

Secure Software Leasing and Implications for Quantum Copy-Protection and Obfuscation

Prabhanjan Ananth
UC Santa Barbara

Joint with
Gorjan Alagic (QuICS, University of Maryland),
Zvika Brakerski (Weizmann Institute of Science),
Yfke Dulek (CWI / QuSoft),
Rolando L. La Placa (MIT) and,
Christian Schaffner (University of Amsterdam / QuSoft)

Merge of

"Impossibility of Quantum Virtual Black-Box Obfuscation of
Classical Circuits"

Alagic, Brakerski, Dulek, Schaffner

Link: <https://arxiv.org/pdf/2005.06432>

and

"Secure Software Leasing"

Ananth, La Placa

Link: <https://arxiv.org/abs/2005.05289>

Unclonable Cryptographic Primitives

Use no-cloning property of quantum computing
to obtain exciting cryptographic primitives!

Unclonable Cryptographic Primitives

Use no-cloning property of quantum computing
to obtain exciting cryptographic primitives!

Unclonable Cryptographic Primitives

Use no-cloning property of quantum computing
to obtain exciting cryptographic primitives!

- Quantum Money [Weisner'83,...]
- Quantum Copy-Protection [Aar'09]
- Certifiable Deletion Encryption [BI'19]
- Revocable Timed-Release Encryption [Unr'13]
- Unclonable Encryption [Got'02, BL'19]
- One-Shot Signatures and Signature Tokens [BS'16, AGKZ'20]
- Quantum Lightning [Zha'17]

Problem: Software Piracy

Software vendors want to prevent users to generate copies of their software for profit.

Problem: Software Piracy

Software vendors want to prevent users to generate copies of their software for profit.

Classical representation of software can be copied.

Problem: Software Piracy

Software vendors want to prevent users to generate copies of their software for profit.

Classical representation of software can be copied.

Can we use quantum no-cloning theorem to solve this?

Quantum Copy Protection [Aaronson CCC'09]

Quantum copy-protection: A solution for preventing software piracy.

Quantum copy-protection: A solution for preventing software piracy.

- **Functionality:** The vendor can copy-protect the software and send the copy-protected version to the user.

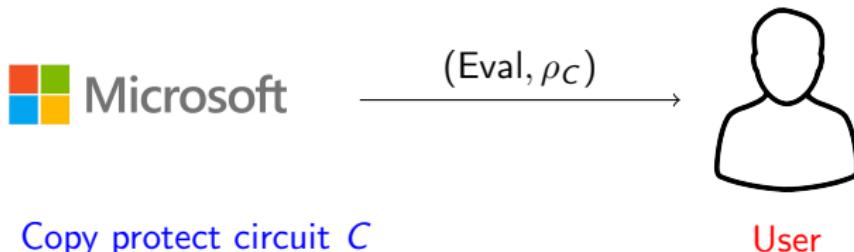
Quantum copy-protection: A solution for preventing software piracy.

- **Functionality:** The vendor can copy-protect the software and send the copy-protected version to the user.
- **Security:** The user shouldn't be able to re-distribute the software to other people.

Quantum copy-protection: A solution for preventing software piracy.

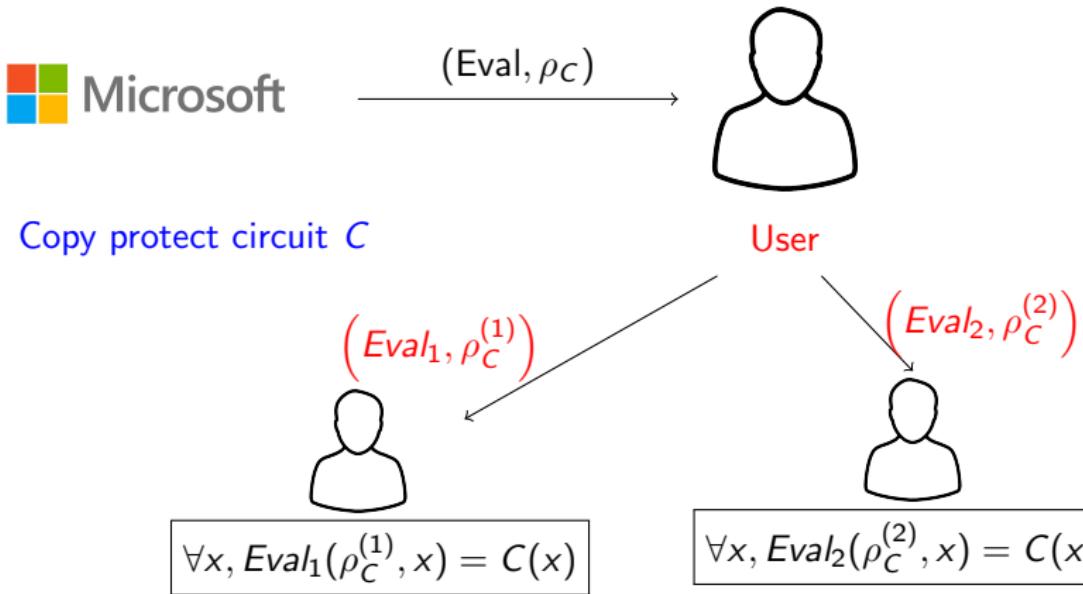
- **Functionality:** The vendor can copy-protect the software and send the copy-protected version to the user.
- **Security:** The user shouldn't be able to re-distribute the software to other people.
(**uncloneability!**)

Quantum Copy-Protection [Aaronson CCC'09]



Functionality: $\forall x, \text{Eval}(\rho_C, x) = C(x)$

Quantum Copy-Protection [Aaronson CCC'09]



User can succeed only with very small (negligible) probability.

(For simplicity: consider product states and only two copies.
Adversary can output entangled states and multiple copies.)

Implications of Quantum Copy-Protection

Implications of Quantum Copy-Protection

- Public-Key Quantum money [ALLZZ'20]
- Unclonable encryption [BL'19]
- Unclonable Decryption Keys [GZ'20]

Quantum Copy-Protection

Quantum Copy-Protection

- Unlearnable functions in **classical oracle model**
[Aaronson-Liu-Liu-Zhang-Zhandry arXiv'20]

Quantum Copy-Protection

- Unlearnable functions in **classical oracle model**
[Aaronson-Liu-Liu-Zhang-Zhandry arXiv'20]
- **Heuristic** construction for point functions in the plain model
[Aaronson CCC'09]

Does there exist quantum copy-protection for
all unlearnable functions?
(open since [Aaronson CCC'09])

Does there exist quantum copy-protection for
all unlearnable functions?
(open since [Aaronson CCC'09])

Our work: NO (conditionally)

Our Result

Theorem.

Based on quantum hardness of learning with errors (QLWE), there does not exist quantum copy-protection for all unlearnable functions.

Our Result

Theorem.

Based on quantum hardness of learning with errors (QLWE), there does not exist quantum copy-protection for all unlearnable functions.

Learning with errors is heavily used in cryptography.

It is conjectured to be secure against QPT algorithms

We identify a class of functions such that:

- *This class of functions is quantum unlearnable.*

We identify a class of functions such that:

- *This class of functions is quantum unlearnable.*
- *Given any copy-protected state that computes this function, we can create new copies of this function.*

Implications to Program Obfuscation

Program Obfuscation

A compiler: $C \rightarrow \hat{C}$

- $\hat{C} \equiv C$ and,
- \hat{C} hides the implementation details of C .

Obfuscation has powerful implications in crypto and beyond.

- Secure multiparty computation
- Functional encryption
- Delegation
- Instantiating oracles.
- Differential privacy lower bounds
- Hardness of finding Nash
- ...

Virtual Black-box Property

For any QPT adversary \mathcal{A} , there exists a QPT simulator Sim , with oracle access to C , such that:

$$\{\mathcal{A}(\widehat{C})\} \approx \{\text{Sim}^{\mathcal{O}(C)}(1^{|C|})\}$$

Quantum Virtual black-box (qVBB) Obfuscation:
transforms (classical) circuit C into a quantum state ρ_C :

Quantum Virtual black-box (qVBB) Obfuscation:
transforms (classical) circuit C into a quantum state ρ_C :

- (i) ρ_C computes C and,

Quantum Virtual black-box (qVBB) Obfuscation:
transforms (classical) circuit C into a quantum state ρ_C :

- (i) ρ_C computes C and,
- (ii) having ρ_C is the same as having black-box access to C .

Quantum Virtual black-box (qVBB) Obfuscation:
transforms (classical) circuit C into a quantum state ρ_C :

- (i) ρ_C computes C and,
- (ii) having ρ_C is the same as having black-box access to C .

Our Result

Theorem.

*Based on quantum hardness of learning with errors (QLWE),
there does not exist qVBB for classical circuits.*

Our Result

Theorem.

*Based on quantum hardness of learning with errors (QLWE),
there does not exist qVBB for classical circuits.*

Prior work: ruled out qVBB only for quantum circuits into reusable obfuscated states [AF'16]

Constructing quantum copy-protection
for
a subclass of unlearnable functions?
(without oracles)

Constructing quantum copy-protection
for
a subclass of unlearnable functions?
(without oracles)

...seems hard.

Constructing quantum copy-protection
for
a subclass of unlearnable functions?
(without oracles)

...seems hard.

However, in some settings, weaker notions suffice.

Copy-protection: given (Eval, ρ_C) , adversary cannot produce $(\text{Eval}_1, \rho_C^{(1)})$ and $(\text{Eval}_2, \rho_C^{(2)})$ such that:

$\text{Eval}_1(\rho_C^{(1)}, \cdot)$ computes C and,
 $\text{Eval}_2(\rho_C^{(2)}, \cdot)$ computes C .

In some scenarios, adversary does not get to choose its own evaluation algorithms.

In some scenarios, adversary does not get to choose its own evaluation algorithms.

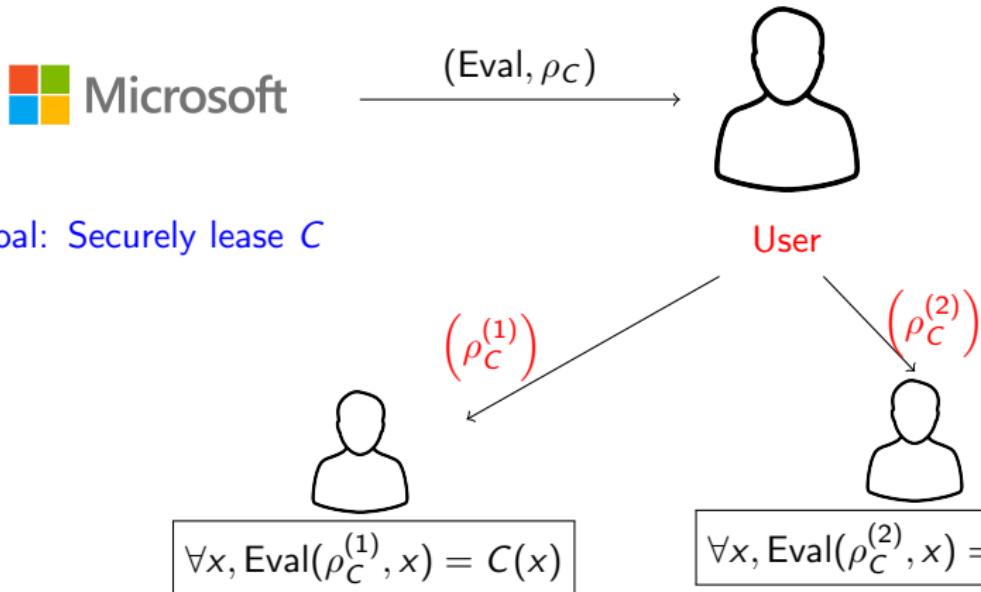
Example: Software X runs only on a specific OS.

Adversary can create “open source” version of X.

But we want to prevent them from creating new copies of X that run on the same OS.

Our Notion: Secure Software Leasing

Secure Software Leasing



User can succeed only with very small (negligible) probability.

(For simplicity: product states. Adversary can output entangled states.)

Adversary receives (ρ_C, Eval) .

Infinite-term Lesser Security: only with negl. probability, it can produce $(\rho_C^{(1)})$ and $(\rho_C^{(2)})$ such that,

$$\begin{aligned}\text{Eval}(\rho_C^{(1)}, \cdot) &\equiv C \text{ and,} \\ \text{Eval}(\rho_C^{(2)}, \cdot) &\equiv C\end{aligned}$$

Adversary receives (ρ_C, Eval) .

Infinite-term Lesser Security: only with negl. probability, it can produce $(\rho_C^{(1)})$ and $(\rho_C^{(2)})$ such that,

$$\begin{aligned}\text{Eval}(\rho_C^{(1)}, \cdot) &\equiv C \text{ and,} \\ \text{Eval}(\rho_C^{(2)}, \cdot) &\equiv C\end{aligned}$$

Finite-term Lesser Security: adversary has to return back ρ_C . After returning back the state, only with negligible probability, it can produce ρ'_C such that,

$$\text{Eval}(\rho'_C, \cdot) \equiv C$$

Theorem.

*Based on cryptographic assumptions,
there exists infinite-term SSL for a subclass of unlearnable
functions.*

Class of functions: compute-and-compare.

$(f_a(x))$: take as input x , computes on x to obtain a' and outputs 1 if and only if $a' = a$.)

Subsequent Work

- Finite-term SSL for a subclass of unlearnable functions from QLWE [KNY'20]
- Infinite-term SSL for a different class of unlearnable functions [ALLZZ'20]
- Information-theoretic SSL in the random oracle model [CMP'20]

Summary of Results

1. Conditional impossibility result of quantum copy-protection
2. Conditional impossibility result of quantum VBB obfuscation.
3. Construction of a weaker notion of copy-protection, called SSL.

Impossibility of Quantum Copy-Protection

Tool: Quantum Fully Homomorphic Encryption (QFHE)

Given encryption of ρ , quantum circuit C ,
can efficiently recover encryption of $C(\rho)$.

**First Attempt:
Barak et al.'s technique [BGIRSVY CRYPTO'01]**

Using QFHE, we construct a class of unlearnable circuits that cannot be copy-protected

Class of Circuits

Class of Circuits

$C_{a,b}$: on input x ,

Class of Circuits

$C_{a,b}$: on input x ,

- If $x = 0$, output $\text{Enc}(a)$.

Class of Circuits

$C_{a,b}$: on input x ,

- If $x = 0$, output $\text{Enc}(a)$.
- If $x = a$, output b .

Class of Circuits

$C_{a,b}$: on input x ,

- If $x = 0$, output $\text{Enc}(a)$.
- If $x = a$, output b .
- On all other inputs, output 0.

$C_{a,b}$: on input x ,

- If $x = 0$, output $\text{Enc}(a)$.
- If $x = a$, output b .
- On all other inputs, output 0.

Proof of quantum unlearnability:

Adversary method [Ambainis STOC'00]

Class of Circuits

$C_{a,b}$: on input x ,

Class of Circuits

$C_{a,b}$: on input x ,

- If $x = 0$, output $\text{Enc}(a)$.

Class of Circuits

$C_{a,b}$: on input x ,

- If $x = 0$, output $\text{Enc}(a)$.
- If $x = a$, output b .

Class of Circuits

$C_{a,b}$: on input x ,

- If $x = 0$, output $\text{Enc}(a)$.
- If $x = a$, output b .
- On all other inputs, output 0.

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.
- Homomorphically evaluate U on input $\text{Enc}(a)$ and $\text{Enc}(\rho_C)$.
The result is $\text{Enc}(U(\rho_C, a)) = \text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.
- Homomorphically evaluate U on input $\text{Enc}(a)$ and $\text{Enc}(\rho_C)$.
The result is $\text{Enc}(U(\rho_C, a)) = \text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$

To copy $C_{a,b}$, we need to recover b ...

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.
- Homomorphically evaluate U on input $\text{Enc}(a)$ and $\text{Enc}(\rho_C)$.
The result is $\text{Enc}(U(\rho_C, a)) = \text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$

To copy $C_{a,b}$, we need to recover b ...

.. but b is encrypted.

Idea: use special-purpose program obfuscation to recover b .

This notion can be based on QLWE.

Class of Circuits

$C_{a,b}$: on input x ,

- If $x = 0$, output $(\text{Enc}(a), \mathcal{O}(G))$
- If $x = a$, output b .
- On all other inputs, output 0.

Description of G :

On input $\text{Enc}(b)$, output a, b

(implicitly the function G has the decryption key hardwired inside it.)

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.
- Homomorphically evaluate U on input $\text{Enc}(a)$ and $\text{Enc}(\rho_C)$.
The result is $\text{Enc}(U(\rho_C, a)) = \text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.
- Homomorphically evaluate U on input $\text{Enc}(a)$ and $\text{Enc}(\rho_C)$.
The result is $\text{Enc}(U(\rho_C, a)) = \text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$
- Compute $\mathcal{O}(G)$ on $\text{Enc}(a)$, $\text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$ to recover a, b .

Insecurity of copy-protection of $C_{a,b}$

Given (U, ρ_C) implementing $C_{a,b}$, do the following:

- On input 0, obtain $\text{Enc}(a)$.
- Homomorphically evaluate U on input $\text{Enc}(a)$ and $\text{Enc}(\rho_C)$.
The result is $\text{Enc}(U(\rho_C, a)) = \text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$
- Compute $\mathcal{O}(G)$ on $\text{Enc}(a)$, $\text{Enc}(|b\rangle\langle b| \otimes \rho'_C)$ to recover a, b .

Using $\text{Enc}(a), a, b$, can create as many copies of $C_{a,b}$ as we want!

Requirement of QFHE: evaluation of arbitrary depth quantum circuits

Requirement of QFHE: evaluation of arbitrary depth quantum circuits

Current constructions of QFHE based on circular-secure QLWE
[Mahadev FOCS'18, Brakerski CRYPTO'18]

Removing Circular Security

Replace QFHE with leveled QFHE.

(Leveled QFHE: evaluation of fixed-depth quantum circuits.)

Idea

Instead of producing the public-key and the ciphertext in one shot,

produce the public-key and the ciphertext gradually over many computations of the circuit.

(Each computation produces a small piece of the public-key and the ciphertext)

Removing Circular Security

Replace QFHE with leveled QFHE.

(Leveled QFHE: evaluation of fixed-depth quantum circuits.)

Idea

Instead of producing the public-key and the ciphertext in one shot,

produce the public-key and the ciphertext gradually over many computations of the circuit.

(Each computation produces a small piece of the public-key and the ciphertext)

Refer to [Alagic-Brakerski-Dulek-Schaffner'20] for more details.

Summary and Future Questions

Summary:

- For contrived class of unlearnable functions, copy-protection is impossible.
- Weaker notions of copy-protection for a non-trivial class of unlearnable functions can be constructed.
(first feasibility results in the plain model)

Summary and Future Questions

Summary:

- For contrived class of unlearnable functions, copy-protection is impossible.
- Weaker notions of copy-protection for a non-trivial class of unlearnable functions can be constructed.
(first feasibility results in the plain model)

Future Questions:

- Other variants of copy-protection.
- Provably secure constructions copy-protection for any non-trivial class of circuits (such as point functions).
- Constructing weaker variants of quantum obfuscation.
For example: quantum indistinguishability obfuscation.

Thanks! ¹

¹Some of the slides were prepared by Rolando L. La Placa