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“The infinite Shor”

Florin Niculiu, Infinite Shore, 1983

I credit Peter Shor for HSP (+ Mosca-Ekert)
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The hidden subgroup problem

Suppose that

G X

G/H

f

where G is a discrete group, X is an unstructured set, f can be
computed in polynomial time, and H ≤ G is a hidden subgroup.
The hidden subgroup problem (HSP) is the computational problem
of finding H, given f as functional input or an oracle. More
explicitly, f hides H means that f (x) = f (y) if and only if x = yh.
f must be H-periodic, and otherwise 1-to-1.

The performance of HSP is rated by the bit complexity of the
output.
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Prior results on HSP

• Shor’s algorithm solves HSP in BQP when G = Z.

• The Shor-Kitaev algorithm solves HSP G = Zk when H ≤ Zk

has finite index (or rank k). It runs in BQP uniformly in the
dimension k .

• Most other algorithms for HSP assume that G is finite:
• G finite and H is normal [Hallgren-Russell-Ta-Shma].
• G almost abelian [Grigni-Schulman-Vazirani-Vazirani].
• G Heisenberg over Z/p [Bacon-Childs-van-Dam] or 2-step

nilpotent [Ivanyos-Sanselme-Santha].
• G dihedral [K.,Regev].
• Some other cases.

• Some finite G look hard even for QC, e.g., G = Sn.
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Revisiting infinite HSP

If G is (discrete) infinite, then the quantum complexity of HSP
amounts to a group property of G , rated against the complexity of
H ≤ G . Note that:

• Hardness results are interesting as a lens on groups.

• The complexity can depend on how elements of G are
encoded.

• We assume that H is generated by elements of G reachable
within the time budget.

• We can change the question by restricting H, e.g., to be
normal.
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Negative results

Theorem (K.) If G = (Q,+), then HSP is NP-hard.

Theorem (K.) If G = Fk is non-abelian free, then normal HSP is
NP-hard.

Theorem (K.) If G = Zk with unary vector encoding, then HSP is
uSVP-hard. (Unique short vector in a lattice.)

We encode elements in Q as ordinary fractions; in Fk as reduced
words; and in unary Zk as commutative words:

993470124

6798515
∈Q aba−1ba ∈ F2 aaaab−1b−1b−1ccccc ∈ Z3.
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Positive results

Theorem (K.) If G = Zk with binary encoding and H has infinite
index, then H can be found in quantum polynomial time, uniformly
in k and ‖H‖bit.

This is like Shor-Kitaev, but it requires new ideas.

Theorem (K.) If G is finitely generated and virtually abelian,
then an arbitrary H can be found in time exp(

√
‖H‖bit).

This is a corollary of existing results on dihedral HSP = abelian
hidden shift.
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HSP in Q
d ∈ NP means that there is a predicate z ∈ P such that d(x) = yes
if and only if z(x ,y) = yes for some witness y .

Step 1: We can take each y to be a prime number, by using the
left 1/3 of its bits as a data string [Ingham].

Step 2: We make an instance of HSP in Q from the predicate z .
We generate H by 1 and the reciprocals of all witnesses:

H =
〈{1

y
| z(x ,y) = yes

}
∪{1}

〉
.

Step 3: We make an H-periodic function f : Q→ X = Q by
calculating a canonical representative f (a/b) ∈ H +a/b for each
coset of H.
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The hiding function
Partial fractions for actual fractions

Partial fractions in R[x ] are taught in calculus, but they also exist
in Q:

x8 + 5

x4 + x
= x4−x− 3x−2

x2−x + 1
− 2

x + 1
+

5

x

1

60
=−2 +

1

2
+

1

4
+

2

3
+

3

5

The right side is a canonical form with terms r/pk with 1≤ r < p
with p prime, plus an integer. Calculating these partial fractions
requires integer factorization, but we have that in BQP!
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The hiding function

To calculate f (a/b), expand a/b in partial fractions:

1

60
=−2 +

1

2
+

1

4
+

2

3
+

3

5

Then strike the integer term, and each term r/p with p an
accepted witness:

f
( 1

60

)
=−2 +

1

2
+

1

4
+

2

3
+

3

5
=

1

2
+

1

4
+

2

3
=

17

12

Key point: You don’t need to know the accepted witnesses, you
only need to be able to ask the predicate z(x ,p).

Conclusion: If you can calculate whether H 6⊇ Z from this f , then
you can calculate d(x) with d ∈ NP.
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An HSP algorithm in Zk

Suppose that f : Zk → X hides a sublattice H ≤ Zk of some rank
`≤ k . Given parameters Q� S � 1, we follow one standard
quantum opening for this HSP:

1. Prepare an approximate Gaussian state on a cube in Zk :

|ψG 〉 ∝ ∑
~x∈Zk

‖~x‖∞<Q/2

exp(−π‖~x‖22/S2)|~x〉

2. Apply the hiding function f to |ψG 〉 to obtain:

Uf |ψG 〉 ∝ ∑
~x

exp(−π‖~x‖22/S2)|~x , f (~x)〉

Throw away the output, leaving a mixed state on C[(Z/Q)k ].

3. Apply the quantum Fourier operator F(Z/Q)k and measure a

Fourier mode ~y0 ∈ (Z/Q)k .
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Dual samples

The quantum part of the algorithm produces a sample
~y0 ∈ (Z/Q)k which we can rescale to obtain:

~y1 =
~y0
Q
∈ (R/Z)k

Then ~y1 is approximately a randomly chosen element of the dual
group

H# = Ẑk/H ≤ (R/Z)k ,

Explicitly, H# consists of those ~y such that ~x ·~y ∈ Z for all ~x ∈ H.

The sample ~y1 also has noise due to both Gaussian blur and
discretization. This noise is exponentially small, but so is the
feature scale of H#.
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Examples of H#

Here are two examples of H# and a noisy sample ~y1 ∈∼ H#.

~y1

~0

H#

(R/Z)2

~y1

~0

H#

(R/Z)2

On the left, H has full rank and H# is a finite group. On the right,
when H has lower rank, H# a striped pattern whose connected
subgroup H#

1 is a complicated torus.
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Solving for H# from random samples
The easy case

Goal: Find H# ≤ (R/Z)k from noisy random samples ~y1 ∈∼ H#.

Shor-Kitaev: If H has full rank and H# is finite, then we can find
rational approximations to the coordinates of ~y1 using the
continued fraction algorithm. In this case, O(log |H#|) samples are
enough to probably generate H#. This includes Shor’s case
H = hZ≤ Z, whence H# = 1

hZ/h ≤ R/Z.

New: If H has rank ` < k, then dimH# = k− `. Any one
coordinate of ~y1 is uniformly random in R/Z. Rational
approximation of the coordinates does not work. Happily, LLL
(Lenstra-Lenstra-Lovasz) works instead.
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Solving for H# from random samples
The hard case

A random ~y0 ∈ H# densely generates the connected subgroup H#
1

(almost surely), so we look for multiples of ~y1 ∈∼ H# near ~0.

• Using a single sample ~y1, make a lattice L≤ Rk+1 with basis

~e1,~e2, . . . ,~ek ,(~̃y1,1/T ),

where S � T � R, and 1/R is the feature scale of H#.

• Find a LLL basis of short vectors of L:

~b1,~b2, . . . ,~bk+1 ∈ L≤ Rk+1

The first k− `+ 1 vectors are ∼ tangent to H#⊕R at ~0.

• Put the first k + `−1 LLL vectors in RREF form, then clean
them up with rational approximation to find T~0(H#⊕R) and
HR = H⊗R. This reduces the problem to Shor-Kitaev.
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Ideas behind the other hardness results

For NHSP in a free group Fk , f : Fk → Fk is a canonical word
function in the quotient Q = Fk/H. Q is a presented groups whose
relators are accepted witnesses for an NP predicate z . There is a
class of groups Q where canonical words can be computed in P,
even though the relators are “guess and check”.

For NSHP in Zk with unary encoding, an algorithm in BQP is only
tasked to find the part of a lattice L≤ Zk generated by short
vectors. We can exploit this to know if there are any short vectors!
If this sounds cheap, it is in the spirt of some of Regev’s hardness
reductions for lattice problems.
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