Optimal State Transfer and Entanglement Generation
in Power-law Interacting Systems

(arXiv:2010.02930)

Minh Tran

Joint work with Abhinav Deshpande, Andrew Guo, Andrew Lucas, and Alexey Gorshkov

QuICS/JQl, University of Maryland
QIP, 02/02/2021

=\

JOINT CENTER FOR o\ e OINT ANTUM . :
% B QUANTUM INFORMATION Iql IJN S T&IUT U l# L @ University of Colorado Boulder

AND COMPUTER SCIENCE




Most physical interactions decay with distance, e.g. as a power law
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Decaying Locality: ‘

interactions - It takes time for information
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Implications of locality?
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Suppose we want to apply quantum gates |
between distant particles roe S
* With nearest-neighbor interactions: Transfer quantum states
= Take time t ~ r (time unit) Generate entanglement

. , , Scramble information
* With power-law (1/r%) interactions:

Can we do fasterthant ~r ?
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% Theoretical limits: Lieb-Robinson bounds
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** Optimal state transfer and entanglement generation

o Key implications of the protocol



* Power-law interacting Hamiltonian H(t) = ¥, ; h;j(t) s.t. [[hi(0)] < 1/r; Vi

 Two operators A, B initially supported on sites separated by distance r

Lieb-Robinson bounds: t=0 = [A, B] —
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* Power-law interacting Hamiltonian H(t) = ¥, ; h;j(t) s.t. [[hi(0)] < 1/r; Vi

 Two operators A, B initially supported on sites separated by distance r

E.g.: Nearest-neighbor (o — o) t, @
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= Linear light cone: { Z r




Theoretical limits: Lieb-Robinson bounds
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(d-dimensional lattice)

Are the bounds tight?
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Quantum state transfer

Initial state:
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Fast state-transfer protocols o 2d
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Fast state-transfer protocols o 2d
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Optimal guantum state transfer

Initial state:
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Target state:
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Strategy:
Encode information into r-qubit
Greenberger—Horne—Zeilinger
(GHZ) state
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Decode the information
into the target qubit
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Encoding information into a GHZ state

Suppose we can “merge” several GHZ states into one big GHZ state

o o o O () e O [ ® o ([ [ ] ([ ] o e O o e O o ® o o ()
Generalized GHZ state Symmetric GHZ states A larger generalized GHZ
with information a, b state with information a, b
Prepare “one-qubit GHZ states”: © ©6 06 06 06 06 06 06 06 06 06 06 0 06 06 06 06 06 06 06 0 0 0 0 0 0 o

o —» [¢) = al0) +|1)

o —» |+>:(|0>+|1>)/\/§ e 6 6 o6 o o o o o o o o o o oo o o °o o o o o o o o o o

Our strategy: Repeatedly merge
nearby GHZ states into larger
and larger GHZ states with the
encoded information o o o o
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Optimal guantum state transfer
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Subroutine:
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Apply H = =

After time
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Encoding information into a GHZ state

Prepare “one-qubit GHZ states”: _ ) ] o
Time for implementing ' max
")
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each iteration V2
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V=3

. T'max . Larger V' = Allow larger T"max
V=9 = Bigger and bigger GHZ states
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Strategy: Repeatedly merge nearby GHZ states into larger
and larger GHZ states with the encoded information
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More details in
Tran et al, arXiv:2010.02930 (2020) 17



@ Saturates” the Lieb-Robinson bound
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Subpolynomial state-transfer time for

State-dependent state transfer ) Tr.apTechj-lonls (.0( € [O’?’]) W|th113: 1"2h J<23
is provably exponentially faster than _ Dipole-dipole interactions (a = 3) wit -
state-independent state transfer | * Van-der-Waals interactions (o« = 6) withd = 3

* We need (1(n) gates to make an n-qubit GHZ state

 Simulating e t# t for t = t, must also take Q(n) gates

A lower bound on the _ _ o1

« Meanwhile, Suzuki-Trotter takes 0 (n?*°(1)
gate count of quantum
simulation algorithms * Either 3 better simulation algorithms

or making GHZ states is strictly easier than simulation
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@ Saturates” the Lieb-Robinson bound

t 2 logr
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State-dependent state transfer

is provably exponentially faster than
state-independent state transfer

O,

A lower bound on the
gate count of quantum
simulation algorithms

Bounds

>

Protocols

Subpolynomial state-transfer time for
* Trappedions (a € [0,3]) withd = 1,2
* Dipole-dipole interactions (a¢ = 3) withd = 2,3
* Van-der-Waals interactions (o« = 6) withd = 3

Thank you!
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