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Introduction. In any realistic setting, a quantum system undergoes unavoidable interactions with its
environment. These interactions lead to alterations of the information initially contained in the system.
Within the current context of emerging quantum information-processing devices, a proposed solution to
the problem of decoherence is to encode the quantum logical information into a highly entangled many-
body state in order to protect it from the action of local noise [3,4]. Such a state will typically belong to
the ground space of a Hamiltonian modeling the noiseless, unitary evolution of the system in the absence
of an environment. When the environmental noise can be modeled by a Markovian evolution and below
some critical temperature, the resulting self-correcting quantum memory should survive for a time which
scales at least polynomially with the size of the system. Conversely, faster decoherence was recently
used as a viable method for the preparation and control of relevant phases of matter [5HI], as well as to
estimate the run-time of algorithms based on the efficient preparation of a Gibbs state [10]. The variety
of the aforementioned applications indicates the importance of finding easy criteria for the study of the
speed at which quantum lattice spin systems thermalize.

Since the seminal works of Dobrushin-Shlosman and Stroock-Zegarlinski, equilibrium and out-of-
equilibrium properties of classical lattice spin systems are known to be closely related: in their attempt
to answer the problem of the analytical dependence of a Gibbs measure to its corresponding potential,
Dobrushin and Shlosman introduced twelve equivalent statements, one of which we refer to as the con-
dition of exponential decay of correlations: the correlations between two separated regions A and B of a
lattice spin system decay exponentially in the distance separating A from B. On the other hand, given
a potential, one can construct a Markov process, usually called Glauber dynamics, whose reversing state
coincides with the Gibbs state for the given potential. For these dynamics, Holley and Stroock [11], 12]
made the key observation that systems thermalizing in times scaling logarithmically in the system size,
a property known as rapid mizing, satisfy exponential decay of correlations at equilibrium. The converse
implication, namely that exponential decay of correlations implies rapid mixing, was investigated later
on in a series of articles [I3HI5] by Zegarlinski and Stroock, who proved the stronger condition of an ex-
ponential entropic decay of the dynamics towards the limiting Gibbs measure, also known as logarithmic
Sobolev inequality. Moreover, any of these equivalent conditions occurs above some critical temperature,
hence rigorously establishing the equivalence between dynamical and static phase transitions.

The extension of the above unifying theory to quantum spin systems is still far from being well
understood. Based on previous work of [16], Temme and Kastoryano recently showed that, above a
critical temperature, any heat-bath dynamics associated with a commuting Hamiltonian satisfies the
rapid mixing property [I7]. Previously, the uniform positivity of the spectral gap for these Markov
processes was shown in [I§] to be equivalent to a stronger condition of clustering of the correlations.
More recently, exponential clustering of correlations of a Gibbs state was proved to imply its efficient
preparation on a quantum [19] or classical [20] computer. In other words, the transition in the phase of
a quantum system is also accompanied by a transition in the hardness of approximation [21].

Logarithmic Sobolev inequalities are by now one of the most powerful tools available in the study
of classical spin systems [22], and are still the subject of active research [23-25]. They have also found
numerous applications in optimization, information theory and probability theory [26H29], just to name a
few. Further developing these tools to quantum systems is likely to find a smorgasbord of applications, as
already illustrated by the ones contained in this submission. Prior to this work, only very few quantum
systems were known to satisfy a logarithmic Sobolev inequality [30H32], and establishing it has been an
open problem for years [18].



Summary of results. In this submission, we make significant progress towards a generalization of the
theory to the quantum setting by proving the equivalence between (i) entropic exponential convergence to
equilibrium and (ii) exponential decay of correlations, for quantum spin systems evolving under a classical
process. This result constitutes the first unconditional proof of the entropic convergence to equilibrium
for quantum lattice spin systems. We also make progress towards answering the question for quantum
evolutions by proving (ii)=(i) for Gibbs states of 2-local commuting Hamiltonians. Moreover, our results
hold independently of the dimension of the lattice. We emphasize that proving such a result for quantum
systems is nontrivial, even in the case of systems thermalizing to a classical state. This is because the
initial state could be highly entangled, and it is a-priori not clear whether entanglement could be used
as a resource to substantially slow down the thermalization. Our analysis rigorously proves this is not
the case. Entangled initial states also pose significant technical challenges, as most proofs for classical
systems rely on concepts that do not generalize to the quantum settings, such as conditioning on the
boundary or coupling. From a mathematical point of view, our main result constitutes the first complete
proof of the existence of a functional inequality called the modified logarithmic Sobolev inequality (MLSI)
[33] for interacting quantum spin systems independently of the lattice size.

Theorem 1 (MLSI for quantum lattice spin systems (informal)). Given the Gibbs state oa of a local
commuting Hamiltonian H, on the lattice A, there exists a local quantum Markov semigroup (e*“*);=q
converging to o exponentially fast in relative entropy distance if (a) Hj is classical and 8 < S, or (b) Hp
is a nearest neighbour Hamiltonian, and 8 < .. Here, 8. < (5eghx)~! is a critical inverse temperature
depending on the locality k, the interaction strength h and the growth constant g of Hy. In the case
of a classical Hamiltonian, we further prove the equivalence between (i) MLSI, (ii) exponential decay of
correlations in oy, (iii) uniform positivity of the spectral gap and (iv) rapid mixing.

Applications. We present three applications of our results in which the convergence in relative entropy
is crucial. First, we show that the output energy of an Ising quantum annealer subject to finite range
classical thermal noise at high enough temperature outputs a state whose energy is close to that of the
thermal state of the noise after an annealing time that is constant in system-size. Although the results
of [34] also allow us to make a similar analysis based on our MLSI, here we take a new approach by
exploiting quantum optimal transport techniques [35-37], showcasing the potential of such techniques
for quantum computation. Secondly, we apply our results to quantum asymmetric hypothesis testing.
There we show a decay estimate on the type II error for two Gibbs states corresponding to commuting
potentials in the finite blocklength regime. Finally, we also apply our main result to obtain efficient
quantum Gibbs samplers for certain Gibbs states corresponding to commuting potentials. Our methods
only require the implementation of a circuit of local quantum channels of logarithmic depth, in contrast
to previous results [19] that required quasi-local quantum channels.

Our proof of Theorem (1| is adapted from a modern strategy by [38]. It splits into three parts:

Strengthened exponential decay of correlations First, we prove a strengthened exponential decay of
correlations below the critical inverse temperature (.. For a classical Gibbs state, this condition is
precisely the one of Dobrushin-Shlosman. We provide an extension to the commuting, nearest neighbour
setting. Our construction of the conditional expectations involved in the result relies on a Schmidt
decomposition of the local interactions, which was already used in the study of the local Hamiltonian
problem in [39]. We refer to our main article [2] for more details.

Theorem 2 (Conditioned L — Ly, exponential decay of correlations (informal)). Let op be the Gibbs
state of a commuting nearest neighbour Hamiltonian Hp at inverse temperature S < .. Then, for
any two overlapping regions C, D < A, any boundary condition w = wgc,p and any observable X%
conditioned on the boundary of C'u D,
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where {E4}, Ae {C,D,C u D}, is a family of conditional expectations with respect to o, and where o*
is the local Gibbs state conditioned on the boundary of C' u D.

Our result extends on the recent quantum generalization of Dobrushin-Shlosman [20] in two ways:
First, we get a bound in terms of the product of an L; and an L., norm, as opposed to the standard
albeit weaker Lo, — Lo, bound. Secondly, our construction in this specific 2-local setting allows for a local
bound in any subregion C' U D conditioned on its boundary, as opposed to the global bounds found in
[20]. This local refinement is crucial to our subsequent proof of MLSI.

Approximate tensorization of the relative entropy. Cesi’s tour de force was to realize that Dobrushin
and Shlosman’s L1 — Ly exponential decay of correlations could be used to prove the following general-
ization of the strong subadditivity (SSA) of the entropy, here written with quantum notations for sake of
clarity: for any classical state p,

D(p|Ecups(p)) < (14 ¢|C u D| o= BHUPEADIE) (D(p|| Ec.(p)) + D(p|Ep«(p))) - (%)

Indeed, when o, is the maximally mixed state, i.e. at 8 = 0, the (dual) conditional expectation E 44
reduces to the partial trace Tr4 on any region A, and ¢ = 0 so that reduces to the celebrated SSA
[40]: taking C' and D non-overlapping, and B = A\CD, S(BCD), + S(B), < S(BC), + S(BD),. Using
the multivariate trace inequalities recently derived in [41], we extend the result of Cesi to quantum states
in [1], informally stated below in a more general von Neumann algebraic setting. Our result has more
applications than the one of proving Theorem . For instance, we derive tightenings of the entropic
uncertainty relations. We refer to [I] for more details.

Theorem 3 (Approximate tensorization of the quantum relative entropy (informal)). Let # < A1, Mo <
A be finite-dimensional von Neumann algebras, with corresponding conditional expectations F 4, F1 and
FE5. Under a condition of Ly — Lo, clustering of correlations, the following inequality holds: there exists
a constant ¢ depending on the clustering, such that for all quantum state p,

D(p| E.ax(p)) < ¢ (D(p|Erx(p)) + D(p| B2 (p))) + dlp)

where d(p) is a p-dependent additive error term that measures the deviation of p from being diagonal in
the block decomposition of the matrix algebra .

Modified logarithmic Sobolev inequality Theorem states the existence of a constant rate a > 0,
independent, of the size of A, such that for any initial state p evolving according to the semigroup,
D(e?r(p)|oa) < e ! D(p|oa). It turns out that this exponential convergence is equivalent to its
derivative with respect to t at ¢ = 0. The resulting inequality is known as a modified logarithmic Sobolev
inequality (MLSI): for any state p,

aD(ploa) < — % B D(e"“*(p)|oa) = EP g, (p). (MLSI)

The right-hand side of the MLSI has the useful property of being linear in the generator £,. Moreover,
under the Ly — Lo, clustering property of oa, the approximate tensorization of the relative entropy for
classical spins can be used to prove that the left-hand side of MLSI is approximately sub-additive. These
two crucial properties led Cesi to formulate the idea of decomposing the problem into regions of a small
fixed size, where the MLSI constant « is known to exist. However, the non-vanishing of the constant d
on quantum states found in Theorem (3] is responsible for the failure of Cesi’s argument in the quantum
regime. In [2], we devise an original argument, which we refer to as peeling, in order to manage our way
around this issue. In layman’s terms, our idea consists in proving that any initial state p will very quickly
converge into a state v whose constant d(y) vanishes on appropriately chosen regions C' u D. For these
states, we recover (i), which allows us to conclude our proof.
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