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Optimization

Problem:

f:R*" =R, argmin f(z)

xT

Core topic in math, theoretical computer science, operations research, etc.

Recently: Significant interest from machine learning:
Train an ML model <= Optimize a loss function

Provable guarantee for solving an optimization problem?
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Convex optimization

Convex optimization problems can be solved in polynomial time with
classical algorithms, e.g., ellipsoid method, interior point method, etc.

e Classical: poly(n,log1/e), state-of-the-art: O(n?) query and O(n?)
time [Lee, Sidford, and Vempala (arXiv:1706.07357)];

@ Quantum: Assume the quantum evaluation oracle
Ojlz)[0) = |z)| f(2)),
O(n) query and é(n3) time [Chakrabarti, Childs, Li, and Wu

(arXiv:1809.01731); van Apeldoorn, Gilyen, Gribling, de Wolf
(arXiv:1809.00643)].
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Non-convex optimization in ML

Two concerns about this result in the practice of ML:
@ Loss functions of ML models are typically nonconvex.

@ Many common cases have large n while can also
tolerate reasonably large e.

Speaking of provable guarantee, maybe
we want to pursue algorithms with cost

poly(n,log 1/€) = poly(log n,1/e).

Such algorithms are
called (almost) dimension-free methods.
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Non-convex optimization in ML

Common facts about many learning problems:

e Finding the global minima is NP-hard (intractable in practice).
@ The major difficulty is not local minima:

@ no spurious local minima;
o local minima are nearly as good as global minima.

@ Saddle points are ubiquitous;

@ Saddle points (and local maxima) can give highly suboptimal
solutions.
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Non-convex optimization in ML

Common facts about many learning problems:

e Finding the global minima is NP-hard (intractable in practice).
@ The major difficulty is not local minima:

@ no spurious local minima;
o local minima are nearly as good as global minima.

@ Saddle points are ubiquitous;

@ Saddle points (and local maxima) can give highly suboptimal
solutions.

Conclusion: We would want to escape from saddle points, but
are satisfied with reaching an e-approx. local minimum z.:

IVF@ll <€ Amin(V2f(ze)) = —/pe.

Here f is p-Hessian Lipschitz: ||[V2f(x1) — V2f(x2)| < pllx1 — x2],
VXl, xo € R",
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Escaping from saddle points

The main idea: perturbed gradient descent (PGD)

saddle point

o Radius of perturbation: Too large? Too small?
@ Way of perturbation: What's the most efficient approach?
o Gradient descent: GD/SGD? Faster versions?

Escaping from saddle points February 2, 2021 6/16



Escaping from saddle points: classical proposal

Classically, uniform perturbation in a ball + accelerated GD.

Complexity: O(log®n/e"™) [Jin, Netrapalli, Jordan (arXiv:1711.10456)].

Nesterov's accelerated gradient descent (AGD)

Y < @+ (1= 0)vr, 21 < ye =V F(Ye), Vg1 < Tep1 — .
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Escaping from saddle points: quantum proposal

The main observation: Gaussian wave packets disperse along the negative
curvature direction of the saddle point.

t=0 t=05 t

We give a hybrid quantum-classical algorithm where the perturbation
is replaced by the measurement of a squeezed Gaussian wave function.
Then, we apply gradient descents.

Complexity: O(log?n/e!"™).
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How to prepare the squeezed state?

Easy, let it evolve like quantum!

0

, 1
i = [f SV2+ f(@) v
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How to prepare the squeezed state?

Easy, let it evolve like quantum!

.0

"ot
Near a saddle point, the function is well-approximated by a quadratic
function, i.e., f(z) = %xQ. If the initial wave function is Gaussian (the
distribution of the position quadrature follows A/(0,1)), and it evolves for
t > 0, the position quadrature still follows a normal distribution

N (0,02(1‘; )\))

U= [—%V2+f(x) .
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function, i.e., f(z) = ;‘ 2_If the initial wave function is Gaussian (the
distribution of the position quadrature follows A/(0,1)), and it evolves for
t > 0, the position quadrature still follows a normal distribution

N (0,02(1‘; )\))

U= [—%V2+f(x) v

142 (A =0),
0'2(t; )\) _ (1+4a )— (é 402) cos 2at ()\ >0,a = \/X)7
(1_62at) +4a (1+62at)2 (A < 0’ o — \/_7)\)

160220t

Escaping from saddle points February 2, 2021 9/16



-
Why it works?

1+ t2 (A =0),
0‘2(t; )\) = (1+4a )— (1 4a2) cos 2at (A > 0.0 = \F)\)7
(1 520¢t) +4o¢2(1+62at)2 ()\ < 0’ o= \/_7)\)

16a2e2ot

Fact: Exp. dispersion rate for A < 0, quadratic for A = 0, and at most
constant for A > 0.
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Why it works?

1+ tz (A =0),
0‘2(t; )\) = (1+4a )— (1 4a2) cos 2at (A > 0.0 = ﬁ%
(1 520¢t) +4a2(1+62at)2 ()\ < 0’ o= \/_7)\)

16a2e2ot

Fact: Exp. dispersion rate for A < 0, quadratic for A = 0, and at most
constant for A > 0.

If we are near a saddle, then at least one eigenvalue is quite negative
( less than —,/p€). The quantum wave immediately “leaks” along these

negative directions.

Compared with the uniform perturbation in the classical proposal, we
make use of the geometry of the landscape!
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The cost of preparing squeezed states

The cost of the quantum simulation is cheap, but only for quantum
computers!

e Simulating (large) quantum systems is believed to be intractable for
classical computers: the cost scales exponentially with respect to the
dimension n.

@ While quantum computers are particularly good for quantum
simulation. The cost scales polynomially with respect to the
dimension n [Childs, Liu, Ostrander (arXiv:2002.07868)].
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Overview of our quantum algorithm

@ Step 1: Start with an initial guess xg. Compute the gradient.
@ Step 2: When the gradient is large, apply AGD;

@ Step 3: When the gradient is small, run quantum simulation
with time O(logn) and measure (with position quadrature);

e Step 4: Apply AGD for O(logn) iterations, and go to Step 2 or 3
(depending on the norm of the gradient).
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Overview of our quantum algorithm

@ Step 1: Start with an initial guess xg. Compute the gradient.
@ Step 2: When the gradient is large, apply AGD;

@ Step 3: When the gradient is small, run quantum simulation
with time O(logn) and measure (with position quadrature);

e Step 4: Apply AGD for O(logn) iterations, and go to Step 2 or 3
(depending on the norm of the gradient).

The gradient is computed by the Jordan's algorithm (using the quantum
evaluation oracle).

Some previous works [CCLW18, AGGW18] showed how to apply Jordan's
algorithm to convex optimization. We generalize it to non-convex
optimization.
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Summary
H Reference Queries Oracle H
Prior arts [JNJ17] O(log®n/e"™) Gradient
This work O(log®n/e'"™)  Quantum evaluation

Outcome: Cubic quantum speedup in n, match the classical best-known

in €.

@ Achieve quantum speedup by using quantum simulation to
escape from saddle points;

@ Reduce classical gradients to quantum evaluations by
introducing Jordan's algorithm.

Jiaqi Leng
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Numerical experiment: non-quadratic potential

The quantum evolution of a Gaussian wave packet over the potential
function f(x,y) = 23 — y> — 22y + 6. The wave packet is shown as a heat
map over the contour of the potential function.
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Numerical experiment: dimension dependence
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The objective function is of dimension n = 10 for p = 1,2,3. Quantum
evolution time t. = p. Classical iteration number .7, = 50p? + 50,
quantum iteration number .7, = 30p. We take M = 1000 initial guesses

for both methods.
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Open questions

o Can we give quantum-inspired classical algorithms for escaping from
saddle points? (Dequantizing the quantum algorithm, perhaps?)

e Can quantum algorithms achieve speedup in terms of 1/€?

@ Beyond local minima, does quantum provide advantage for
approaching global minima?
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Thanks for your attention!
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