the number of
A-free zero patterns increases rather tremendously with the system’s dimensions, so does the number of A-free
entangled families of states. For instance, using the protocol presented in [Sin20, Section IV], one can construct
~ 1019 distinct families of PPT-entangled A-free states in a paltry 15 ® 15 system.

3. THE PPT? CONJECTURE HOLDS FOR ALL CHOI-TYPE MAPS

In [SN20b], we formalize the idea of PCP/TCP decompositions of matrix pairs/triples having small com-
mon supports by introducing the notion of factor width. A PCP (resp. TCP) matrix pair (A, B) (resp.
triple (A, B,C)) is said to have factor width k if it admits a PCP (resp. TCP) decomposition with vectors
{|vn) , |wn) Yner € C% such that o(v, ® wy,) < k for each n € I. In this terminology, the results of the previous
section can be seen to revolve around the properties of PCP/TCP matrices with factor width 2. The primary
technical tool required in our proof of the PPT? conjecture for (C)DUC maps relies on the following necessary
and sufficient condition for matrix pairs (A, B) to be PCP with factor width 2 [SN20b, Theorem 3.10].

Theorem 4. Let A, B € My4(C) have equal diagonals such that A is entrywise positive, B is positive semi-
definite and A;jAj; > |Byj|* Vi, j. Then, (A, B) is PCP with factor width 2 <= M (B) is positive semi-definite.

It can be shown that the above characterization ceases to hold for TCP matrices due to the added complexity
of the third matrix [SN20a, Example 9.2]. Having equipped ourselves with all the necessary machinery, we
now present an outline of our proof of the PPT? conjecture for (C)DUC maps. Using elementary algebra,
one can deduce that the composition of two arbitrary PPT (C)DUC maps with the associated matrix pairs
(A1, B1), (A2, By) yields another PPT (C)DUC map, which has either one of the following two associated matrix
pairs: (Q[, %) = (AlAQ, By @Bér +diag(A1A2 — By @BQ)) or (Ql/, ’B/) = (AlAQ, B1© By —|—diag(A1A2 — By @Bg)).
The strategy then is to use Theorem 4 to show that both (,B) and (',B’) are PCP with factor width 2,
which implies that the composition is entanglement breaking (see Theorem 2), thus completing the proof.

Theorem 5. The composition of two arbitrary PPT (C)DUC maps corresponds to a PCP matriz pair with
factor width 2; in particular, it is entanglement breaking.

It should be noted that Theorem 5 contains a stronger version of the PPT? conjecture for (C)DUC maps,
since the cone of all PCP matrices is a strict superset of the cone of PCP matrices with factor width 2. Finally,
we expect that the resolution of the PPT? conjecture for DOC maps will require stronger separability criteria
for the associated Choi matrices, in terms of sufficient conditions for membership in PCP/TCP cones.

In conclusion, we would like to emphasize the diversity of the various realms of physics and mathematics
that are spanned by our research. First of all, the core subject lies in the area of quantum information theory,
pertaining more precisely to entanglement theory. The different classes of invariant bipartite states and covariant
linear maps that we study are formulated in the framework of multi-linear algebra. Convexity theory plays a
crucial role in our study because of the focus given to the cones of positive semidefinite, PPT, and separable
invariant matrices, which are shown to admit equivalent descriptions in terms of certain associated cones of
matrix pairs/triples. The study of A-free entanglement borrows crucial concepts from graph theory. Finally,
the investigations into the notion of factor width entails the use of important techniques from matriz analysis,
particularly from the Perron-Frobenious theory of non-negative matrices.
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