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1 Introduction

A team based at Google has claimed the first experimental demonstration of quantum computational
supremacy on a programmable device [AAB+19]. The experiment involved random circuit sampling,
where the task is to sample (with nontrivial fidelity) from the output distribution of a quantum
circuit containing random 1- and 2-qubit gates. To verify their experiment, they used the so-called
Linear Cross-Entropy Benchmark, or Linear XEB. Specifically, for an n-qubit quantum circuit C
and samples z1, . . . , zk ∈ {0, 1}n, the benchmark is given by:

b =
2n

k
·
k∑
i=1

|〈zi|C|0n〉|2.

The goal is for b to be large with high probability over the choice of the random circuit and the
randomness of the sampler, as this demonstrates that the observations tend to concentrate on the
outputs that are more likely to be measured under the ideal distribution for C (i.e. the noiseless
distribution in which z is measured with probability |〈z|C|0n〉|2). We formalize this task as the
b-XHOG task:

Problem 1 (b-XHOG, or Linear Cross-Entropy Heavy Output Generation). Given a quantum
circuit C on n qubits, output a sample z ∈ {0, 1}n such that E

[
|〈z|C|0n〉|2

]
≥ b

2n , where the
expectation is over an implicit distribution over circuits C and over the randomness of the algorithm
that outputs z.

Here, b “large” means b bounded away from 1, as outputting z uniformly at random achieves
b = 1 on average for any C. On the other hand, if z is drawn from the ideal noiseless distribution
for C, and if the random circuits C empirically exhibit the Porter-Thomas distribution on output
probabilities, then sampling from C achieves b ≈ 2 [AAB+19, AG20].

Under a strong complexity-theoretic conjecture about the classical hardness of nontrivially
estimating output probabilities of quantum circuits, Aaronson and Gunn showed that no classical
polynomial-time algorithm can solve b-XHOG for any b ≥ 1 + 1

poly(n) on random quantum circuits of

polynomial size [AG20]. Thus, a physical quantum computer that solves b-XHOG for b ≥ 1 + Ω(1)
is considered strong evidence of quantum computational supremacy.

In this work, we ask: can an efficient quantum algorithm for b-XHOG do substantially better
than b = 2? That is, what is the largest b for which a polynomial-time quantum algorithm can solve
b-XHOG on random circuits?

We refer to our problem as the “quantum supremacy Tsirelson inequality” in reference to the
Bell [Bel64] and Tsirelson [CT80] inequalities for quantum nonlocal correlations (for a modern
overview, see [CHTW04]). Under this analogy, the quantity b in XHOG plays a similar role as the

∗University of Texas at Austin. Email: kretsch@cs.utexas.edu.

1



probability p of winning some nonlocal game. For example, the Bell inequality for the CHSH game
[CHSH69] states that no classical strategy can win the game with probability p > 3

4 ; we view this as
analogous to the conjectured inability of efficient classical algorithms to solve b-XHOG for any b > 1.
By contrast, a quantum strategy with pre-shared entanglement allows players to win the CHSH
game with probability p = cos2

(
π
8

)
≈ 0.854 > 3

4 . An experiment that wins the CHSH game with
probability p > 3

4 , a violation of the Bell inequality, is analogous to an experimental demonstration
of b-XHOG for b > 1 on a quantum computer that establishes quantum computational supremacy.
Finally, the Tsirelson inequality for the CHSH game states that any quantum strategy involving
arbitrary pre-shared entanglement wins with probability p ≤ cos2

(
π
8

)
. Hence, an upper bound on b

for efficient quantum algorithms is the quantum supremacy counterpart to the Tsirelson inequality.

1.1 Our Results

We study the quantum supremacy Tsirelson inequality in the quantum query (or black box) model.
That is, we consider distributions over quantum circuits that make queries to a randomized quantum
or classical oracle, and ask how many queries to the oracle are needed to solve b-XHOG, in terms
of b. Our motivation for studying this problem in the query model is twofold. First, quantum
query results often give useful intuition for what to expect in the real world, and can provide
insight into why naive algorithmic approaches fail. Second, we view this as an interesting quantum
query complexity problem in its own right. Whereas most other quantum query lower bounds
involve decision problems [Amb18] or relation problems [Bel15], XHOG is more like a weighted,
average-case relation problem, because we only require that |〈z|C|0n〉|2 be large on average. This
makes it challenging to apply existing lower bound techniques such as the adversary method, which
is only known to tightly characterize decision problems, state conversion problems, and efficiently
verifiable relation problems [LMR+11, Bel15].

The XHOG task is well-defined for any distribution of random quantum circuits, so this gives
us a choice in selecting the distribution. We focus on three classes of oracle circuits that either
resemble random circuits used in practical experiments, or that were previously studied in the
context of quantum supremacy. Specifically, we consider (1) canonical state preparation oracles, in
which the oracle prepares a Haar-random state |ψ〉 but otherwise encodes no information about
|ψ〉; (2) Haar-random unitaries; and (3) Fourier Sampling circuits that sample from the Fourier
distribution of a random Boolean function.

Our first result is an exponential lower bound on the number of quantum queries needed to solve
(2 + ε)-XHOG given either of the two types of quantum oracles that we consider:

Theorem 2. For any ε ≥ 1
poly(n) , any quantum query algorithm for (2 + ε)-XHOG with query

access to either:

(1) a canonical state preparation oracle for a Haar-random n-qubit state |ψ〉, or

(2) a Haar-random n-qubit unitary,

requires at least Ω
(

2n/4

poly(n)

)
queries.

We do not know if Theorem 2 is optimal, but we show that a simple algorithm based on the
quantum collision finding algorithm [BHT97] solves (2 + Ω(1))-XHOG using O

(
2n/3

)
queries to

either oracle.
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Finally, we show that for Fourier Sampling circuits, the naive algorithm of simply running
the circuit is optimal among all 1-query algorithms:

Theorem 3. Any 1-query quantum algorithm for b-XHOG with Fourier Sampling circuits
achieves b ≤ 3.1

1.2 Our Techniques

The starting point for our proof of the Tsirelson inequality with a canonical state preparation
oracle Oψ is a result of Ambainis, Rosmanis, and Unruh [ARU14], which shows that any algorithm
that queries Oψ can be approximately simulated by a different algorithm that makes no queries,
but starts with copies of a resource state that depends on |ψ〉. This resource state consists of
polynomially many (in the number of queries to Oψ) states of the form α|ψ〉 + β|⊥〉, i.e. copies
of |ψ〉 in superposition with a canonical orthogonal state |⊥〉. Our strategy is to show that if any
algorithm solves b-XHOG given this resource state, then a similar algorithm solves b-XHOG given
copies of |ψ〉 alone. Then, we prove a lower bound on the number of copies of |ψ〉 needed to solve
b-XHOG. To do so, we argue that if |ψ〉 is Haar-random, then the best algorithm for b-XHOG given
copies of |ψ〉 is a simple collision-finding algorithm: measure all copies of |ψ〉 in the computational
basis, and output whichever string z ∈ {0, 1}n appears most frequently in the measurement results.
For a Haar-random n-qubit state, the chance of seeing any collisions is exponentially unlikely (unless
the number of copies of |ψ〉 is exponentially large in n), and so this does not do much better than
measuring a single copy of |ψ〉 and outputting the result.

To prove the analogous lower bound for b-XHOG with a Haar-random unitary oracle, we show
more generally that the canonical state preparation oracles and Haar-random unitary oracles are
essentially equivalent as resources, which may be of independent interest. More specifically, we
show that for an n-qubit state |ψ〉, given query access to Oψ, one can approximately simulate (to
exponential precision) a random oracle that prepares |ψ〉. By “random oracle that prepares |ψ〉,” we
mean an n-qubit unitary Uψ that acts as Uψ|0n〉 = |ψ〉 but Haar-random everywhere else. We can
construct such a Uψ by taking an arbitrary n-qubit unitary that maps |0n〉 to |ψ〉, then composing
it with a Haar-random unitary on the (2n − 1)-dimensional subspace orthogonal to |0n〉.

Our lower bound for Fourier Sampling circuits uses an entirely different technique. We use
the polynomial method of Beals et al. [BBC+01], which shows that for any quantum algorithm that
makes T queries to a classical oracle, the output probabilities of the algorithm can be expressed
as degree-2T polynomials in the variables of the classical oracle. Our key observation is that the
average linear XEB score achieved by such a quantum query algorithm can also be expressed as
a polynomial in the variables of the classical oracle. We further observe that this polynomial is
constrained by the requirement that the polynomials representing the output probabilities must be
nonnegative and sum to 1. This allows us to upper bound the largest linear XEB score achievable
by the maximum value of a certain linear program, whose variables are the coefficients of the
polynomials that represent the output probabilities of the algorithm. To upper bound this quantity,
we exhibit a solution to the dual linear program.

1Note that the value of b achieved by the naive quantum algorithm for XHOG depends on the class of circuits
used. In contrast to Haar-random circuits that achieve b ≈ 2, Fourier Sampling circuits achieve b ≈ 3. This
stems from the fact that the amplitudes of a Haar-random quantum state are approximately distributed as complex
normal random variables, whereas the amplitudes of a state produced by a random Fourier Sampling circuit are
approximately distributed as real normal random variables.
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