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We consider the hidden subgroup problem for infinite groups, beyond the celebrated original cases estab-
lished by Shor and Kitaev.

1 Motivation and main results

Some of the most important quantum algorithms solve rigorously stated computational problems and are
superpolynomially faster than classical alternatives. This includes Shor’s algorithm for period finding [13].
The hidden subgroup problem is a popular framework for many such algorithms [10]. If G is a discrete
group and X is an unstructured set, a function f : G→ X hides a subgroup H ≤G means that f (x) = f (y) if
and only if y = xh for some h ∈H. In other words, f is a hiding function for the hidden subgroup H when it
is right H-periodic and otherwise injective, as summarized in this commutative diagram:

G X

G/H

f

The hidden subgroup problem (HSP) is then the problem of calculating H from arithmetic in G and efficient
access to f .

The computational complexity of HSP depends greatly on the ambient group G, as well as other criteria such
as that H is normal or lies in a specific conjugacy class of subgroups. The happiest cases of HSP are those
that both have an efficient quantum algorithm, and an unconditional proof that HSP is classically intractable
when f is given by an oracle.

Shor’s algorithm solves HSP when G = Z, the group of integers under addition. Even though Z is infinite
and Shor’s algorithm is a major motivation for HSP, many of the results since then have been about HSP
for finite groups [2, Ch. VII]. Here we examine HSP in some key cases when G is a discrete, infinite group,
with the rule that the hidden subgroup H can be confirmed with polynomial query complexity. We obtain
five main results for different types of G. In three cases, we obtain hardness results; in two others, we obtain
algorithms. To state the hardness results properly, we define the hidden subgroup existence problem (HSEP)
to be the decision problem of whether H is non-trivial.

Theorem 1. Consider HSP in Q, the rational numbers viewed as a discrete group under addition. Then it
is NP-complete, with reduction in BQP, to determine whether the hidden subgroup H ≤Q is larger than Z.
Equivalently, HSEP in the quotient Q/Z is NP-complete.

Theorem 1 is in contrast to both Shor’s algorithm for G = Z, as well as Hallgren’s algorithm when G = R
and the hiding function f is Lipschitz and takes values in a Hilbert space [3, 5]. Assuming the conjecture
that NP 6⊆ BQP, the theorem implies that HSP in Q has no efficient quantum algorithm.

Theorem 2. HSEP in a finitely generated, non-abelian free group Fk is NP-complete, even assuming that
the hidden subgroup is normal.

Theorem 2 is in contrast to the case of finite groups. If G is finite and H is normal, then HSP is in BQP
whenever the quantum Fourier transform on G has a polynomial time quantum algorithm [6].
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The proofs of Theorems 1 and 2 both relativize. In relative form, we can show that HSP in these two cases
has exponential query complexity.

Theorem 3. Consider HSEP for the group G = Zk where the hiding function f has pseudo-polynomial
query cost. If this problem is in BQP f uniformly in f and in the dimension k, then the unique short vector
problem uSVP for integer lattices L≤ Zk and polynomial parameters is also in BQP.

Theorem 4. HSP in Zk with binary encoding of vectors can be solved in BQP, uniformly in the dimension
k and in the bit complexity of the answer.

Theorem 4 is in contrast to the Shor-Kitaev algorithm [7], which achieves the same thing with the crucial
extra hypothesis that the hidden subgroup H ≤ Zk has full rank `= k, equivalently when H is a finite-index
subgroup. The case when H has lower rank ` < k is a new result as far as we know.

Theorem 5. Let G be a fixed, finitely generated group with a finite-index abelian subgroup K ≤ G. Then
HSP in G can be solved in time 2O(

√
n), where n is the bit complexity of the answer.

The special case of HSP Theorem 5 is equivalent to the hidden shift problem in the abelian group K. In
contrast to our other main results, Theorem 5 can be proven using existing algorithms. The result follows
from the author’s prior work on the dihedral hidden subgroup problem [8, 9]. The proof is much nicer using
a refinement of the author’s second algorithm recently obtained by Peikert [12].

2 Elements of some of the proofs

2.1 In the proof of Theorem 1

Given a decision problem d(x) in NP, we assume a predicate z(x,y) that accepts prime numbers y = p as
certificates. We let the hidden subgroup H ≤ Q be generated by 1, and by 1/p for every accepted p. Our
technique is to construct an H-periodic hiding function f (a/b) that takes a rational number a/b as input,
and that can also be efficiently computed using access to the predicate z. To do this, we use the fact that
rational numbers have a canonical partial fraction form analogous to partial fractions for rational functions
in calculus. For example,
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This partial fraction form requires factoring the denominator b, which is why the reduction is in BQP.
(There is also a workaround using a classical algorithm for partial factorization, only it is conditional on
conjectures in number theory.) The value of f (a/b) is now given by striking the integer term, and striking
every term whose denominator p is prime and accepted by z. H contains Z regardless, and H 6= Z if and
only if there is an accepted certificate. Thus, the decision problem d reduces to HSP in Q.

2.2 In the proof of Theorem 2

Since the hidden subgroup H = N ≤ Fk is normal, it is normally generated by a set of words R, meaning
that N is generated by elements of R and their conjugates. The quotient group Fk/N is thus realized as the
presented group 〈A|R〉, where |A| = k is an alphabet. As in the proof of Theorem 1, we have a decision
problem d(x) in NP with a predicate z(x,y), and we want to generate N by some encoding of the accepted
certificates. We want an N-periodic hiding function f (w) on words w ∈ Fk that can be computed efficiently
from z. We construct f (w) as a canonical word for the element [w] = wN in the quotient group Fk/N. In
other words, we need an efficient solution to the word problem in the group K = Fk/N. Even though the
word problem for finitely presented groups is RE-complete [1, 11], we rely on a restricted version which
does have an efficient algorithm, even with only guess-and-check access to the relators.
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We assume that k = 14 (strictly for simplicity), and we let F14 be generated by the alphabet

A = {a1,b1,a2,b2, . . . ,a7,b7}.

Taking each possible certificate y initially as a binary string, we interpret it as a word y(a,b) in two letters a
and b, and we assume the corresponding relator

ry = y(a1,b1)y(a2,b2) · · ·y(a7,b7).

The resulting group presentation 〈A|R〉 satisfies the crucial C′(1/6) hypothesis of Greendlinger [4], that any
common substring of any two relators (as cyclic words) is less than 1/6 of the length of each relator.

Greendlinger showed that if a word w represents the identity in a C′(1/6) presented group, then it can be
reduced to the trivial word with the greedy algorithm. If a relator r can be used to greedily shorten w, then
it must share more than half of its length with w. Using the special form of our relators r = ry, ry can thus
be calculated with a guess-and-check procedure using the predicate z. Using a refinement of Greendlinger’s
algorithm, we can also calculate the shortlex equivalent v ∼ w of any word w in polynomial time. In the
refined algorithm, each relator r is only invoked when at least 1/6 of its length has already been computed.
If r = ry, then we can again confirm y with the predicate z.

2.3 In the proof of Theorem 4

Our algorithm for HSP in Zk has a standard quantum stage:

1. Prepare an approximate Gaussian state |ψG〉 on a finite box in Zk.

2. Evaluate f to make U f |ψG〉, and measure the output register to obtain a coset state |ψH+~v〉.

3. Apply the QFT operator F(Z/Q)k to |ψH+~v〉 and measure a Fourier mode~y0 ∈ (Z/Q)k.

The rescaled Fourier mode ~y1 =~y0/Q ∈ (R/Z)k approximates a random element of the dual group H# ≤
(R/Z)k, which consists of all~y such that~x ·~y ∈ Z for all~x ∈ H. If H has full rank, then H# is a finite group,
and the Shor-Kitaev algorithm denoises each coordinate of ~y1 using continued fractions. If H has lower
rank, then H# is a pattern of stripes in (R/Z)k, and this denoising step is not directly possible.

~y1

~0

H#

(R/Z)2

vs.

~y1

~0

H#

(R/Z)2

In our remedy, we calculate the connected subgroup H#
1 from a single sample ~y1 with high probability,

when there is a little enough noise. In this case, ~y1 has multiples that land close enough to~0 to reveal the
tangent directions to H#. We can find useful multiples of ~y1 this type using the LLL algorithm. Given an
approximate basis of tangent directions to H#, we can put its matrix B1 in RREF form using some careful
linear algebra to bound the noise in the matrix entries. We can then apply the continued fraction algorithm
to remove the noise and learn H#

1 . Finally the dual H1 ≤ Zk of H#
1 itself contains H as a full-rank subgroup,

and we can finish the algorithm using Shor-Kitaev.
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