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By the monogamous nature of entanglement, a single quantum system cannot be highly entangled with many
others. From a dynamical perspective, this monogamy constrains the spreading of information. The no-cloning
theorem provides a simple example of such a constraint; more generally, quantum information cannot be widely
distributed with high fidelity.

Constraints on information spreading also shed light on the quantum-to-classical transition. Many questions
remain about precisely how and when classical behavior emerges from quantum many-body systems. When
a small system interacts with a large environment, the environment often acts as a measuring apparatus,
decohering the system in some basis. This paradigm is further elaborated by research programs on decoherence
and “quantum Darwinism,” describing how certain observables of the system are “selected” by the environment
[1–6].

Brandão et al. [7] proved a powerful monogamy theorem constraining the spread of quantum information.
They show that some aspects of the decoherence process must exist for any quantum channel. They consider
general time-evolutions of a system A initially uncorrelated with a large multipartite environment B1⊗· · ·⊗Bn.
Their result states that for a large fraction of environmental subsystems Bi, the only information about A that
is accessible on Bi must be classical, i.e. it must be obtainable from a fixed measurement on A. Crucially, they
show that the relevant measurement on A is independent of the subsystem Bi of interest. Thus the system
A must “appear classical” to an observer at Bi, in the sense that the only accessible information about A is
classical.

However, the abovementioned result only constrains a large fraction of environmental subsystems. For a fixed
error tolerance, the number of subsystems left unconstrained by the theorem increases arbitrarily with the total
size of the environment. Intuitively, this growth seems to contradict the monogamy of entanglement, which
suggests the fragment of the environment with non-classical information about A must have bounded extent.
In other words, monogamy suggests the results of [7] can be greatly improved.

We obtain this stronger constraint on quantum information spreading. In particular, we show that for large
environments, for everywhere in the environment excluding some O(1)-sized subsystem Q, the locally accessible
information about A must be approximately classical, i.e. obtainable from some fixed measurement on A. This
result corroborates the above intuition from monogamy. The statement is totally general, applicable to arbitrary
quantum channels and quantum states. We call the excluded region Q the “quantum Markov blanket,” or simply
the Markov blanket, following the terminology in classical statistics [8].

The proof of our result may be framed constructively as an optimization procedure, allowing numerical
applications on numerically tractable systems. As a demonstration, we analyze a numerical example involving
a small spin chain. The numerical algorithm that results from our proof identifies the quantum Markov blanket
and the effective measurement induced on a subsystem by the spin chain dynamics.

PRIOR WORK

As mentioned above, the result is both inspired by and significantly strengthens the related result [7]. More
generally, the ideas in the proof are inspired by principles in [9, 10].

Quantum de Finetti theorems characterize the marginals of permutation-invariant states, which are approxi-
mately separable for large systems [11]. Thus de Finetti theorems corroborate the monogamy of entanglement.
Our result may be seen as a quantum de Finetti-type theorem for non-permutation-invariant systems. For
instance, the result about k-extendible states in Corollary 2 of [9] may be seen as a special case of our Theorem
1 when specialized to permutation-invariant states. Likewise, compare to Theorem 1 of [12].

Early work in the direction of de Finetti-type results for non-permutation-invariant systems includes the
“decoupling” theorems of [10]. These show that for large multipartite states, after conditioning the state on a
measurement of a small random subset of qudits, the marginals on most other small subsets are approximately
product states. (The measurement “decouples” them.) The result of [7] and our Theorem 1 (when applied to
Choi states rather than channels) may also be seen as decoupling theorems in this sense.

The technique of using small conditional mutual information I(X,Y |Z) to show ρXY is close to separable
was developed by [9], where they use the one-way LOCC norm. The use of the one-way LOCC norm is a
technique inspired by [12], where it was applied to obtain de Finetti theorems. The method is further developed
by [7, 12, 13].
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Figure 1. Illustration of main result, Theorem 1. The quantum channel Λ is shown acting on a state ρA, with a partial
trace over the complement of the output region R. For any R that does not overlap the “Markov blanket” Q, the reduced
channel is approximately a “measure-and-prepare” channel. Importantly, the measurements Mα on A are independent
of the choice of region R.

TECHNICAL RESULTS

We considers arbitrary channels with multiple outputs, and we characterizes the reduced channels onto small
subsets of outputs. We prove that for all small subsets of outputs except those overlapping some fixed O(1)-sized
excluded subset, the corresponding reduced channels are measure-and-prepare, and moreover they use the same
measurement. We denote this excluded region Q, the quantum Markov blanket.

Theorem 1. (Emergent classicality for channels.) Consider a quantum channel Λ : D(A)→ D(B1⊗ ...⊗
Bn). For output subsets R ⊂ {B1, ..., Bn}, let ΛR ≡ TrR̄ ◦Λ : D(A) → D(R) denote the reduced channel onto
R, obtained by tracing out the complement R̄. Then for any |Q|, |R| ∈ {1, ..., n}, there exists a measurement,
described by a POVM {Mα}, and an “excluded” output subset Q ⊂ {B1, ..., Bn} of size |Q|, such that for all
output subsets R of size |R| disjoint from Q,

‖ΛR − ER‖� ≤ d
3
A

√
2 ln (dA)

|R|
|Q|

(1)

using a measure-and-prepare channel

ER(X) :=
∑
α

Tr(MαX)σαR (2)

for some states {σαR}α on R, where dA = dim(A) and ‖...‖� is the diamond norm on channels. The measurement
{Mα} does not depend on the choice of R, while the prepared states σαR may depend on R.

The theorem is illustrated in Fig. 1. The result is true for any |Q|, but to guarantee smaller error in the
approximation, one needs |Q| large compared to |R|. Nonetheless, we refer to Q as O(1)-sized because for a
fixed size |R|, any fixed error tolerance on the RHS of Eq. 1 only requires some fixed |Q|, independent of both
the total number of outputs n and the dimensions dim(Bi) of each output. Physically, the region Q is where
any locally accessible quantum information about A must be stored. Therefore by no-cloning or monogamy of
entanglement, no quantum information about A can be locally accessible outside this region. Meanwhile, Q will
also contain any locally accessible classical information about A. However, unlike the quantum information, the
classical information may also be present in copies outside of Q.

An essential point is that the measurement {Mα} in this theorem does not depend on R, so that apart
from the O(1)-sized region Q, different “observers” in different parts of the system can only receive classical
information about the input in the same “generalized basis,” i.e. resulting from the same POVM on A. (The
observers may also receive no information at all.) This supports the “objectivity” of the emergent classical
description of quantum systems.

The ability to approximate the reduced channels ΛR as measure-and-prepare channels ER(X) using the same
measurement is nontrivial, and it does not follow merely from the fact that the reduced channels are compatible
[14, 15] in the sense of being reduced from the same parent channel. Indeed, we separately show there exist
compatible measure-and-prepare channels that cannot be written using the same measurement.

By channel-state duality, we can also formulate the result for states rather than channels. When the anal-
ogous result is expressed for states, one may use the one-way LOCC norm [9, 16], allowing one to remove the
exponential dependence on the size of A in the error bound.
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The central idea of the proof is to imagine expanding a small region of the environment to gradually encompass
the entire system. During this process, one learns gradually more about the input system A. Through a greedy
algorithm, one calculates an optimized path of expansion that extracts the most information from A. By strong
subadditivity, even an optimal path must reach some “bottleneck” such that further expanding the region does
not yield additional information about A. Analyzing this bottleneck gives rise to the result.

Because the theorem applies to any channel, it will be helpful to consider a few very different cases. Take A
to be a single qubit, and take B to consist of n qubits B1, ..., Bn. Then we have the following simple cases:

1. Let Λ be a Haar-random isometry. Then for A fixed and n large, the reduced channels on small subsets
will be approximately constant channels, and moreover they are measure-and-prepare channels in a trivial
sense: they can be expressed as any measurement on A followed by a preparation of some constant state,
independent of the outcome of the measurement. In this case Theorem 1 easily holds, and in fact the
approximation has zero error; one could even take the excluded region Q to be the empty set.

2. Let Λ faithfully transmit A to some Bi, while preparing an arbitrary state on the remaining outputs.
Then the reduced channel ΛBi

is the identity channel, and the excluded region Q must consist of at least
Bi. The remaining reduced channels are constant channels, and thus the error in Theorem 1 is already
zero for |Q| = 1.

3. Let Λ be the isometry |0〉A 7→ |0...0〉B , |1〉A 7→ |1...1〉B . Then every reduced channel ΛBi
is a measure-

and-prepare channel, measuring in the {|0〉, |1〉} basis and preparing the corresponding |0〉 or |1〉 state.
Thus the error in Theorem 1 is already zero for empty Q.

These examples constitute three loose categories of dynamics: either (1) no information about A becomes avail-
able to small regions of B, (2) quantum information about A becomes available to a small region, and remains
locally inaccessible elsewhere, or (3) the only locally accessible information about A is classical, distributed
through a decoherence process, so that each Bi becomes classically correlated with A via a consistent basis on
A. Our Theorem 1 demonstrates that heuristically, these three categories and combinations thereof exhaust the
possibilities of quantum dynamics. That is, while some information about A may become accessible on a small
region of B, all remaining small regions of B must be only classically correlated with A, and moreover in some
consistent basis.

Finally, the existence of a numerical algorithm for determing the quantum Markov blanket and associated
measurement on A appears promising for applications of these results to many-body physics. In simple many-
body examples, calculating the measurement A yields the effective classical variables being decohered within the
system. In more complicated many-body systems where these effective classical variables may not be obvious,
our results provide a new venue for analysis.
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