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Most physical interactions decay with distance, e.g. as a power law

𝛼
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dipole-dipole

Lepoutre et al, Nat Commun 10, 1714 (2019)

e.g. Magnetic atoms in optical lattice

van der Waals

Omran et al, Science 365, 570 (2019)

e.g. Rydberg-Rydberg interaction



In general:
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Locality:

It takes time for information 
to propagate in the system
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Small leakage



Implications of locality?

• With nearest-neighbor interactions:

⇒ Take time 𝑡 ~ 𝑟 (time unit)

• With power-law (          ) interactions:

Can we do faster than 𝑡 ~ 𝑟 ? 

Transfer quantum states

Generate entanglement

Scramble information

…
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Suppose we want to apply quantum gates 

between distant particles

CNOT1,𝑟
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Outline

❖ Theoretical limits: Lieb-Robinson bounds

❖ Optimal state transfer and entanglement generation

o Key implications of the protocol
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Setup:

Lieb-Robinson bounds:

Because           spreads to 

• Two operators 𝐴, 𝐵 initially supported on sites separated by distance 𝑟
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• Power-law interacting Hamiltonian 𝐻 𝑡 = σ𝑖,𝑗 ℎ𝑖𝑗 𝑡 s.t. 
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⇒ Linear light cone:

Causal 
region

Setup:

• Two operators 𝐴, 𝐵 initially supported on sites separated by distance 𝑟

• Power-law interacting Hamiltonian 𝐻 𝑡 = σ𝑖,𝑗 ℎ𝑖𝑗 𝑡 s.t. 

E.g.: Nearest-neighbor 
Lieb & Robinson, CMP ‘72



Theoretical limits: Lieb-Robinson bounds

(𝑑-dimensional lattice)
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(𝑑-dimensional lattice)
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Are the bounds tight?

Theoretical limits: Lieb-Robinson bounds



Quantum state transfer
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Initial state:

0 1 2 𝑟𝑟 − 1

…possibly 

unknown

Target state:

0 1 2 𝑟𝑟 − 1

…



Fast state-transfer protocols
(𝑑 dimensions)
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Protocols

Bounds
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Optimal quantum state transfer

0 1 2 𝑟𝑟 − 1

…

Strategy:
Encode information into 𝑟-qubit

Greenberger–Horne–Zeilinger
(GHZ) state 

Decode the information 
into the target qubit
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Initial state:

0 1 2 𝑟𝑟 − 1

…

Target state:

0 1 2 𝑟𝑟 − 1

…



Encoding information into a GHZ state

Generalized GHZ state
with information    , 

Symmetric GHZ states

Suppose we can “merge” several GHZ states into one big GHZ state

A larger generalized GHZ 
state with information    , 

Prepare “one-qubit GHZ states”:

Our strategy: Repeatedly merge 
nearby GHZ states into larger 
and larger GHZ states with the 
encoded information
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Optimal quantum state transfer

Initial state:

0 1 2 𝑟𝑟 − 1

…

Target state:

0 1 2 𝑟𝑟 − 1

…

0 1 2 𝑟𝑟 − 1

…

Strategy:
Encode information into 𝑟-qubit

Greenberger–Horne–Zeilinger
(GHZ) state 

Decode the information 
into the target qubit
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Subroutine: merging GHZ states

Apply

Volume of 
each small GHZ states

Single-qubit
rotation

Re-entangle

Total time 
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After time

Unentangle



Encoding information into a GHZ state

Prepare “one-qubit GHZ states”:

Strategy: Repeatedly merge nearby GHZ states into larger 
and larger GHZ states with the encoded information

Time for implementing
each iteration  

⇒ Allow larger Larger

⇒ Bigger and bigger GHZ states
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𝑉 = 1

𝑉 = 3

𝑉 = 9

Total time (asymptotically):

More details in 
Tran et al, arXiv:2010.02930 (2020)



Hasting & Koma, CMP ‘06

“Frobenius” bounds (1D)

Tran et al, arXiv ‘20

Subpolynomial state-transfer time for 

• Trapped ions (𝛼 ∈ [0,3]) with 𝑑 = 1, 2

• Dipole-dipole interactions (𝛼 = 3) with 𝑑 = 2, 3

• Van-der-Waals interactions (𝛼 = 6) with 𝑑 = 3
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Protocols

𝛼

Bounds

Apply to, e.g., state-independent state transfer, quantum gates without ancillas

(constrains e.g., state-dependent state transfer, quantum gates with ancillas)Saturates* the Lieb-Robinson bound2

State-dependent state transfer 
is provably exponentially faster than 
state-independent state transfer

3

2𝑑𝑑

Tran et al, PRX ‘20

Kuwahara & Saito et al, PRL ‘21 ∞
𝛼

1 2

• We need Ω(𝑛) gates to make an 𝑛-qubit GHZ state

• Simulating 𝑒−𝑖 𝐻 𝑡 for 𝑡 = 𝑡∗ must also take Ω(𝑛) gates

• Meanwhile, Suzuki-Trotter takes 𝑂(𝑛2+𝑜(1))

• Either ∃ better simulation algorithms 

or making GHZ states is strictly easier than simulation

4 A lower bound on the 
gate count of quantum 
simulation algorithms
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4 A lower bound on the 
gate count of quantum 
simulation algorithms
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Thank you!


