

Classifying unitary dynamics with approximate light cones in one dimension

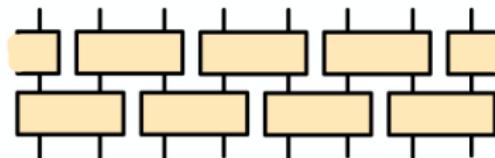
A converse to Lieb-Robinson bounds in one dimension using index theory

Daniel Ranard (Stanford), Michael Walter (Amsterdam),
Freek Witteveen (Amsterdam)

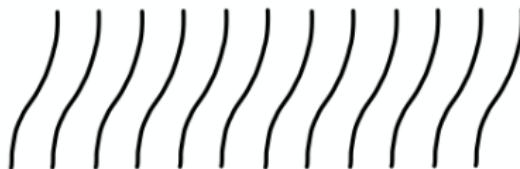
Local dynamics

Local dynamics are ubiquitous in quantum physics and computation.
Two simple one-dimensional examples:

- ▶ Quantum circuit

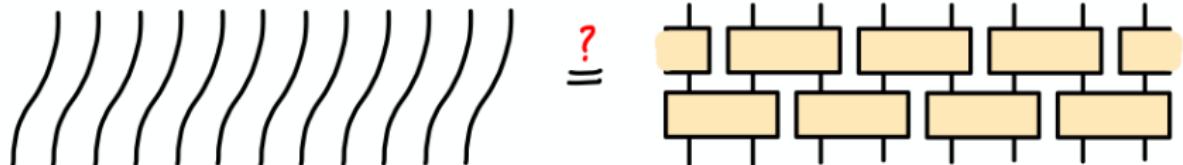


- ▶ Translation



Local dynamics

Quiz question:



Local Hamiltonians and approximately local dynamics

$$H = \sum h_x$$

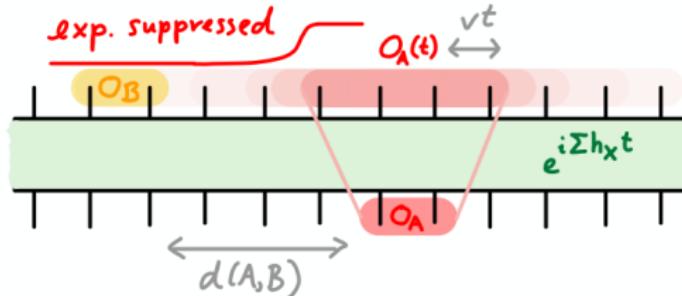
H a local 1D **Hamiltonian**:

Does e^{iHt} give local dynamics?

Use *Heisenberg picture*: $O \mapsto O(t) := e^{-iHt} O e^{iHt}$. If O_A is a local operator on a set A , how local is $O_A(t)$?

Local Hamiltonians and approximately local dynamics

Use *Heisenberg picture*: $O \mapsto O(t) := e^{-iHt} O e^{iHt}$. If O_A is a local operator on a set A , how local is $O_A(t)$?

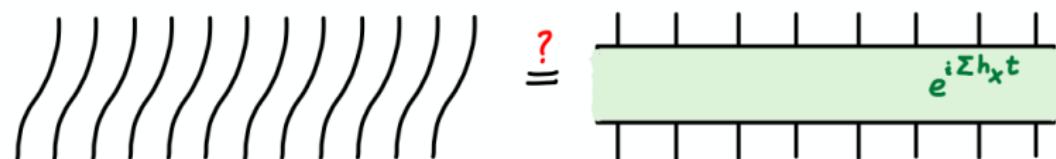


Lieb-Robinson bounds:

$$\|[O_A(t), O_B]\| \leq C e^{-a(d(A, B) - vt)} \|O_A\| \|O_B\|$$

Local Hamiltonians and approximately local dynamics

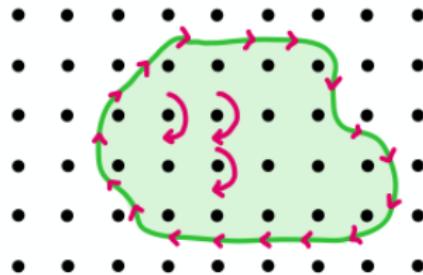
Quiz question: can a translation be *locally generated*, i.e. by some Hamiltonian evolution?



What if we allow H to be time-dependent, polynomial tails?

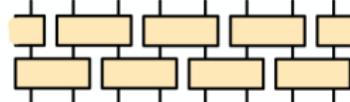
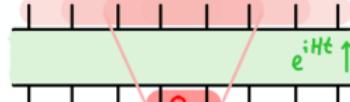
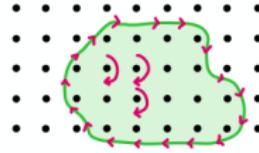
2D Floquet systems with many-body localization

2D Floquet systems with many-body localization gives rise to a 1D dynamics on the *boundary* (Po-Fidkowski-Morimoto-Potter-Vishwanath):



An example of 1D approximately local dynamics that does *not* arise from a Hamiltonian...

Classification of one-dimensional approximately local dynamics

	Locally generated	Not locally generated?
Strictly local		
Approximately local		

Goal: **classify** one-dimensional approximately local dynamics.

Quantum cellular automata

Consider lattice of quantum spins.

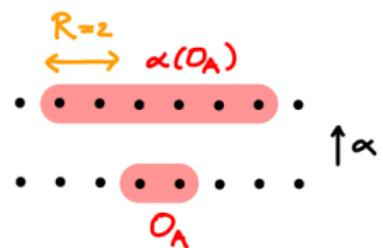
A (Heisenberg picture) channel α is a **quantum cellular automaton** (QCA) with radius R if

- ① α is an automorphism (essentially α is a unitary channel $\alpha(O) = UOU^\dagger$).
- ② For any operator O_A supported on some finite set A , $\alpha(O_A)$ is supported on sites within radius R of A .

(Feynman, Deutsch, Margolus, Schumacher, Watrous,

Werner, ...)

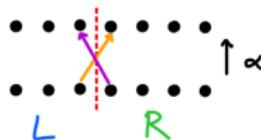
- ▶ Understanding many-body physics
- ▶ Model of computation



Quantum cellular automata and index theory

In one dimension QCAs are completely classified by the **GNVW index** (Gross-Nesme-Vogts-Werner).

Informally:

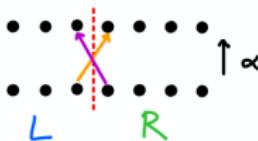


$$\text{ind}(\alpha) = \#\text{qubits moving right} - \#\text{qubits moving left}$$

Quantum cellular automata and index theory

In one dimension QCAs are completely classified by the **GNVW index** (Gross-Nesme-Vogts-Werner).

Informally:



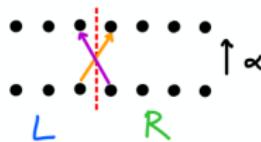
$$\text{ind}(\alpha) = \#\text{qubits moving right} - \#\text{qubits moving left}$$

- $\text{ind}(\alpha) = 0$ if and only if $\alpha =$
- $\text{ind}(\alpha) = \log(d)$ for $\alpha =$
- $\text{ind}(\alpha \circ \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$ and $\text{ind}(\alpha \otimes \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$.

Quantum cellular automata and index theory

In one dimension QCAs are completely classified by the **GNVW index** (Gross-Nesme-Vogts-Werner).

Informally:



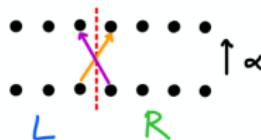
$$\text{ind}(\alpha) = \#\text{qubits moving right} - \#\text{qubits moving left}$$

Consequence: Every 1D QCA can be written as a composition of a tensor product of translations and a circuit.

Quantum cellular automata and index theory

In one dimension QCAs are completely classified by the **GNVW index** (Gross-Nesme-Vogts-Werner).

Informally:

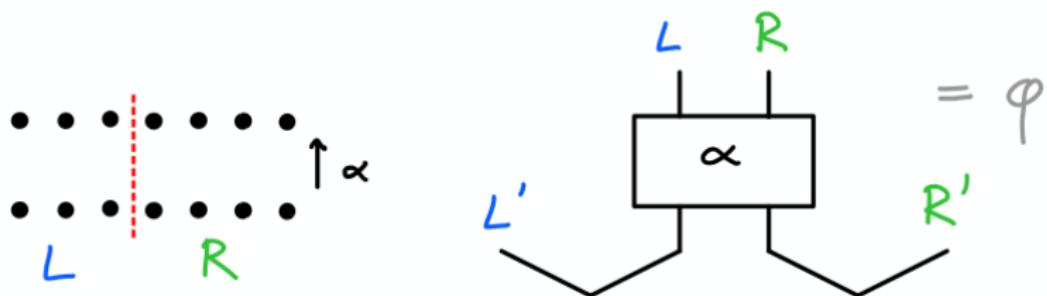


$$\text{ind}(\alpha) = \#\text{qubits moving right} - \#\text{qubits moving left}$$

Answer to first quiz question:

The GNVW index as an information flow

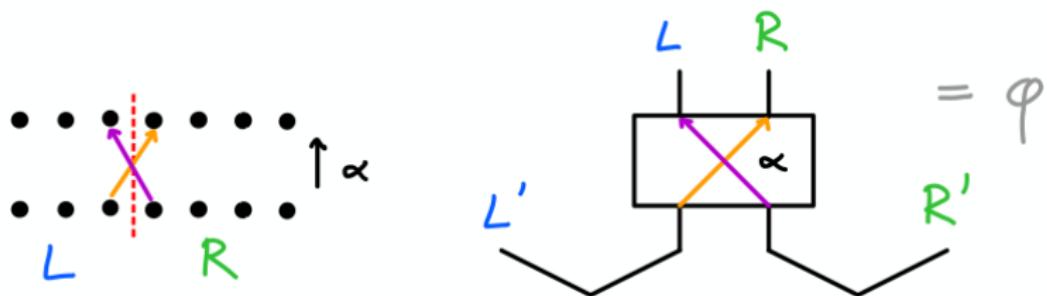
Let ϕ be the *Choi state* of α :



$$\text{ind}(\alpha) = \frac{1}{2} [I(L' : R)_\phi - I(L : R')_\phi]$$

The GNVW index as an information flow

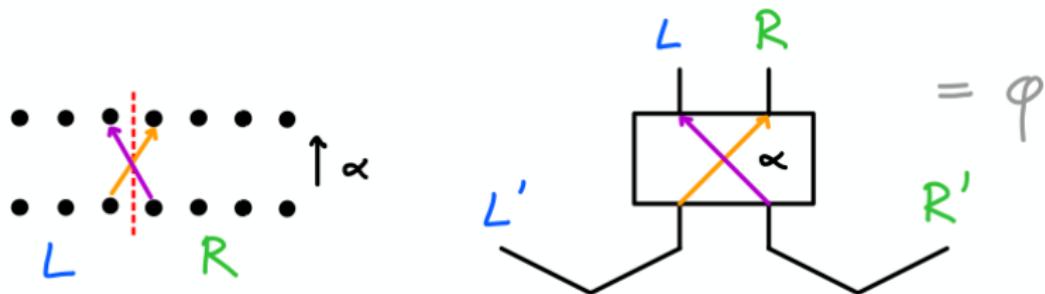
Let ϕ be the *Choi state* of α :



$$\text{ind}(\alpha) = \frac{1}{2} [I(L' : R)_\phi - I(L : R')_\phi]$$

The GNVW index as an information flow

Let ϕ be the *Choi state* of α :



$$\text{ind}(\alpha) = \frac{1}{2} [I(L' : R)_\phi - I(L : R')_\phi]$$

This expression in principle also makes sense for approximately local dynamics. However, it is not at all clear that it takes discrete values!

Approximately local dynamics

Idea: take the definition of a QCA and replace

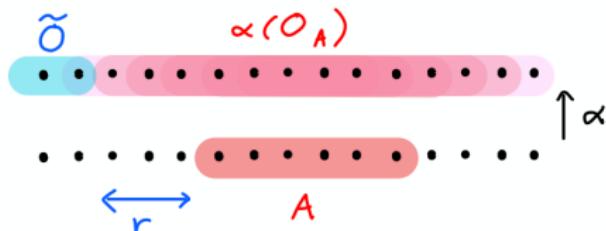
strict locality \Rightarrow Lieb-Robinson type bounds.

Approximately local dynamics

Let $f : \mathbb{N} \rightarrow \mathbb{R}$ be some $o(1)$ function (e.g. $f(r) = e^{-ar}$ or $f(r) = \frac{1}{r^a}$).

We define an **approximately locality preserving unitary** (ALPU) with $f(r)$ -tails on a spin chain to be an automorphism α (of the quasi-local algebra of the spin chain) which is such that for any operator O_A supported on some interval A , and any operator \tilde{O} supported on a set at least r sites away from A

$$\|[\alpha(O_A), \tilde{O}]\| \leq f(r) \|O_A\| \|\tilde{O}\|.$$



Results: approximation by QCAs

Theorem

Suppose α is an ALPU with $f(r)$ -tails. Then there exists a sequence $\alpha^{(r)}$ of QCAs of radius $2r$ such that

$$\|\alpha(O_A) - \alpha^{(r)}(O_A)\| = \mathcal{O}(f(r)|A|)$$

for any operator O_A with $\|O_A\| = 1$ supported on some finite set A .

Idea is as in digital simulation of Hamiltonian evolution, but now without a Hamiltonian and only Lieb-Robinson bounds...

Results: definition of index for ALPUs

Theorem

Suppose α is an ALPU with $f(r)$ -tails, and $\alpha^{(r)}$ a sequence of approximating QCAs as in the previous theorem. Then

- ① For sufficiently large r the value of $\text{ind}(\alpha^{(r)})$ is independent of r and of the choice of approximation. We define

$$\text{ind}(\alpha) := \lim_{r \rightarrow \infty} \text{ind}(\alpha^{(r)}).$$

- ② If $f(r) = \mathcal{O}(\frac{1}{r^{1+\delta}})$ for $\delta > 0$

$$\text{ind}(\alpha) = \frac{1}{2} [I(L' : R)_\phi - I(L : R')_\phi].$$

Results: properties of the index for ALPUs

Theorem

Suppose α, β are ALPUs. Then

- ① $\text{ind}(\alpha \circ \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$ and $\text{ind}(\alpha \otimes \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$.
- ② $\text{ind}(\alpha) = \text{ind}(\beta)$ if and only if there exists a path through the space of ALPUs with $g(r)$ -tails for some $g(r) = o(1)$ from α to β .

In fact, if α and β have $f(r)$ -tails, we may take the path between them to be generated by a some Hamiltonian evolution for unit time with

$$H(t) = \sum_X H_X(t) \quad \|H_X\| \approx \mathcal{O}(f(\text{diam}(X))).$$

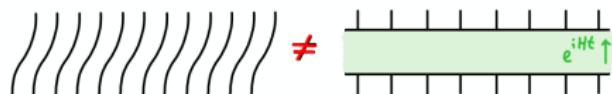
Results: properties of the index for ALPUs

Theorem

Suppose α, β are ALPUs. Then

- ① $\text{ind}(\alpha \circ \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$ and $\text{ind}(\alpha \otimes \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$.
- ② $\text{ind}(\alpha) = \text{ind}(\beta)$ if and only if there exists a path through the space of ALPUs with $g(r)$ -tails for some $g(r) = o(1)$ from α to β .

Answer to the second quiz question:



Results: properties of the index for ALPUs

Theorem

Suppose α, β are ALPUs. Then

- ① $\text{ind}(\alpha \circ \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$ and $\text{ind}(\alpha \otimes \beta) = \text{ind}(\alpha) + \text{ind}(\beta)$.
- ② $\text{ind}(\alpha) = \text{ind}(\beta)$ if and only if there exists a path through the space of ALPUs with $g(r)$ -tails for some $g(r) = o(1)$ from α to β .

All the key properties of the GNVW index generalize under the replacements

QCA \Rightarrow ALPU

circuit \Rightarrow quasi-local Hamiltonian evolution.

This classifies ALPUs modulo Hamiltonian evolutions.

Proof techniques

Suppose $\mathcal{A}, \mathcal{B} \subseteq B(\mathcal{H})$ are algebras. We say that $\mathcal{A} \overset{\varepsilon}{\subseteq} \mathcal{B}$ if for every $O \in \mathcal{A}$

$$\inf_{\tilde{O} \in \mathcal{B}} \|O - \tilde{O}\| \leq \varepsilon \|O\|.$$

Proof techniques

Suppose $\mathcal{A}, \mathcal{B} \subseteq B(\mathcal{H})$ are algebras. We say that $\mathcal{A} \overset{\varepsilon}{\subseteq} \mathcal{B}$ if for every $O \in \mathcal{A}$

$$\inf_{\tilde{O} \in \mathcal{B}} \|O - \tilde{O}\| \leq \varepsilon \|O\|.$$

Theorem (Christensen, 1980)

Suppose $\mathcal{A}, \mathcal{B} \subseteq B(\mathcal{H})$ are hyperfinite von Neumann algebras with $\mathcal{A} \overset{\varepsilon}{\subseteq} \mathcal{B}$ for $\varepsilon < \frac{1}{8}$. Then there exists a unitary $u \in B(\mathcal{H})$ such that

$$u\mathcal{A}u^\dagger \subseteq \mathcal{B} \quad \|u - I\| \leq 12\varepsilon.$$

Can be seen as a type of *Ulam stability* for von Neumann algebras.

Proof techniques

Suppose $\mathcal{A}, \mathcal{B} \subseteq B(\mathcal{H})$ are algebras. We say that $\mathcal{A} \overset{\varepsilon}{\subseteq} \mathcal{B}$ if for every $O \in \mathcal{A}$

$$\inf_{\tilde{O} \in \mathcal{B}} \|O - \tilde{O}\| \leq \varepsilon \|O\|.$$

Theorem (Christensen, 1980)

Suppose $\mathcal{A}, \mathcal{B} \subseteq B(\mathcal{H})$ are hyperfinite von Neumann algebras with $\mathcal{A} \overset{\varepsilon}{\subseteq} \mathcal{B}$ for $\varepsilon < \frac{1}{8}$. Then there exists a unitary $u \in B(\mathcal{H})$ such that

$$u\mathcal{A}u^\dagger \subseteq \mathcal{B} \quad \|u - I\| \leq 12\varepsilon.$$

We provide a self-contained proof in the appendix and prove additional properties of u .

Proof techniques

For the approximation of an ALPU α with $f(r)$ -tails by QCAs:

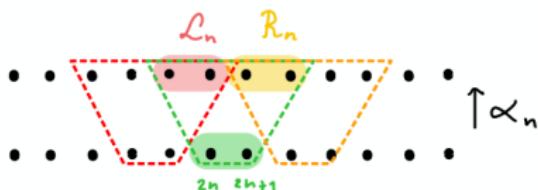
- ① By blocking r sites, α is nearest neighbor up to error $\varepsilon = f(r)$.
- ② Apply the near-inclusion theorem to a sequence of half chain algebras to obtain α_n such that α_n local around site $2n$ and $\|\alpha - \alpha_n\| = \mathcal{O}(\varepsilon)$.



Proof techniques

For the approximation of an ALPU α with $f(r)$ -tails by QCAs:

- ① By blocking r sites, α is nearest neighbor up to error $\varepsilon = f(r)$.
- ② Apply the near-inclusion theorem to a sequence of half chain algebras to obtain α_n such that α_n local around site $2n$ and $\|\alpha - \alpha_n\| = \mathcal{O}(\varepsilon)$.



- ③ This implies a factorization property (GNVW):

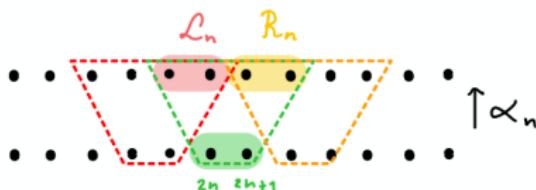
$$\alpha_n(\mathcal{A}_{2n} \otimes \mathcal{A}_{2n+1}) = \mathcal{L}_n \otimes \mathcal{R}_n.$$

Use this to glue together the different α_n to $\alpha^{(r)}$.

Proof techniques

For the approximation of an ALPU α with $f(r)$ -tails by QCAs:

- ① By blocking r sites, α is nearest neighbor up to error $\varepsilon = f(r)$.
- ② Apply the near-inclusion theorem to a sequence of half chain algebras to obtain α_n such that α_n local around site $2n$ and $\|\alpha - \alpha_n\| = \mathcal{O}(\varepsilon)$.



- ③ This implies a factorization property (GNVW):

$$\alpha_n(\mathcal{A}_{2n} \otimes \mathcal{A}_{2n+1}) = \mathcal{L}_n \otimes \mathcal{R}_n.$$

Use this to glue together the different α_n to $\alpha^{(r)}$.

Outlook

- ▶ **Finite systems**: Also works for open chain, not yet for periodic chain.
- ▶ **Higher dimensions**: Fascinating recent work on classification of higher dimensional QCAs (Fidkowski, Freedman, Haah, Hastings). Full classification in 2D, exotic examples in 3D. What about ALPUs in higher dimensions?
- ▶ **Noisy QCAs**: Can also consider strictly local channels which are not unitary (Piroli, Cirac).
Almost unitary and strictly local \Rightarrow close to a QCA?
- ▶ **Algebra stability applications?** Are there other interesting QI applications for the type of algebra stability result we discuss?

Thank you for your attention!