

# Secure Computation is in MiniQCrypt

Merge of:

Oblivious Transfer is in MiniQCrypt

One-Way Functions Imply Secure Computation  
In a Quantum World

*Alex Bredariol Grilo* (LIP6, CNRS/Sorbonne Université)

Huijia Lin (University of Washington)

Fang Song (Portland State University)

Vinod Vaikuntanathan (MIT)

*James Bartusek* (UC Berkeley)

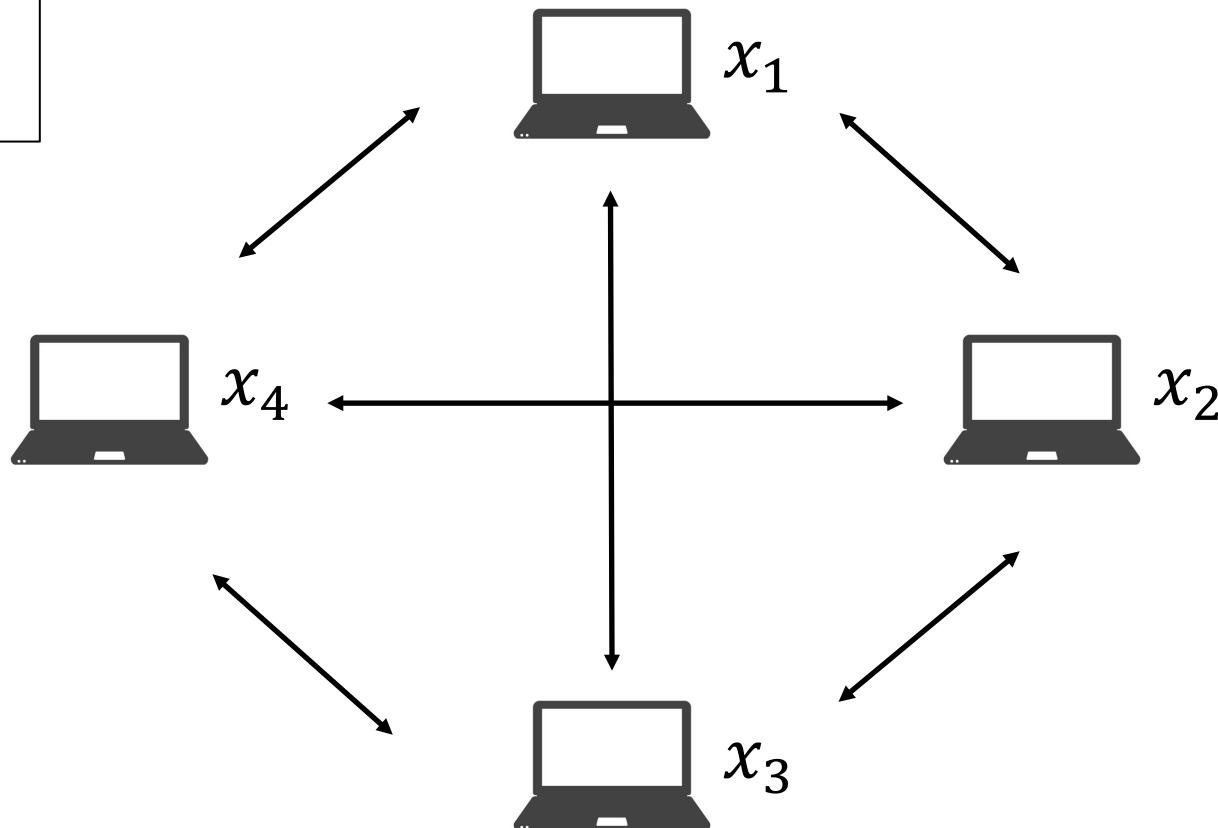
Andrea Coladangelo (UC Berkeley)

Dakshita Khurana (UIUC)

Fermi Ma (Princeton and NTT Research)

# Secure Multi-Party Computation

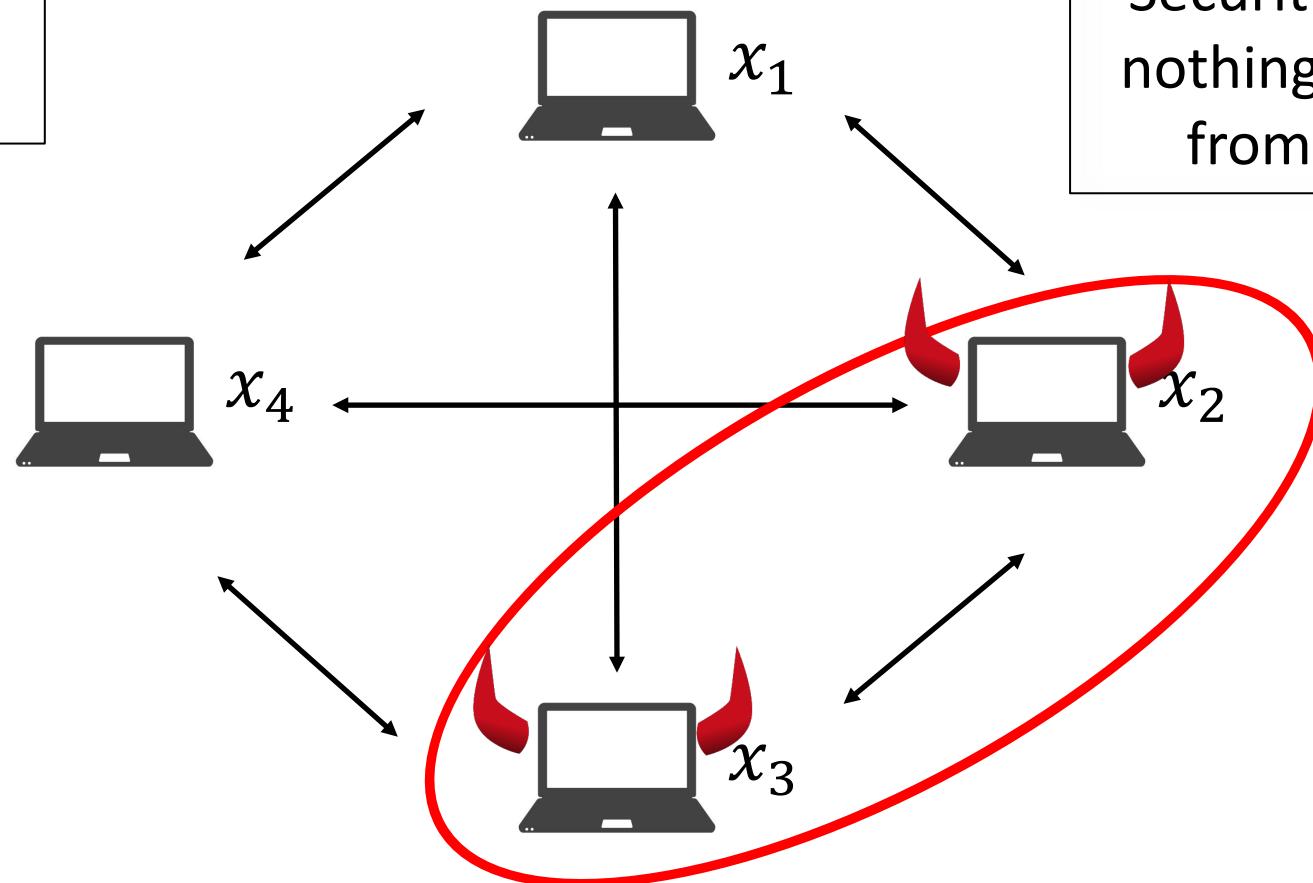
Goal: Compute  
 $C(x_1, x_2, x_3, x_4)$



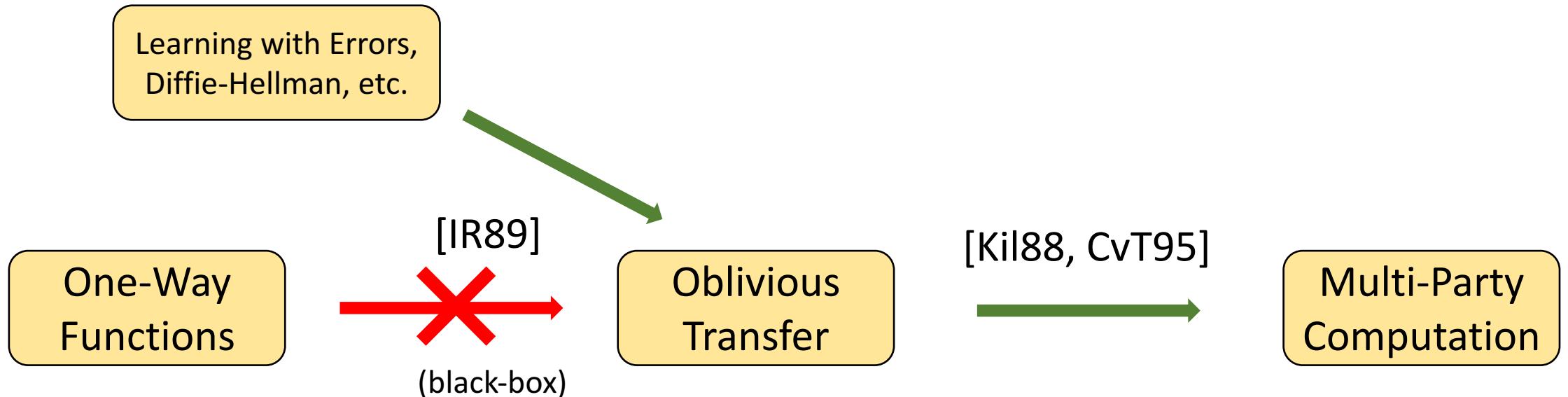
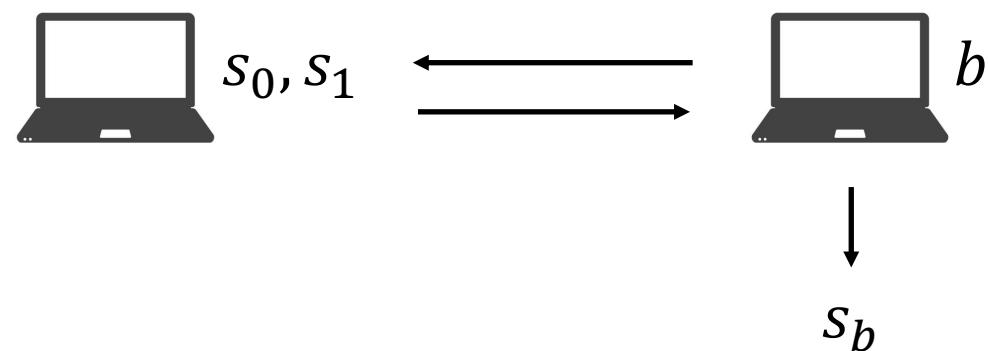
# Secure Multi-Party Computation

Goal: Compute  
 $C(x_1, x_2, x_3, x_4)$

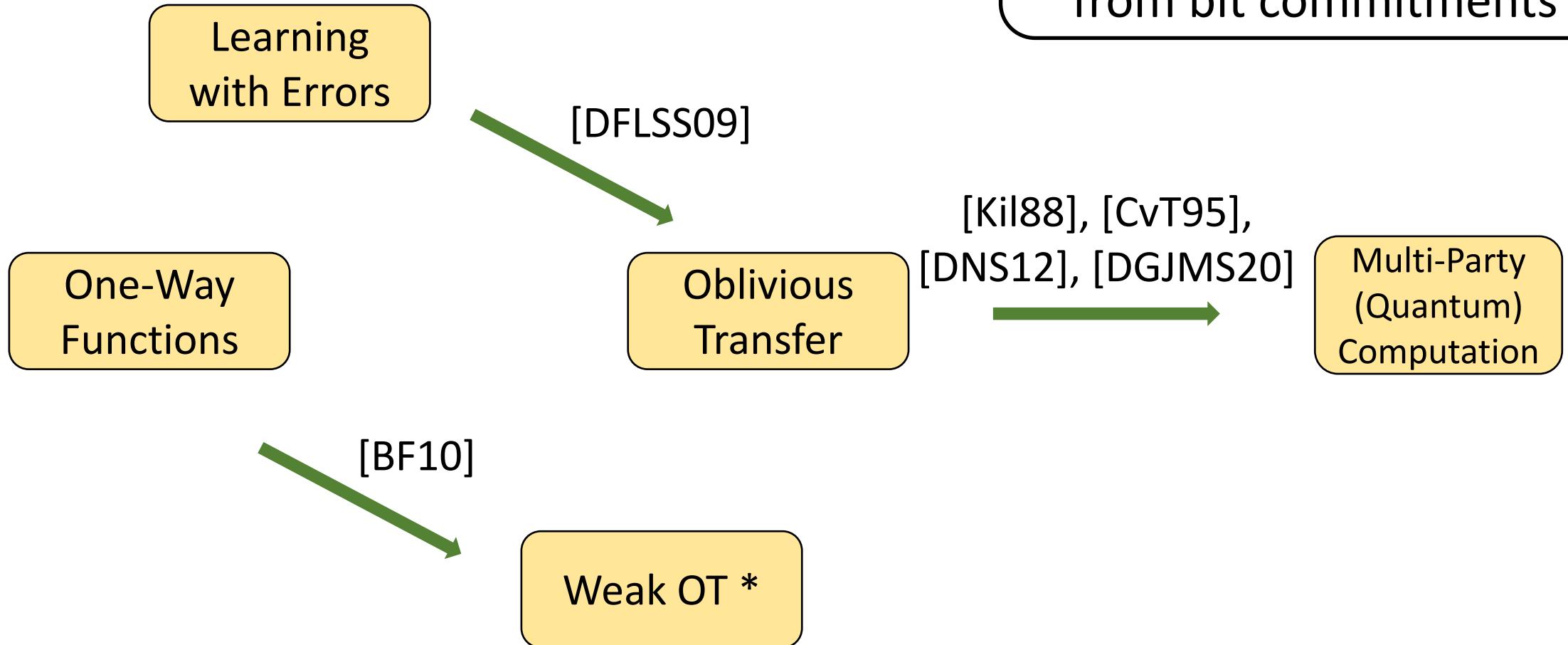
Security: adversary learns  
nothing about  $x_1, x_4$  apart  
from  $C(x_1, x_2, x_3, x_4)$



# In a Classical World

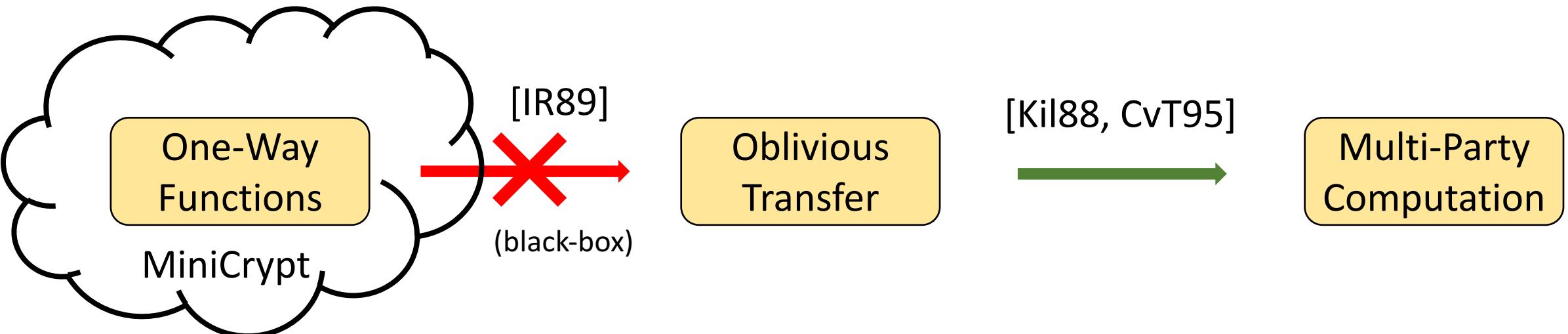


# In a Quantum World

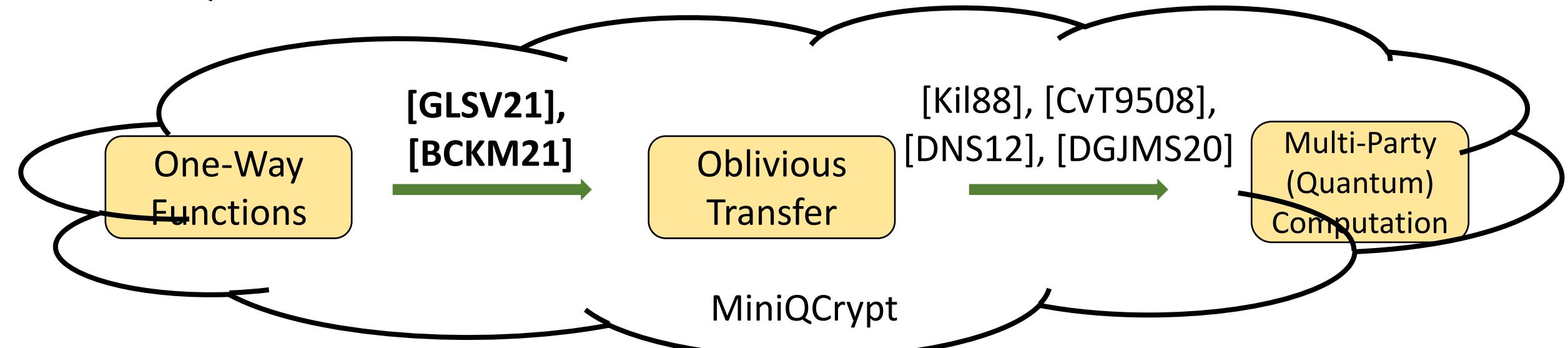


\* Not known to imply MPC

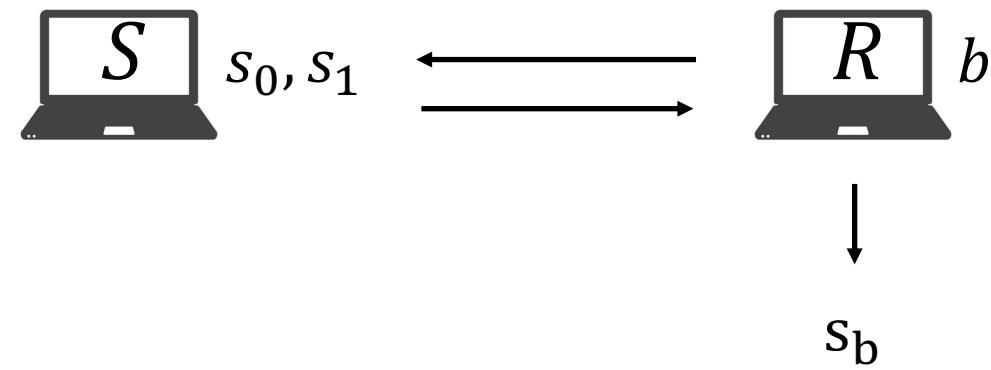
# In a Classical World:



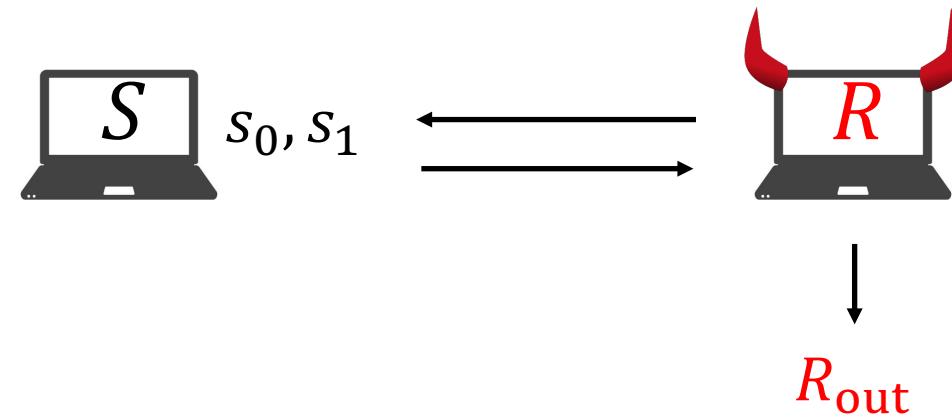
# In a Quantum World:



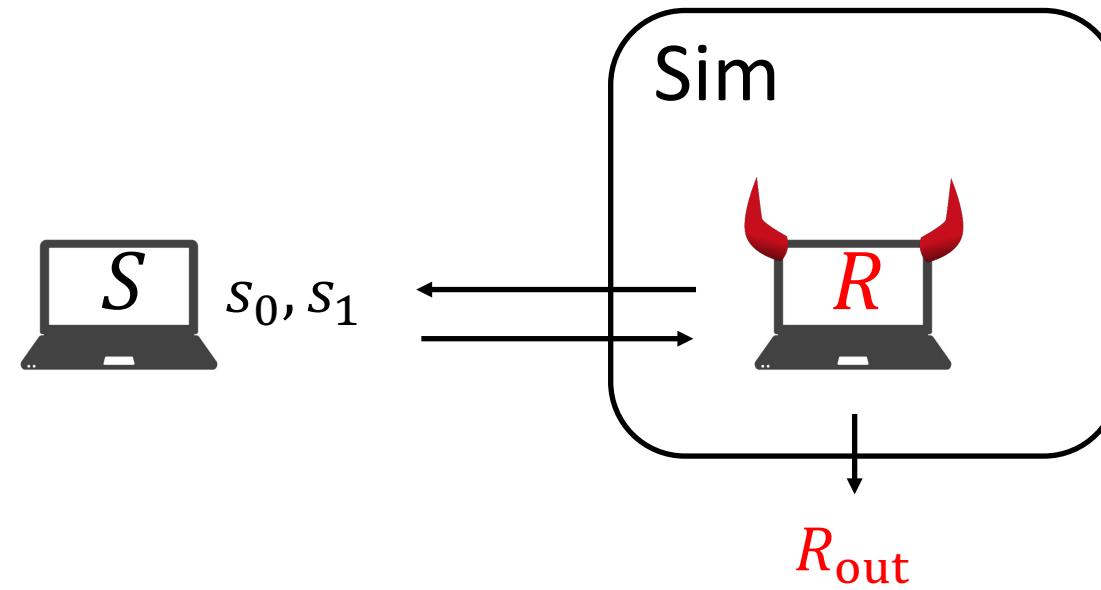
# Oblivious Transfer



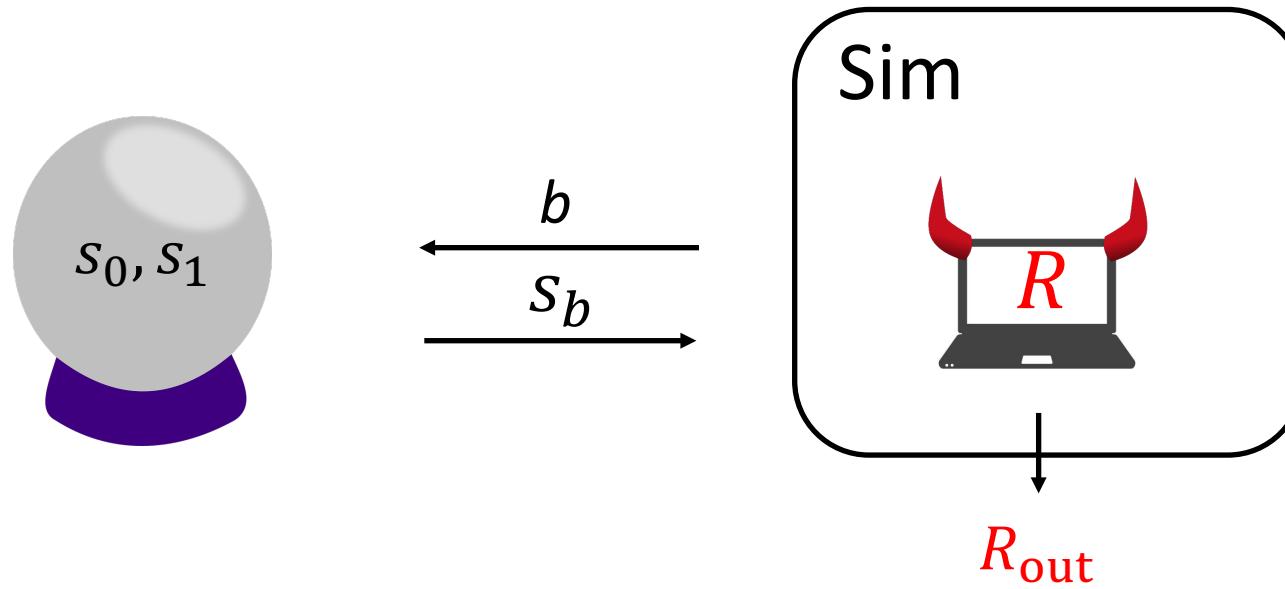
# Security Against Malicious Receiver



# Security Against Malicious Receiver



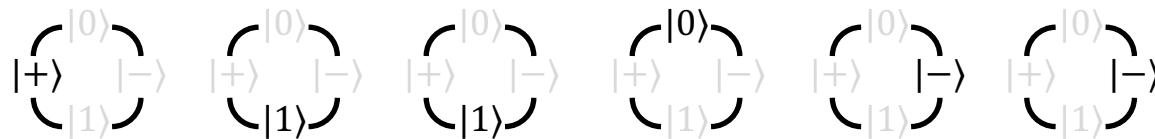
# Security Against Malicious Receiver



Sim must **extract** implicit choice bit  $b$  from  $R$

# [CK88], [BBCS92] Template for OT from Bit Commitment

$S(s_0, s_1)$



$R(b)$

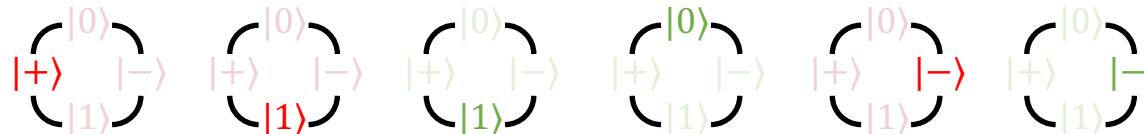
Sample bases  $\theta = \leftrightarrow \uparrow \downarrow \uparrow \downarrow \leftrightarrow \leftrightarrow$

Sample bits  $x = 011011$



# [CK88], [BBCS92] Template for OT from Bit Commitment

$S(s_0, s_1)$



Sample bases  $\theta = \leftrightarrow\uparrow\downarrow\uparrow\leftrightarrow\leftrightarrow$

Sample bits  $x = 011011$

$R(b)$

Sample bases  $\theta' = \uparrow\leftrightarrow\downarrow\uparrow\downarrow\leftrightarrow$

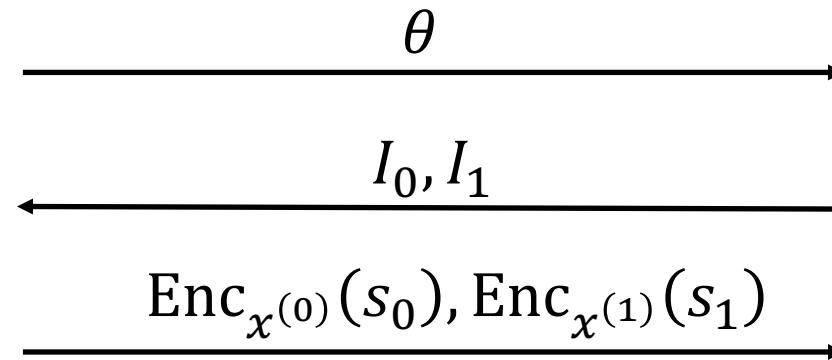
Measure  $x' = \textcolor{red}{111001}$

$$I_b = \{3,4,6\}$$

$$I_{1-b} = \{1,2,5\}$$

$$x^{(0)} = (x_i)_{i \in I_0}$$

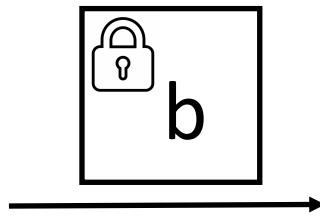
$$x^{(1)} = (x_i)_{i \in I_1}$$



Cheating  $R$  can wait until receiving  $\theta$  to measure

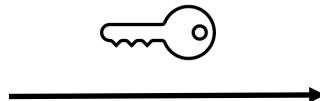
## Aside: Bit Commitment

$C(b)$



R

Hiding: R does not learn  $b$



Binding: C can only make  
box open to  $b$

# [CK88], [BBCS92] Template for OT from Bit Commitment

$S(s_0, s_1)$

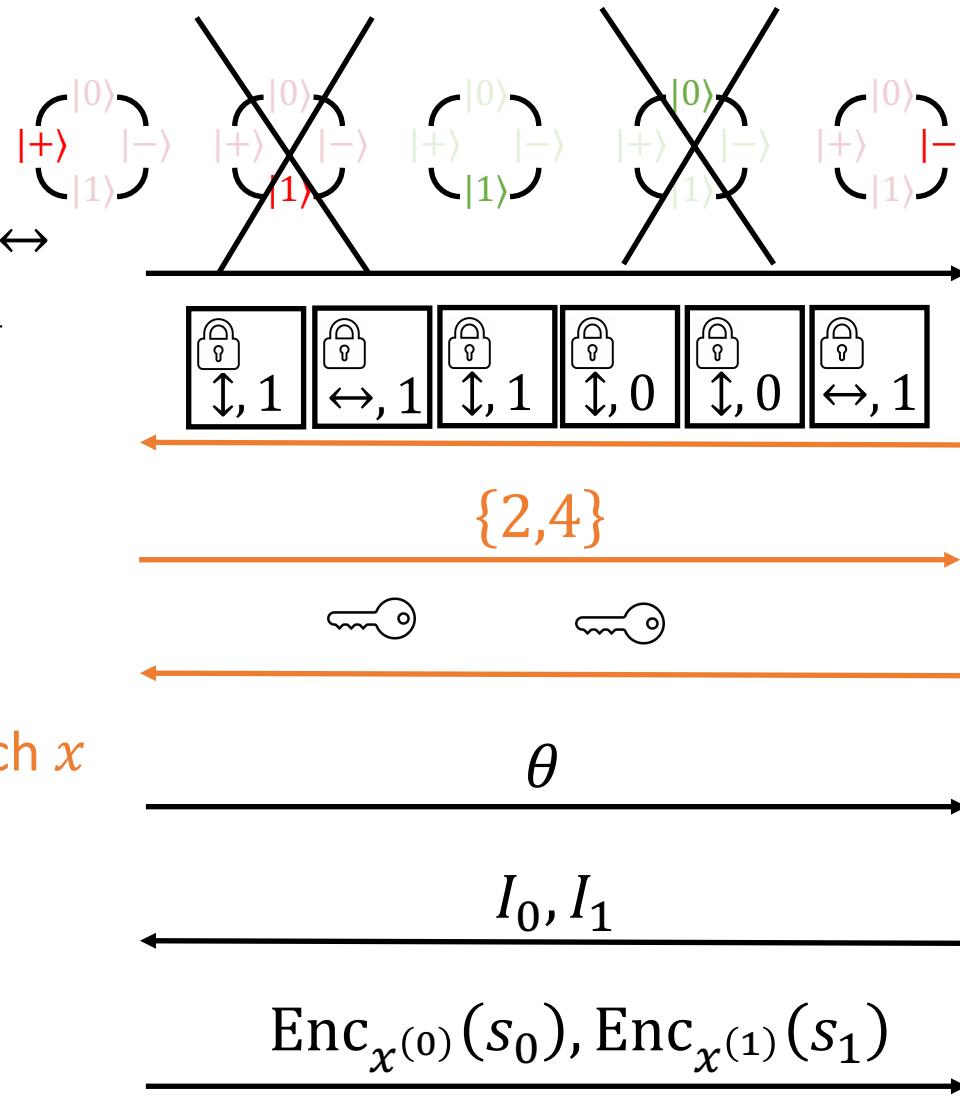
Sample bases  $\theta = \leftrightarrow \uparrow \downarrow \uparrow \leftrightarrow \leftrightarrow$   
 Sample bits  $x = 011011$

Sample subset  $\{2,4\}$

Open  $(\leftrightarrow, 1), (\uparrow, 0),$   
 Check that green bits match  $x$

$$x^{(0)} = (x_i)_{i \in I_0}$$

$$x^{(1)} = (x_i)_{i \in I_1}$$



$R(b)$

Sample bases  $\theta' = \uparrow \leftrightarrow \uparrow \downarrow \uparrow \leftrightarrow$   
 Measure  $x' = 111001$

Measurement  
check sub-protocol

$$I_b = \{3,6\}$$

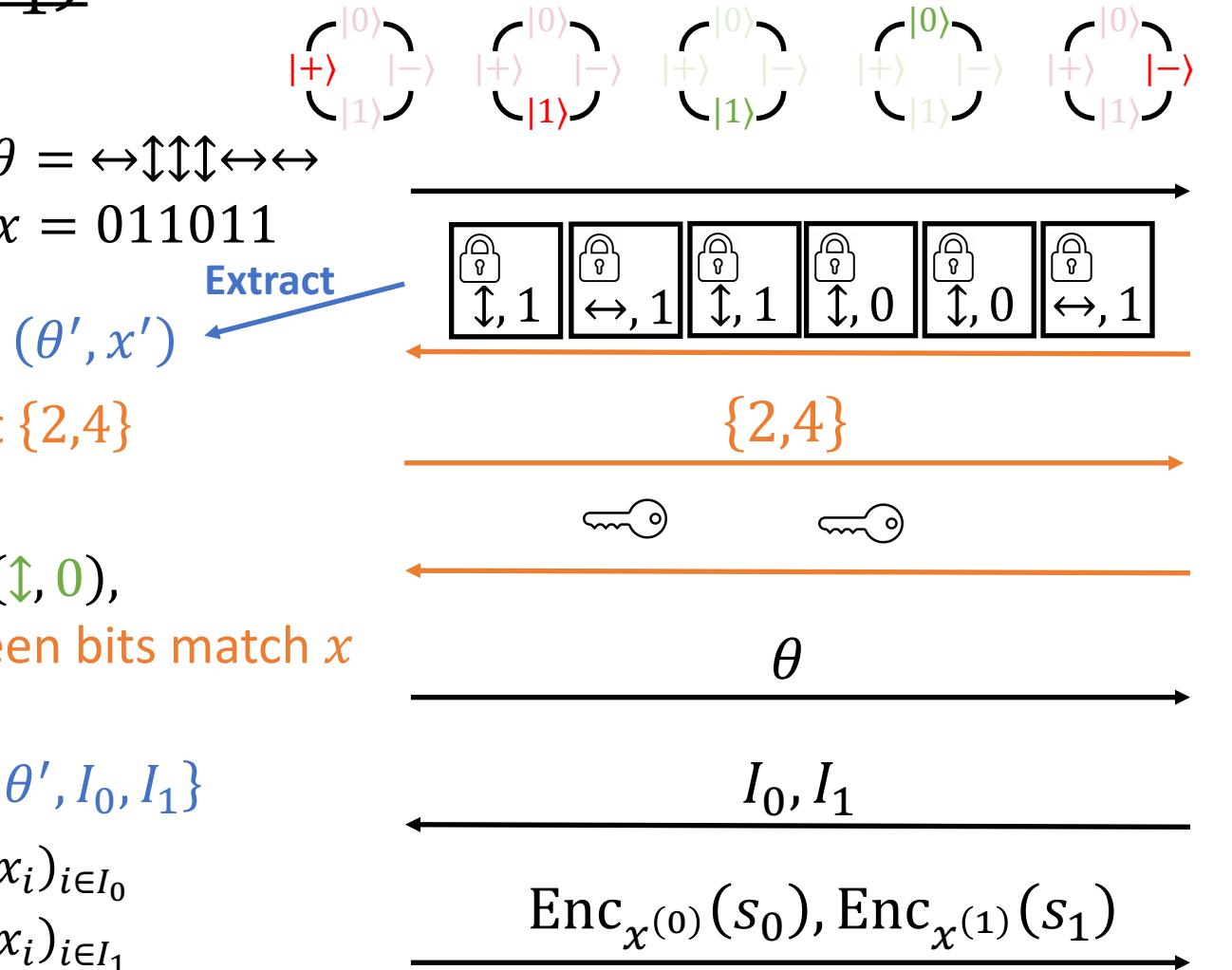
$$I_{1-b} = \{1,5\}$$

[DFLSS09]: Simulation security of OT follows from using commitment with certain properties:

- **Extractability** → security against malicious receiver
  - **Equivocality** → security against malicious sender

# Security against malicious receiver: extract $b$ from $R$

$S(s_0, s_1)$



# Security against malicious sender: extract $(s_0, s_1)$ from $S$

$S(s_0, s_1)$

Sample bases  $\theta = \leftrightarrow\uparrow\downarrow\uparrow\leftrightarrow\leftrightarrow$   
Sample bits  $x = 011011$

Sample subset  $\{2,4\}$

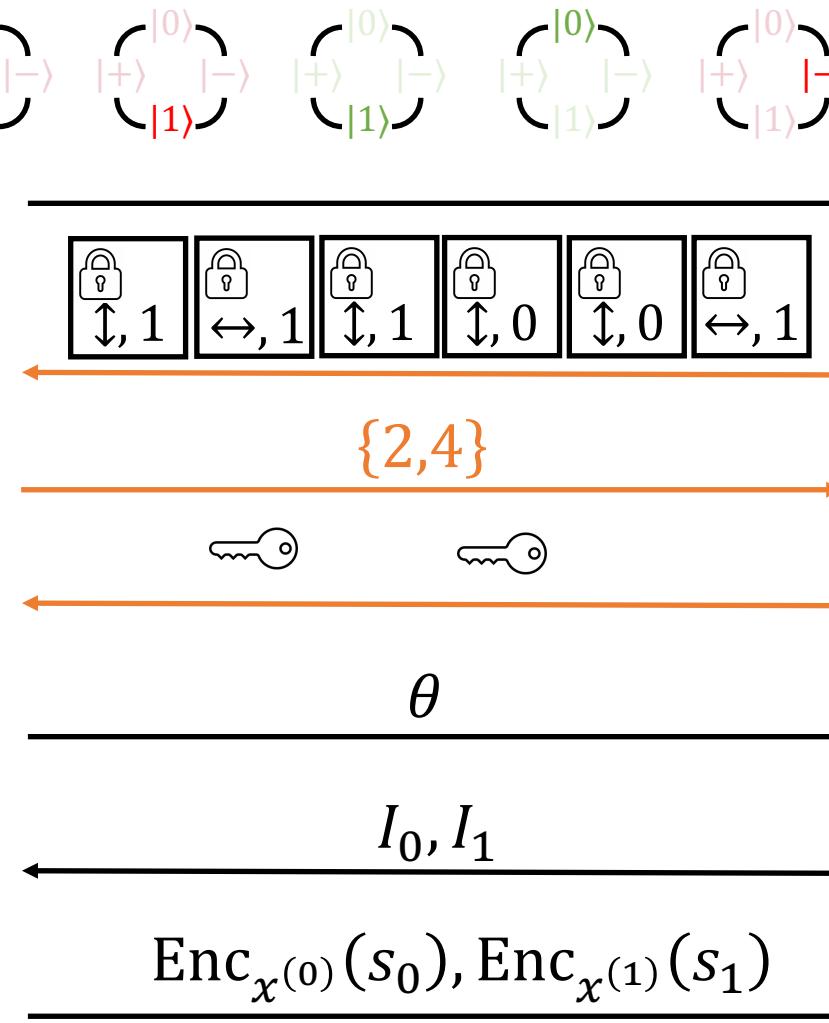
Open  $(\leftrightarrow, 1), (\uparrow, 0),$   
Check that green bits match  $x$

$$x^{(0)} = (x_i)_{i \in I_0}$$
$$x^{(1)} = (x_i)_{i \in I_1}$$

$R(b)$

Sample bases  $\theta' = \uparrow\leftrightarrow\downarrow\uparrow\downarrow\leftrightarrow$   
Measure  $x' = 111001$

Measurement  
check sub-protocol

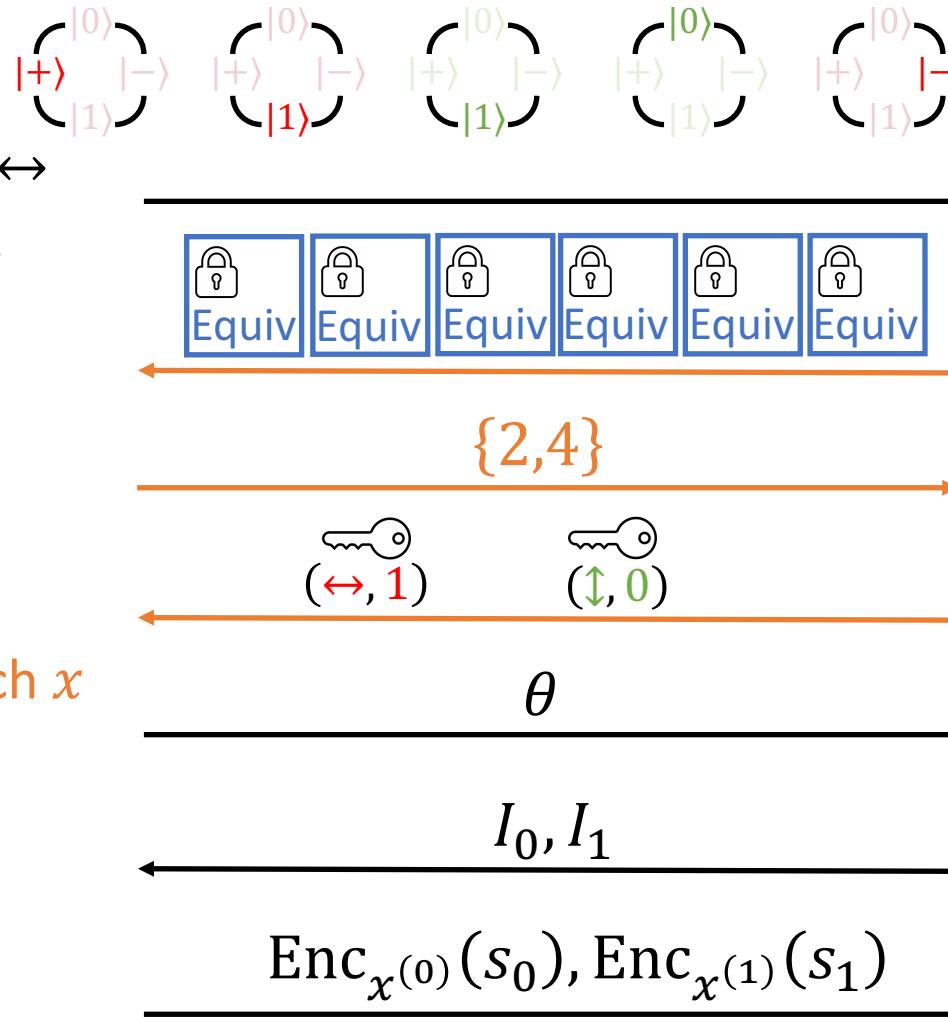


$$I_b = \{3,6\}$$
$$I_{1-b} = \{1,5\}$$

# Security against malicious sender: extract $(s_0, s_1)$ from $S$

$S(s_0, s_1)$

Sample bases  $\theta = \leftrightarrow\uparrow\downarrow\uparrow\leftrightarrow\leftrightarrow$   
 Sample bits  $x = 011011$



# Security against malicious sender: extract $(s_0, s_1)$ from $S$

$S(s_0, s_1)$

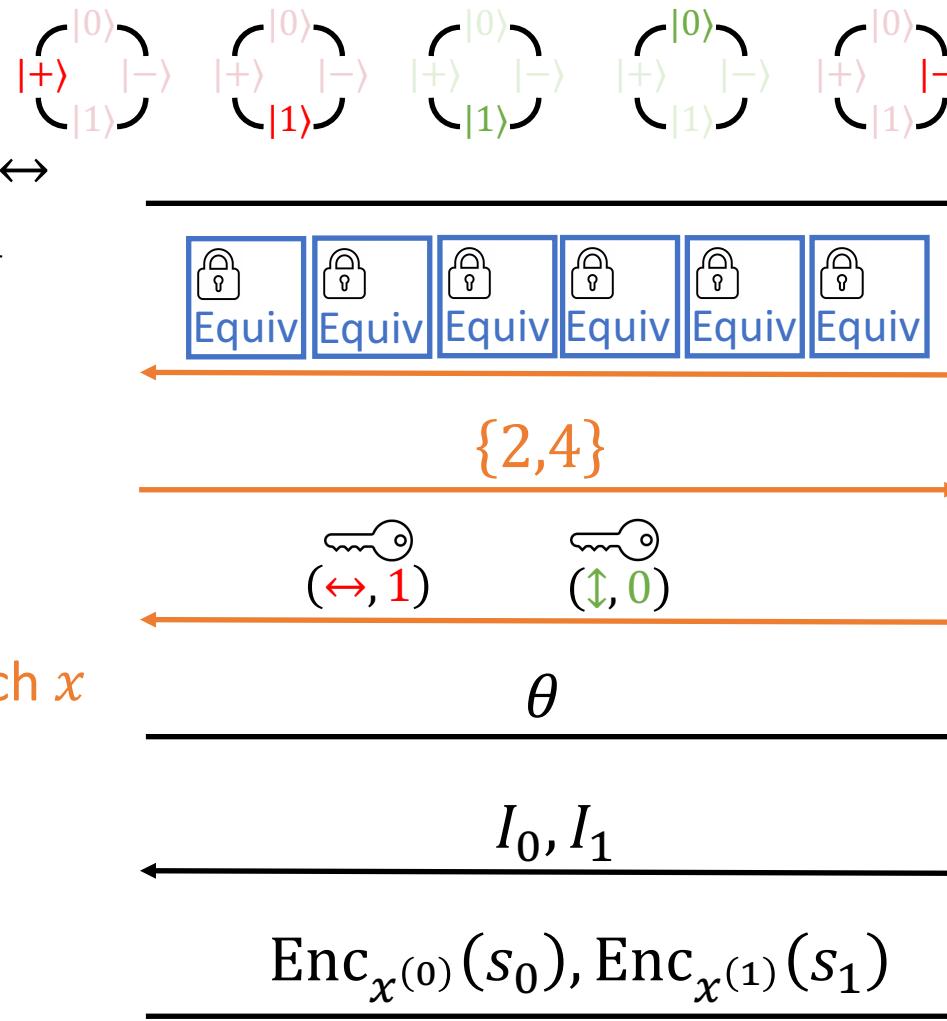
Sample bases  $\theta = \leftrightarrow\uparrow\downarrow\uparrow\leftrightarrow\leftrightarrow$   
 Sample bits  $x = 011011$

Sample subset  $\{2,4\}$

Open  $(\leftrightarrow, 1), (\uparrow, 0),$   
 Check that green bits match  $x$

$$x^{(0)} = (x_i)_{i \in I_0}$$

$$x^{(1)} = (x_i)_{i \in I_1}$$



$R(b)$

Sample bases  $\theta' = \uparrow\leftrightarrow\downarrow\downarrow\uparrow\leftrightarrow$   
 Measure  $x' = \textcolor{red}{1}1100\textcolor{green}{1}$

Measure qubits 2 and 4:  
 $(\leftrightarrow, 1), (\uparrow, 0)$

Measure qubits 1,3,5,6 in  $\theta$

$$I_b = \{3,6\}$$

$$I_{1-b} = \{1,5\}$$

Obtain  $(s_0, s_1)$

# Goal: (quantum-secure) Extractable and Equivocal bit commitment from one-way functions

[BCKM21]

1. (Black-box) equivocality compiler
2. Extractable commitment from equivocal commitment and quantum communication

[GLSV21]

1. Equivocal commitment from Naor's commitment and zero-knowledge
2. Unbounded-simulator OT from equivocal commitment
3. Extractable and equivocal commitment from unbounded-simulator OT and quantum communication

# Goal: (quantum-secure) Extractable and Equivocal bit commitment from one-way functions

[BCKM21]

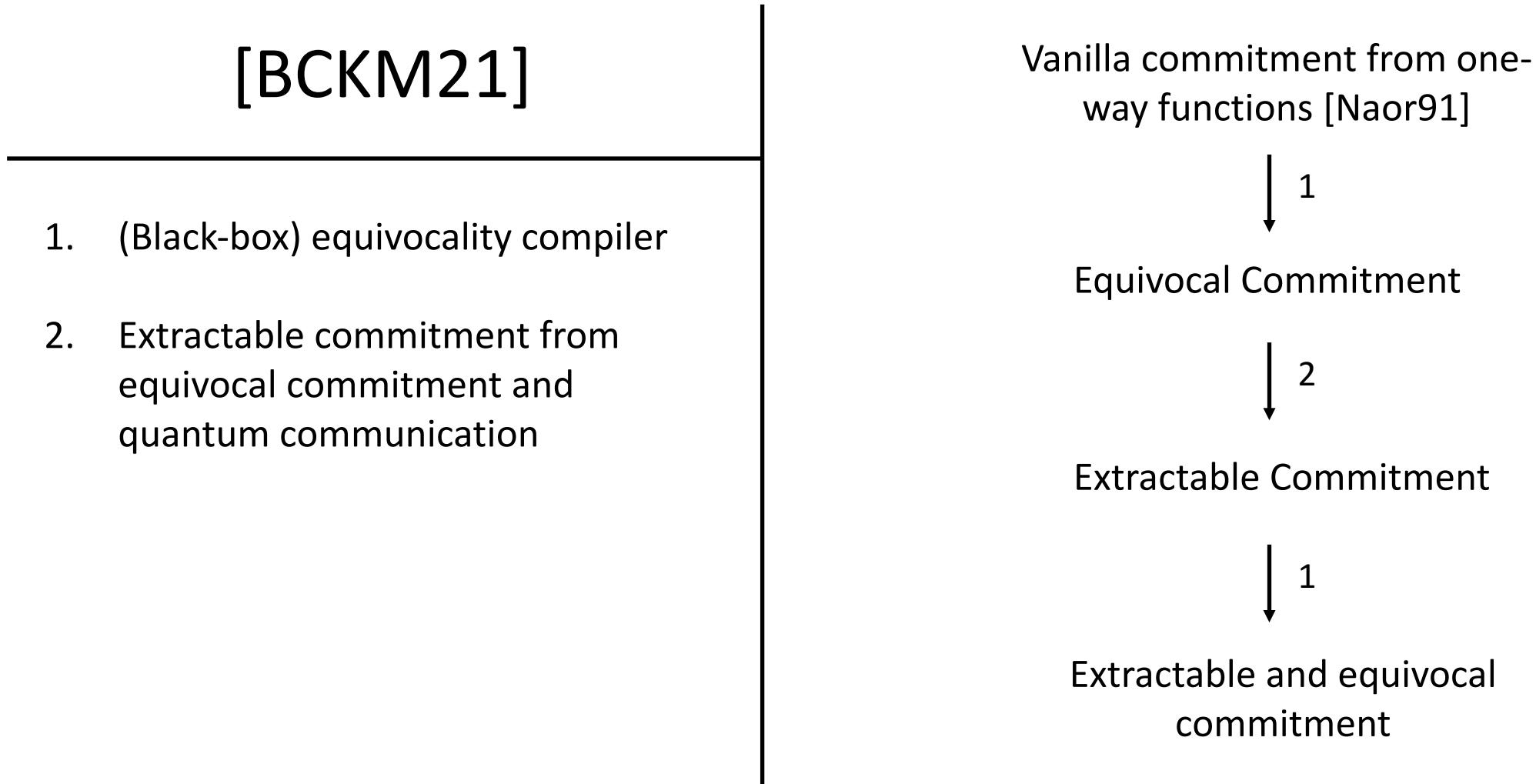
1. (Black-box) equivocality compiler
2. Extractable commitment from equivocal commitment and quantum communication

[GLSV21]

1. Equivocal commitment from Naor's commitment and zero-knowledge
2. Unbounded-simulator OT from equivocal commitment
3. Extractable and equivocal commitment from unbounded-simulator OT and quantum communication

Alex's talk

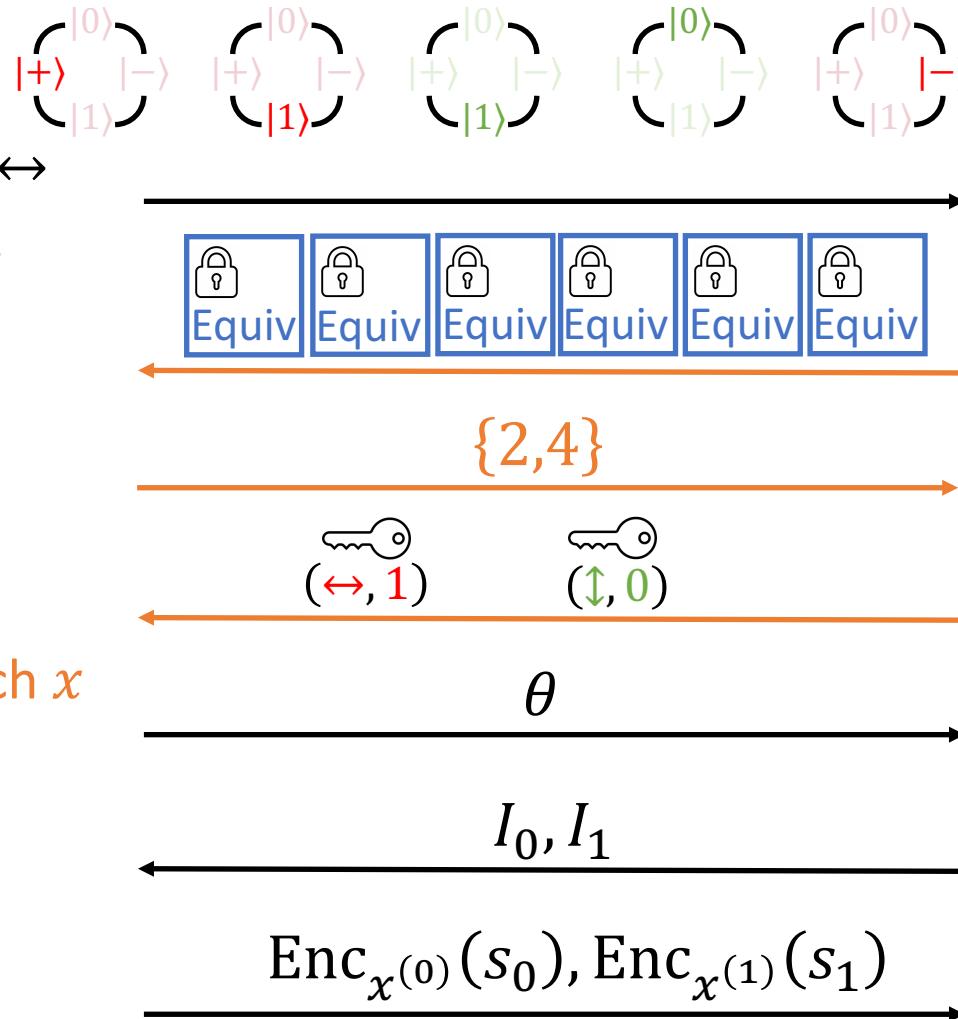
# Goal: (quantum-secure) Extractable and Equivocal bit commitment from one-way functions



## 2. Extractable Commitment from Equivocal Commitment

$S(s_0, s_1)$

Sample bases  $\theta = \leftrightarrow\uparrow\downarrow\uparrow\leftrightarrow\leftrightarrow$   
 Sample bits  $x = 011011$



$R(b)$

Sample bases  $\theta' = \uparrow\leftrightarrow\downarrow\uparrow\downarrow\leftrightarrow$   
 Measure  $x' = \textcolor{red}{1}1100\textcolor{green}{1}$

Sample subset  $\{2,4\}$

Open  $(\leftrightarrow, 1), (\downarrow, 0)$ ,  
 Check that green bits match  $x$

$$x^{(0)} = (x_i)_{i \in I_0}$$

$$x^{(1)} = (x_i)_{i \in I_1}$$

Measure qubits 2 and 4:  
 $(\leftrightarrow, 1), (\downarrow, 0)$

Measure qubits 1,3,5,6 in  $\theta$

$$I_b = \{3,6\}$$

$$I_{1-b} = \{1,5\}$$

Obtain  $(s_0, s_1)$

## 2. Extractable Commitment from Equivocal Commitment

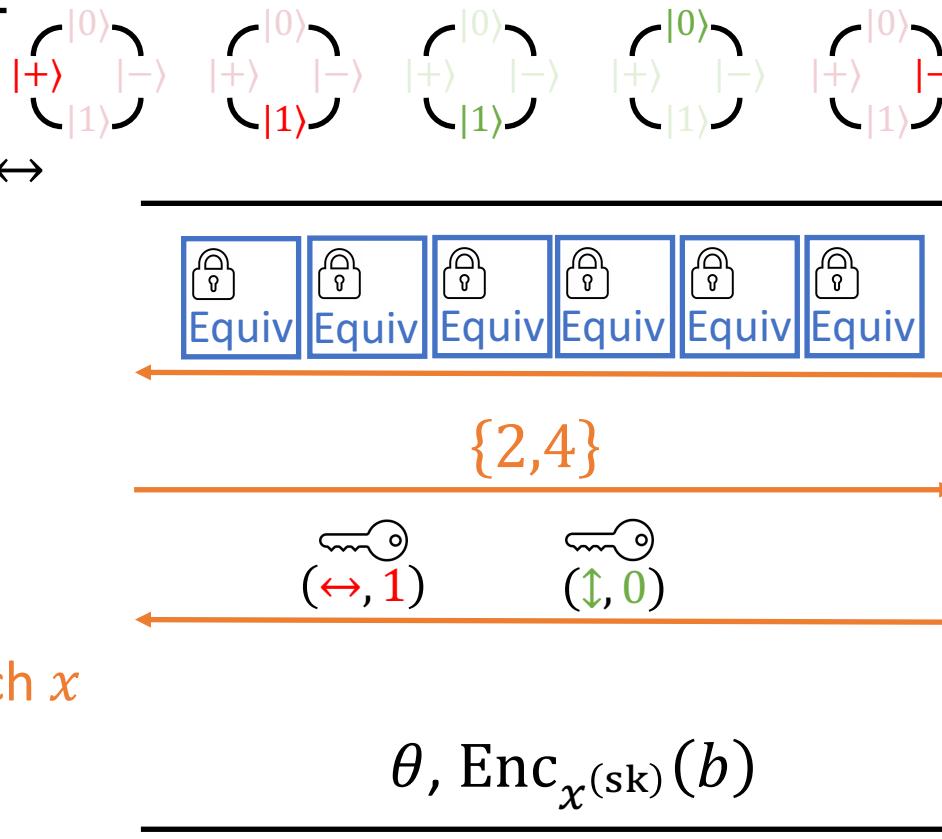
ExtractCom( $b$ )

Sample bases  $\theta = \leftrightarrow\uparrow\downarrow\uparrow\leftrightarrow\leftrightarrow$   
 Sample bits  $x = 011011$

Sample subset  $\{2,4\}$

Open  $(\leftrightarrow, 1), (\uparrow, 0),$   
 Check that green bits match  $x$

$x^{(\text{sk})} = (x_i)_{i \notin T}$



$R$

Sample bases  $\theta' = \uparrow\leftrightarrow\downarrow\uparrow\downarrow\leftrightarrow$   
 Measure  $x' = \underline{111001}$

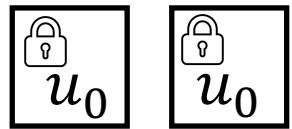
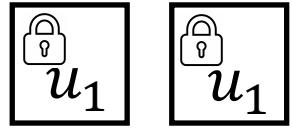
Measure qubits 2 and 4:  
 $(\leftrightarrow, 1), (\uparrow, 0)$

Measure qubits 1,3,5,6 in  $\theta$   
 to obtain  $x^{(\text{sk})}$

# 1. Black-Box Equivocality Compiler: Com $\rightarrow$ EquivCom

EquivCom( $b$ )

Sample  $u_0, u_1 \leftarrow \{0,1\}$



$c (=0)$

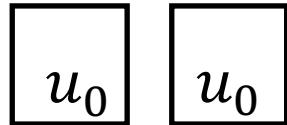
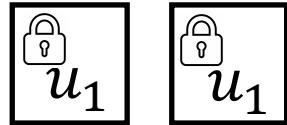
Rec

Sample  $c \leftarrow \{0,1\}$

# 1. Black-Box Equivocality Compiler: Com $\rightarrow$ EquivCom

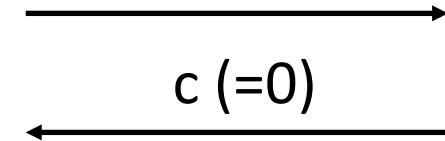
EquivCom( $b$ )

Sample  $u_0, u_1 \leftarrow \{0,1\}$



Rec

Sample  $c \leftarrow \{0,1\}$

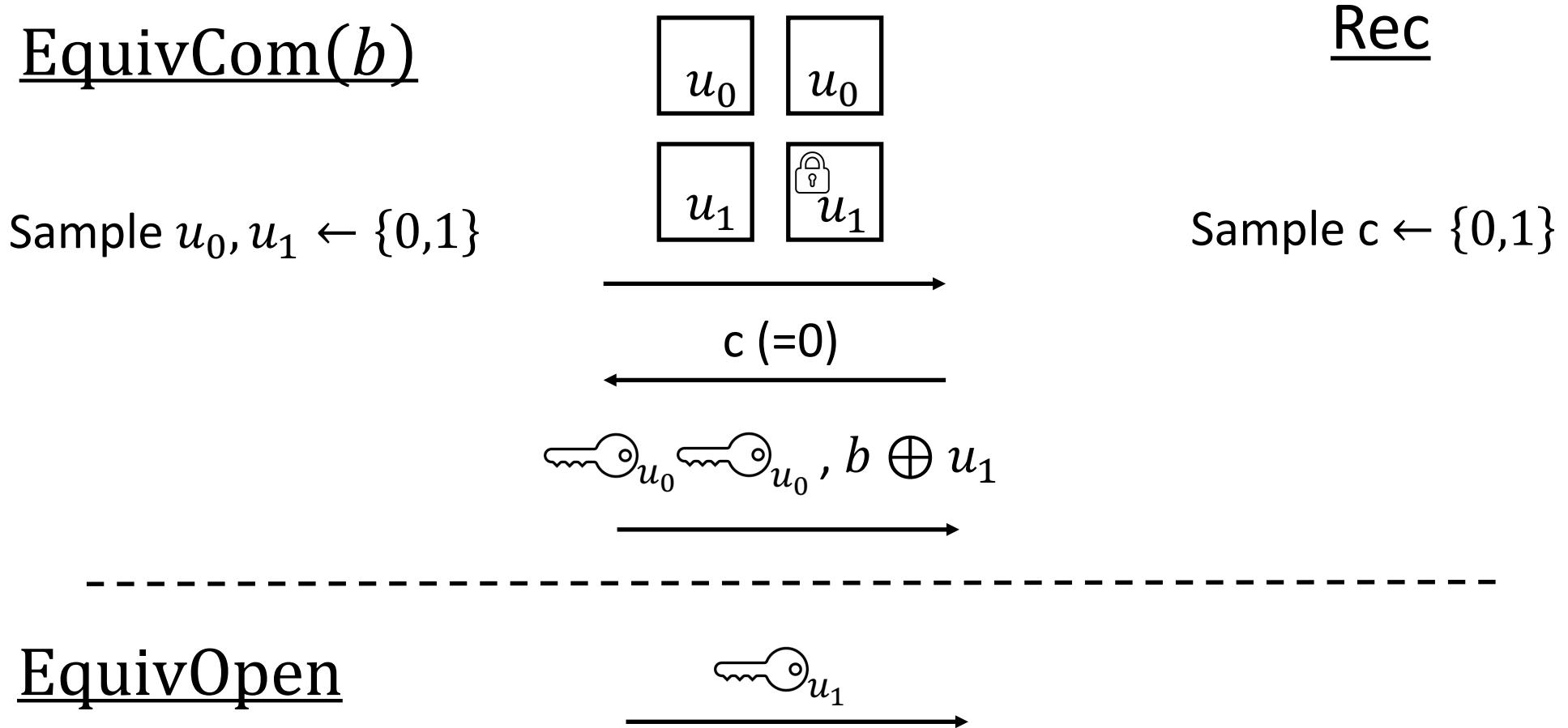


$\text{key}_{u_0}, \text{key}_{u_0}, b \oplus u_1$



EquivOpen

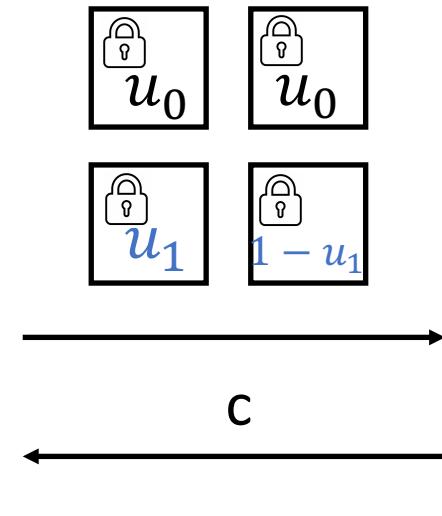
# 1. Black-Box Equivocality Compiler: Com $\rightarrow$ EquivCom



# 1. Black-Box Equivocality Compiler: Com $\rightarrow$ EquivCom

EquivCom

Sample  $u_0, u_1 \leftarrow \{0,1\}$



Rec

Sample  $c \leftarrow \{0,1\}$

# 1. Black-Box Equivocality Compiler: Com $\rightarrow$ EquivCom

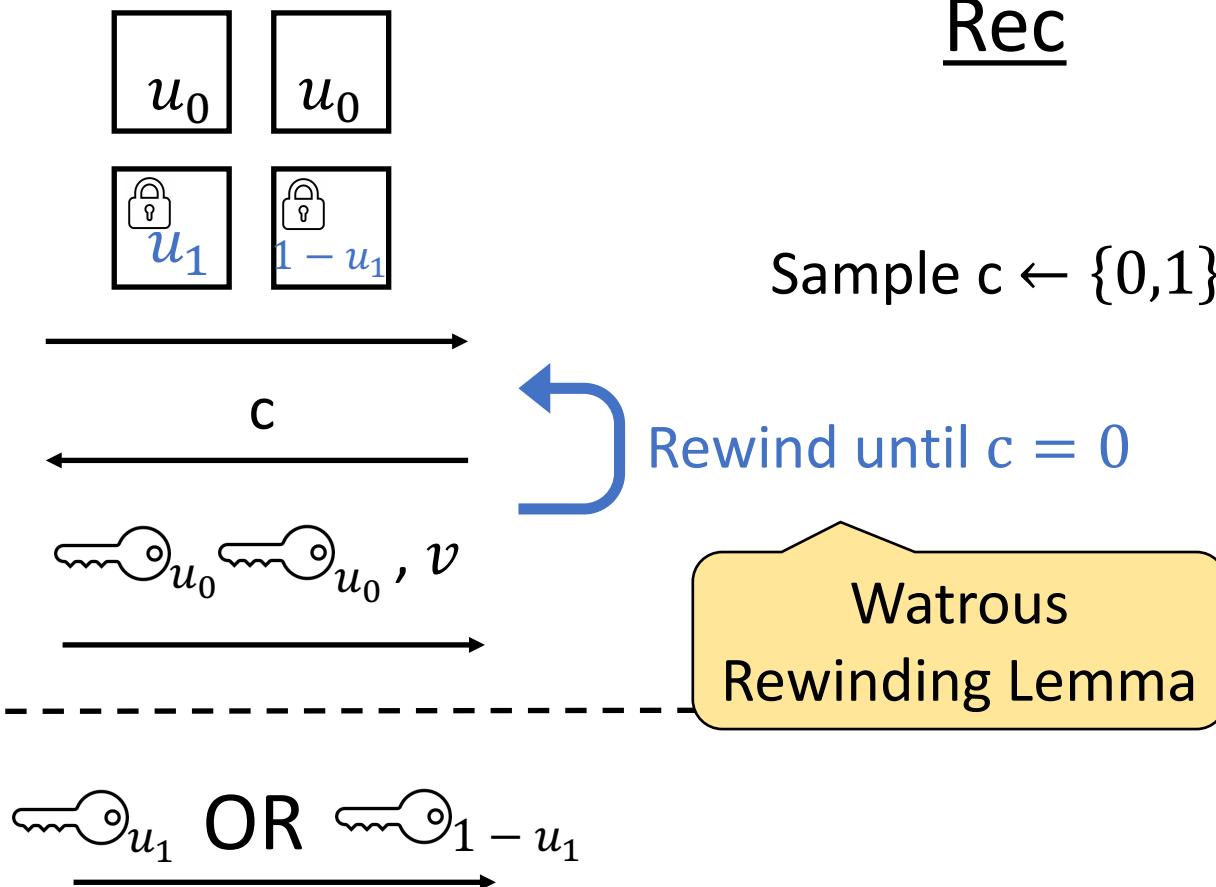
## EquivCom

Sample  $u_0, u_1 \leftarrow \{0,1\}$

Sample  $v \leftarrow \{0,1\}$

-----

## EquivOpen



[BCKM21]

1. (Black-box) equivocality compiler
2. Extractable commitment from equivocal commitment and quantum communication

Features:

- **Black-Box** use of one-way functions
- **Statistical** security against malicious receiver

[GLSV21]

1. Equivocal commitment from Naor's commitment and zero-knowledge
2. Unbounded-simulator OT from equivocal commitment
3. Extractable and equivocal commitment from unbounded-simulator OT and quantum communication

- **Constant-Round** OT in the CRS model
- **Statistically binding** extractable commitment

# Secure Computation is in MiniQCrypt

Merge of:

Oblivious Transfer is in MiniQCrypt

One-Way Functions Imply Secure Computation  
In a Quantum World

*Alex Bredariol Grilo*

Huijia Lin

Fang Song

Vinod Vaikuntanathan

*James Bartusek*

Andrea Coladangelo

Dakshita Khurana

Fermi Ma

# Bird's-eye view

OWF + Quantum

Extractable commitment

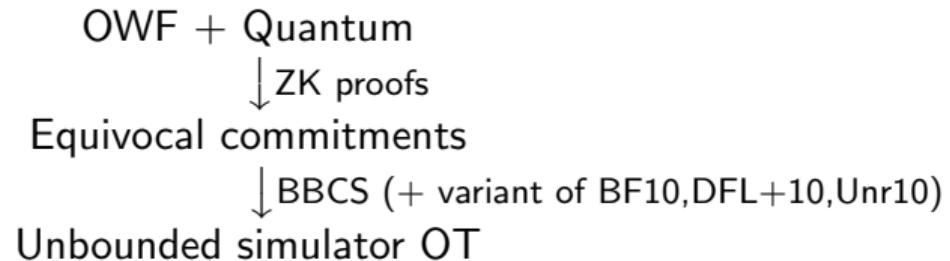
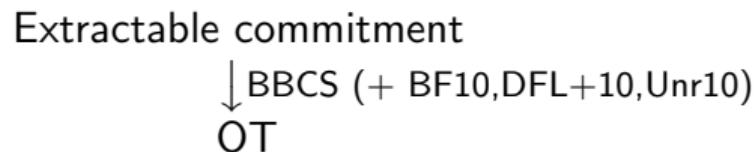
↓ BBCS (+ BF10,DFL+10,Unr10)  
OT

## Bird's-eye view

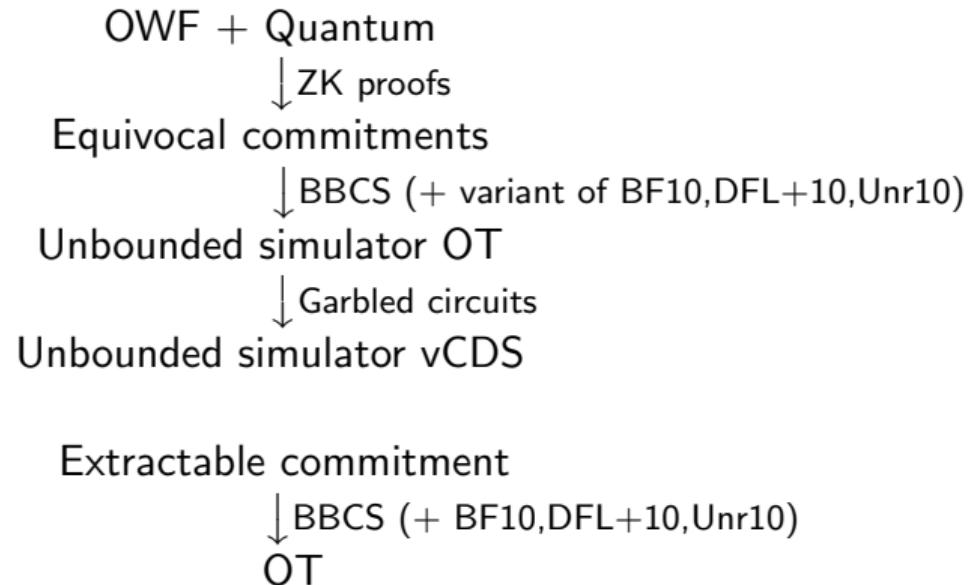
OWF + Quantum  
↓ ZK proofs  
Equivocal commitments

Extractable commitment  
↓ BBCS (+ BF10, DFL+10, Unr10)  
OT

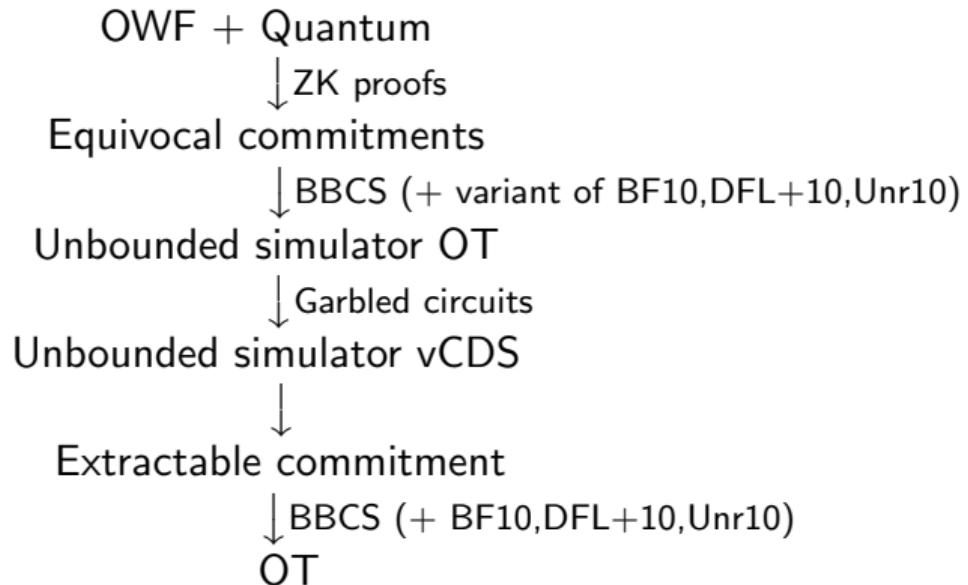
# Bird's-eye view



# Bird's-eye view

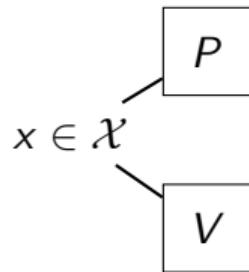


# Bird's-eye view



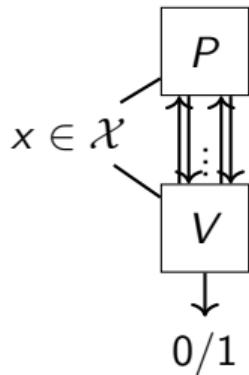
## (post-quantum) Zero-knowledge protocol for relations

$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



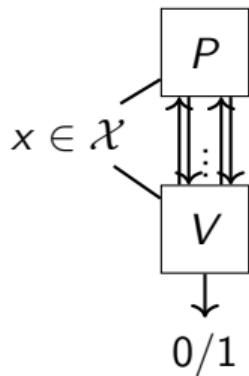
## (post-quantum) Zero-knowledge protocol for relations

$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



## (post-quantum) Zero-knowledge protocol for relations

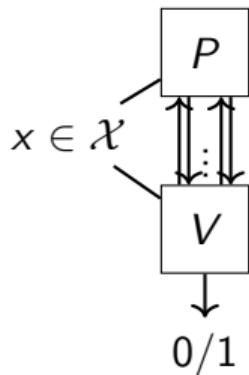
$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



1. If  $P$  knows  $w$  s.t.  $(x, w) \in \mathcal{R}$ ,  $V$  accepts whp

## (post-quantum) Zero-knowledge protocol for relations

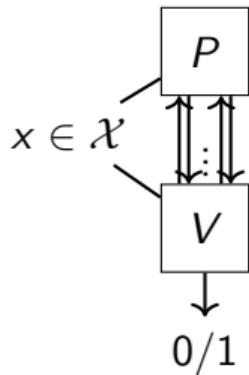
$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



1. If  $P$  knows  $w$  s.t.  $(x, w) \in \mathcal{R}$ ,  $V$  accepts whp
2. If  $\nexists w$  s.t.  $(x, w) \in \mathcal{R}$ ,  $V$  rejects whp

## (post-quantum) Zero-knowledge protocol for relations

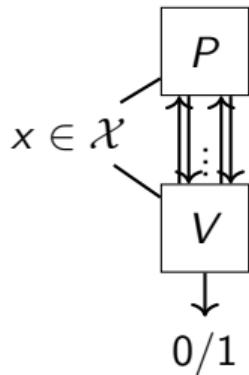
$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



1. If  $P$  knows  $w$  s.t.  $(x, w) \in \mathcal{R}$ ,  $V$  accepts whp
2. If  $\nexists w$  s.t.  $(x, w) \in \mathcal{R}$ ,  $V$  rejects whp
3.  $\tilde{V}$  does not learn  $w$  s.t.  $(x, w) \in \mathcal{R}$

## (post-quantum) Zero-knowledge protocol for relations

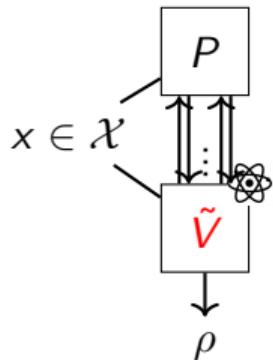
$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



1. If  $P$  knows  $w$  s.t.  $(x, w) \in \mathcal{R}$ ,  $V$  accepts whp
2. If  $\nexists w$  s.t.  $(x, w) \in \mathcal{R}$ ,  $V$  rejects whp
3.  $\tilde{V}$  does not learn  $w$  s.t.  $(x, w) \in \mathcal{R}$

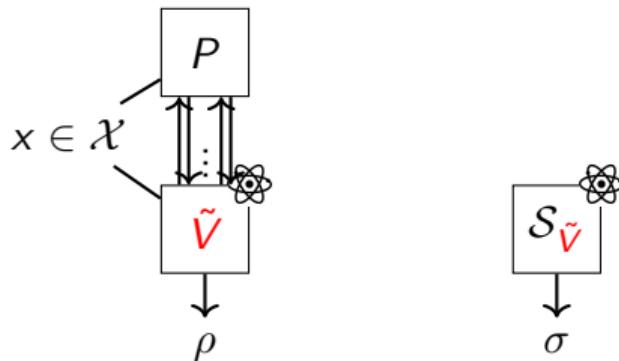
# (post-quantum) Zero-knowledge protocol for relations

$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



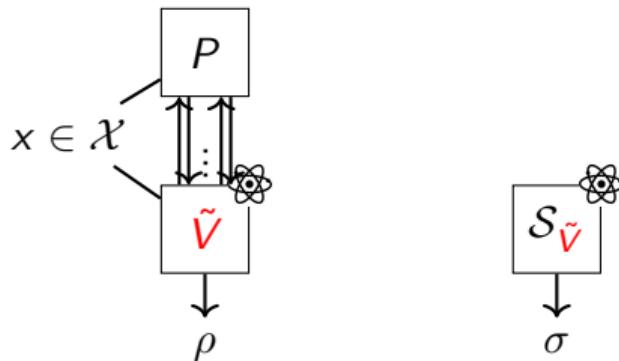
# (post-quantum) Zero-knowledge protocol for relations

$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



# (post-quantum) Zero-knowledge protocol for relations

$$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$$



## Quantum computational zero-knowledge

$\rho$  and  $\sigma$  cannot be **efficiently** distinguished:

$$\forall \text{ quantum poly-time } \mathcal{A} : |\Pr[\mathcal{A}(\rho) = 1] - \Pr[\mathcal{A}(\sigma) = 1]| \leq \text{negl}(n)$$

# post-quantum ZK for NP relations

# post-quantum ZK for NP relations

## NP relations

$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$  is an NP-relation if there exists a polynomial-time algorithm  $V$  s.t.  
$$V(x, w) = 1 \text{ iff } (x, w) \in \mathcal{R}.$$

# post-quantum ZK for NP relations

## NP relations

$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$  is an NP-relation if there exists a polynomial-time algorithm  $V$  s.t.  
$$V(x, w) = 1 \text{ iff } (x, w) \in \mathcal{R}.$$

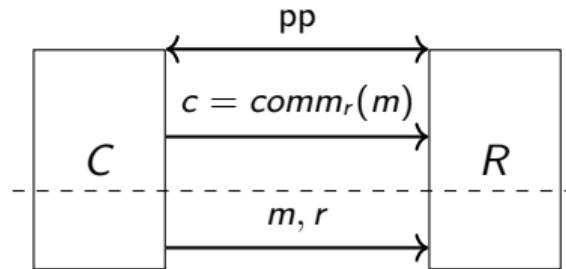
## Theorem (Watrous'09)

*Assuming the existence of post-quantum secure one-way functions, there is a post-quantum zero-knowledge protocol for all NP relations.*

## Equivocal commitments

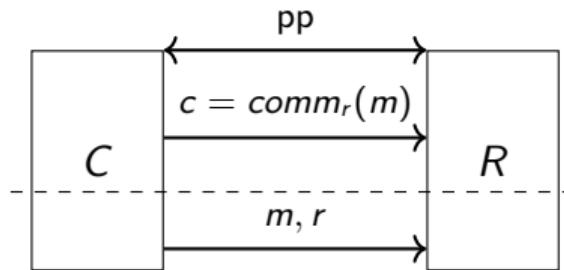
# Equivocal commitments

## Vanilla commitment

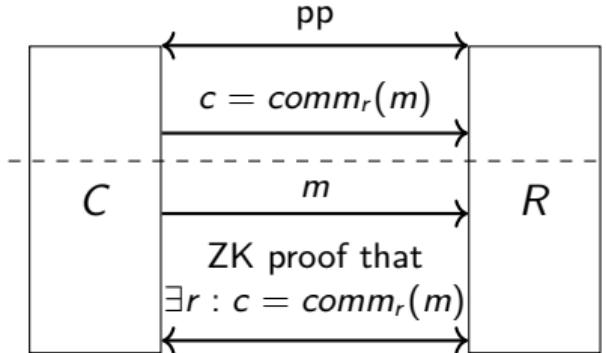


# Equivocal commitments

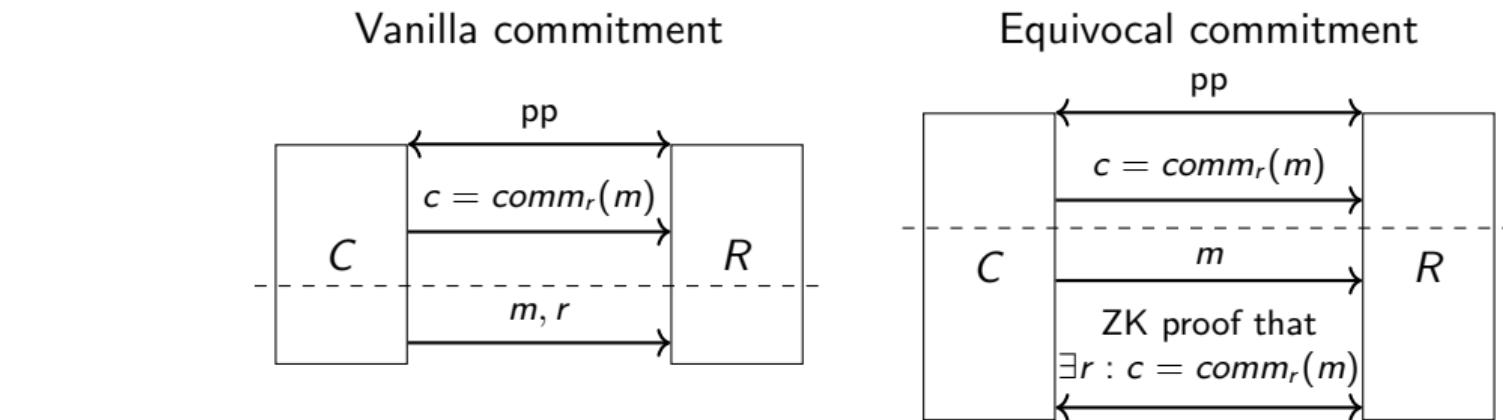
Vanilla commitment



Equivocal commitment



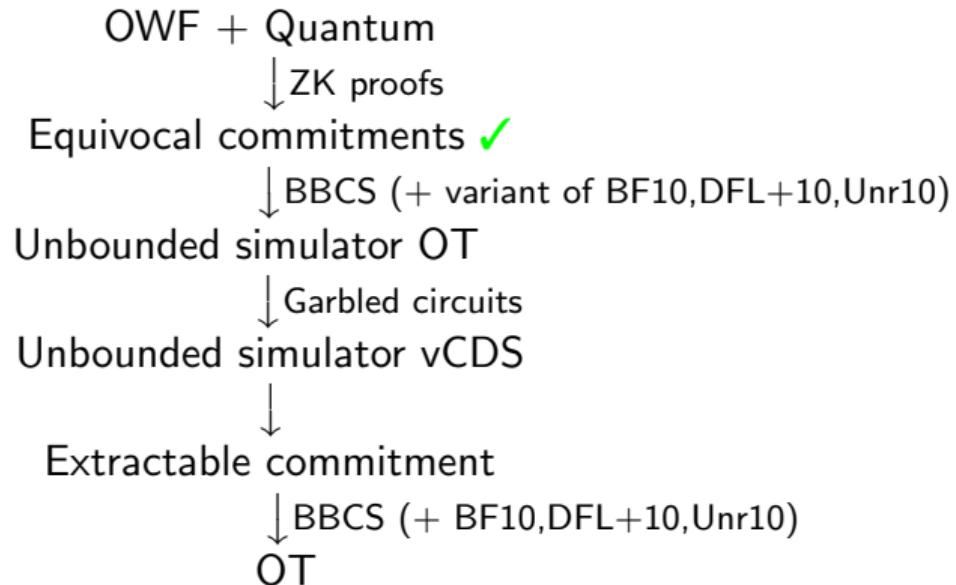
# Equivocal commitments



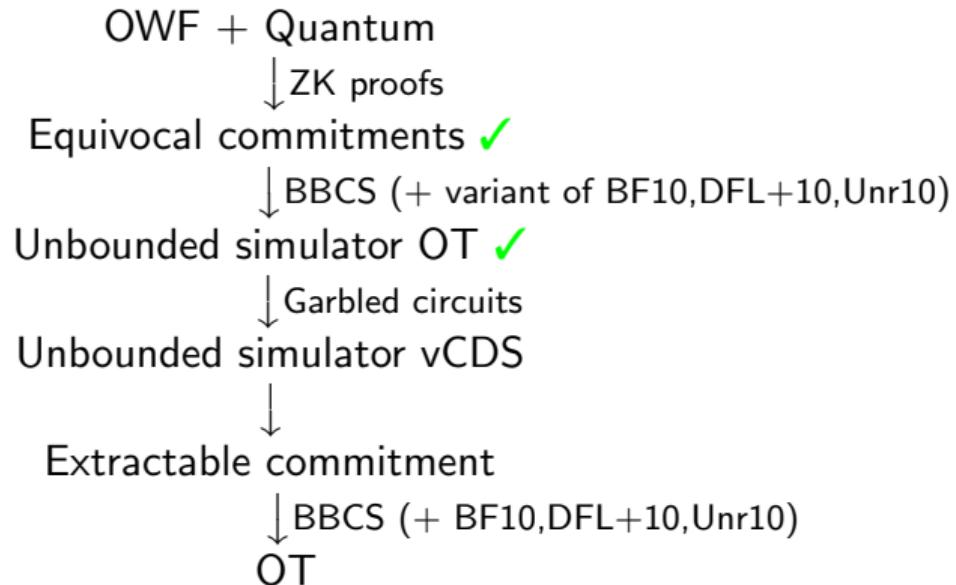
## Equivocator

- ① Sends  $c = \text{comm}_r(m)$
- ② Sends  $m'$
- ③ Use ZK simulator to convince  $R$  that  $c = \text{comm}_r(m')$

# Bird's-eye view



# Bird's-eye view



## Conditional Disclosure of Secrets (CDS)

# Conditional Disclosure of Secrets (CDS)

## NP relations

$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$  is an NP-relation if there exists a polynomial-time algorithm  $V$  s.t.

$$V(x, w) = 1 \text{ iff } (x, w) \in \mathcal{R}.$$

# Conditional Disclosure of Secrets (CDS)

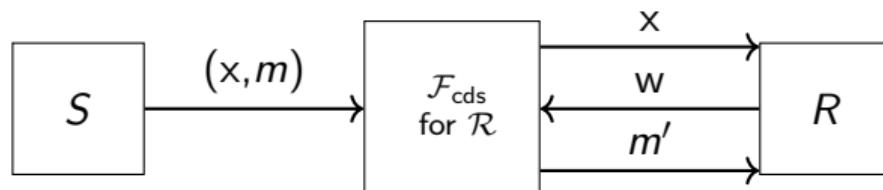
## NP relations

$\mathcal{R} \subseteq \mathcal{X} \times \mathcal{W}$  is an NP-relation if there exists a polynomial-time algorithm  $V$  s.t.

$$V(x, w) = 1 \text{ iff } (x, w) \in \mathcal{R}.$$

## CDS for $\mathcal{R}$

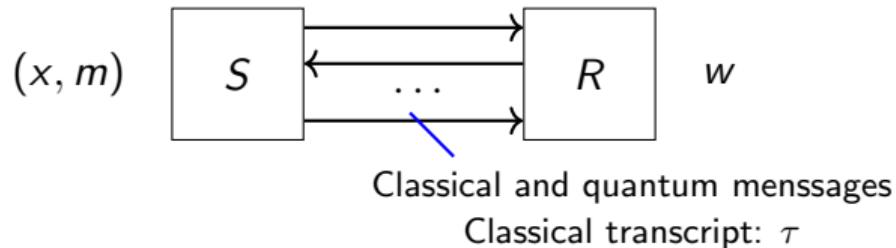
For a chosen  $x \in \mathcal{X}$  and message  $m$ ,  $S$  will reveal  $m$  to  $R$  iff  $R$  knows  $w$  s.t.  $(x, w) \in \mathcal{R}$



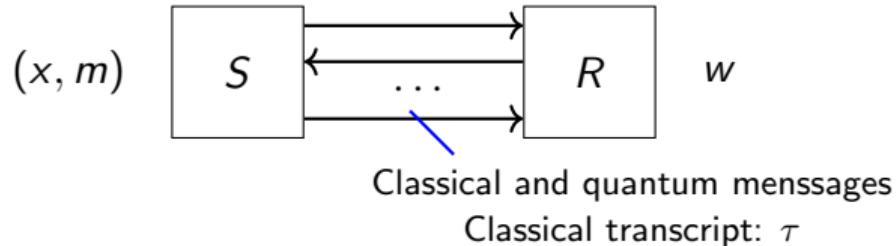
$$m' = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

## Verifiable CDS protocol

## Verifiable CDS protocol



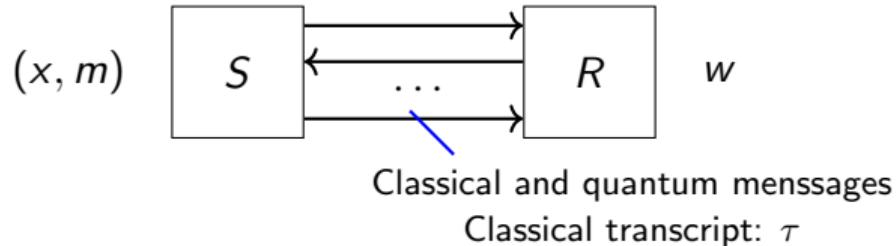
## Verifiable CDS protocol



The protocol is a verifiable CDS if

- ➊ It implements  $\mathcal{F}_{\text{cds}}$

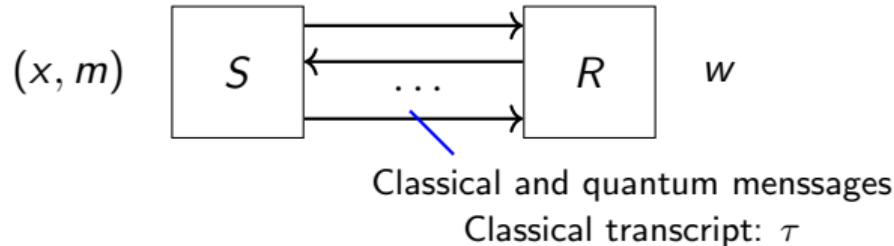
## Verifiable CDS protocol



The protocol is a verifiable CDS if

- ➊ It implements  $\mathcal{F}_{\text{cds}}$
- ➋ The protocol binds  $(x, m)$  that a malicious sender uses and this is verifiable

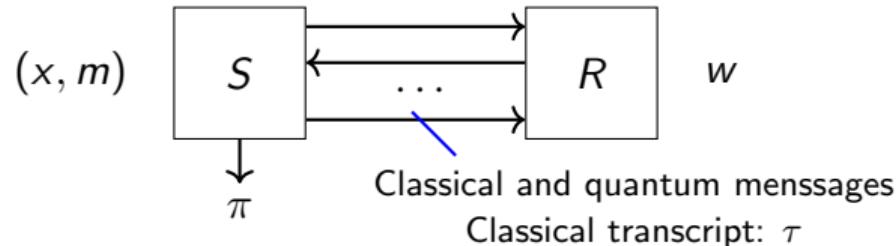
## Verifiable CDS protocol



The protocol is a verifiable CDS if

- ① It implements  $\mathcal{F}_{\text{cds}}$
- ② The protocol binds  $(x, m)$  that a malicious sender uses and this is **verifiable**

## Verifiable CDS protocol

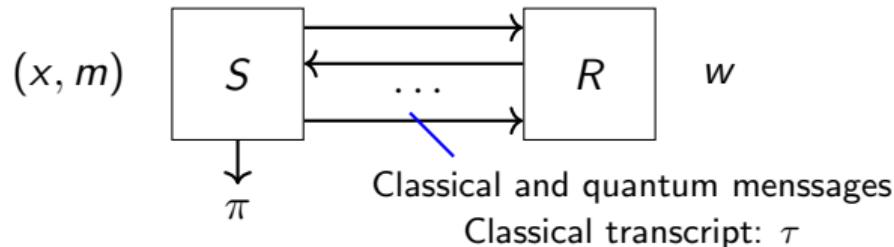


The protocol is a verifiable CDS if

- ① It implements  $\mathcal{F}_{\text{cds}}$
- ② The protocol binds  $(x, m)$  that a malicious sender uses and this is **verifiable**

After interacting with  $R$ ,  $S$  outputs  $\pi$  such that

## Verifiable CDS protocol



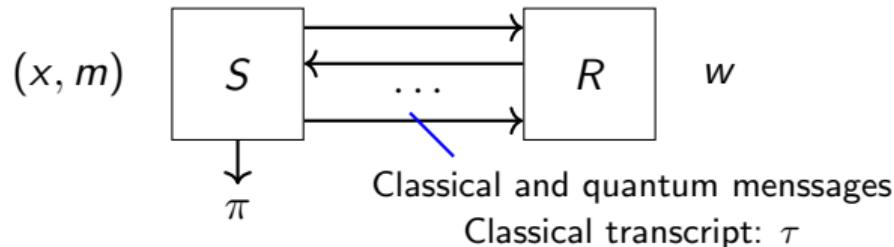
The protocol is a verifiable CDS if

- ① It implements  $\mathcal{F}_{\text{cds}}$
- ② The protocol binds  $(x, m)$  that a malicious sender uses and this is **verifiable**

After interacting with  $R$ ,  $S$  outputs  $\pi$  such that

**Correctness:**  $\exists$  poly-time algorithm  $\text{Ver}$  s.t. for honest  $R, S$   $\text{Ver}(\tau, x, m, \pi) = 1$

## Verifiable CDS protocol



The protocol is a verifiable CDS if

- ① It implements  $\mathcal{F}_{\text{cds}}$
- ② The protocol binds  $(x, m)$  that a malicious sender uses and this is **verifiable**

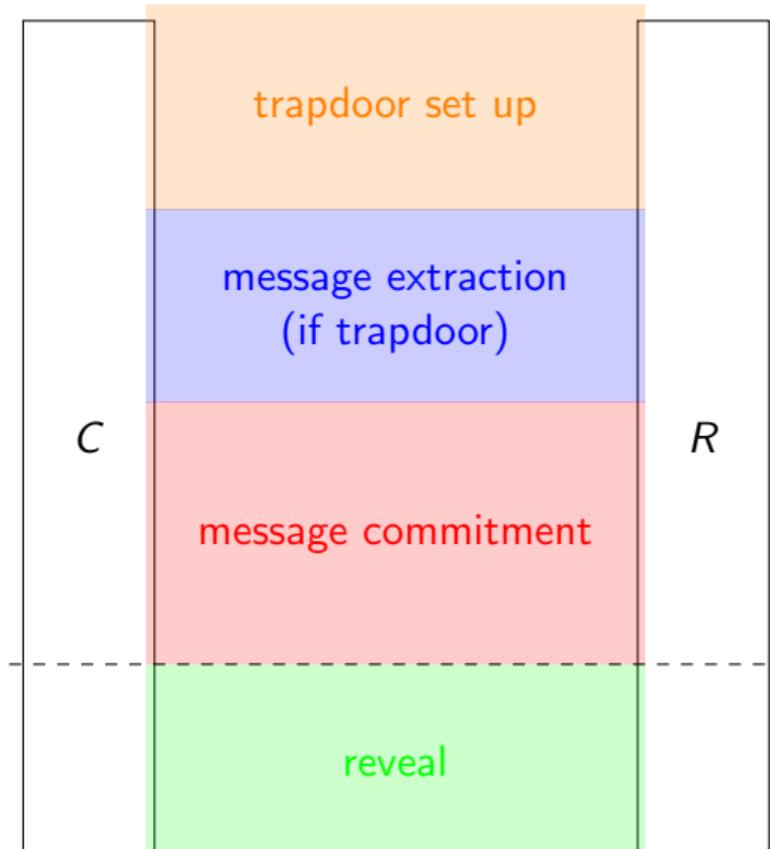
After interacting with  $R$ ,  $S$  outputs  $\pi$  such that

**Correctness:**  $\exists$  poly-time algorithm  $\text{Ver}$  s.t. for honest  $R, S$   $\text{Ver}(\tau, x, m, \pi) = 1$

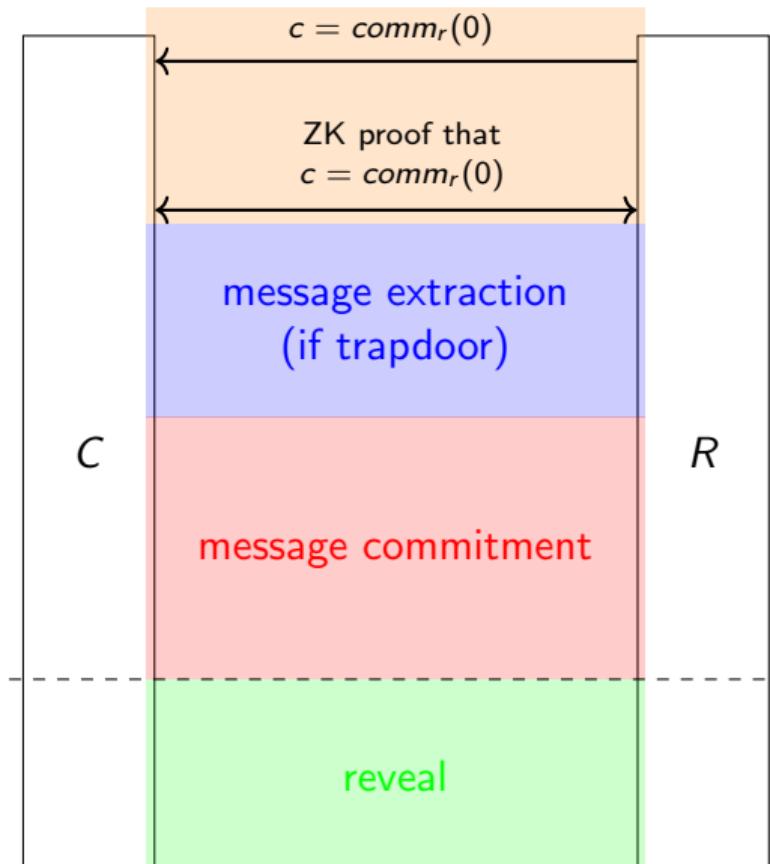
**Binding:** For every malicious  $\tilde{S}$  that interacts with  $R$  and outputs  $(\tilde{m}, \tilde{\pi})$  then with negl. probability we have

$$\text{Ver}(\tau, x, \tilde{m}, \tilde{\pi}) = 1 \quad \text{and} \quad R \text{ gets } m' \neq \begin{cases} \tilde{m}, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

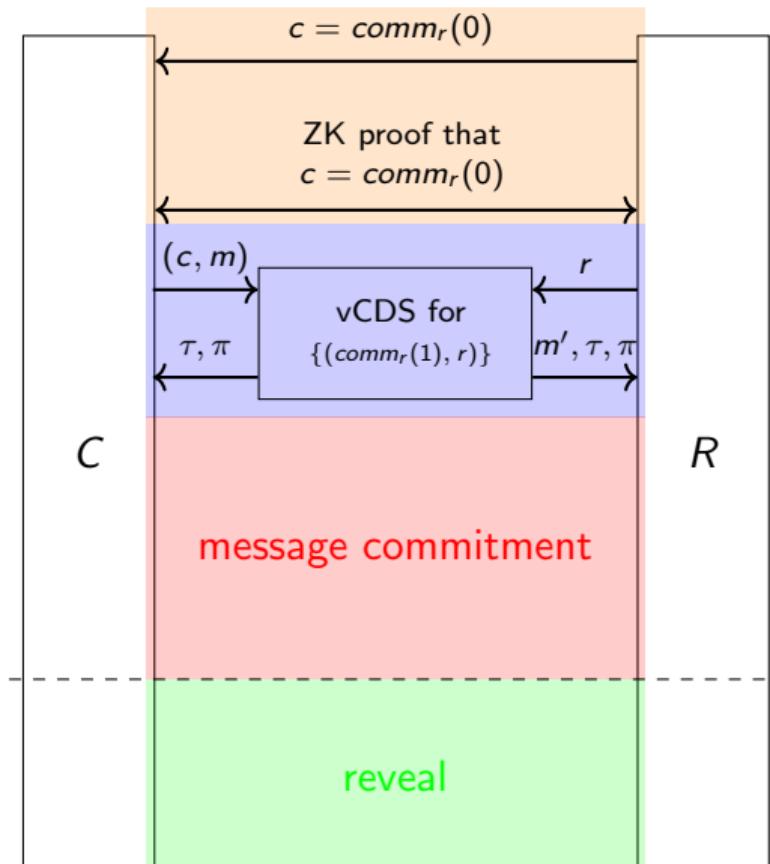
## Extractable commitments from unbounded simulator vCDS



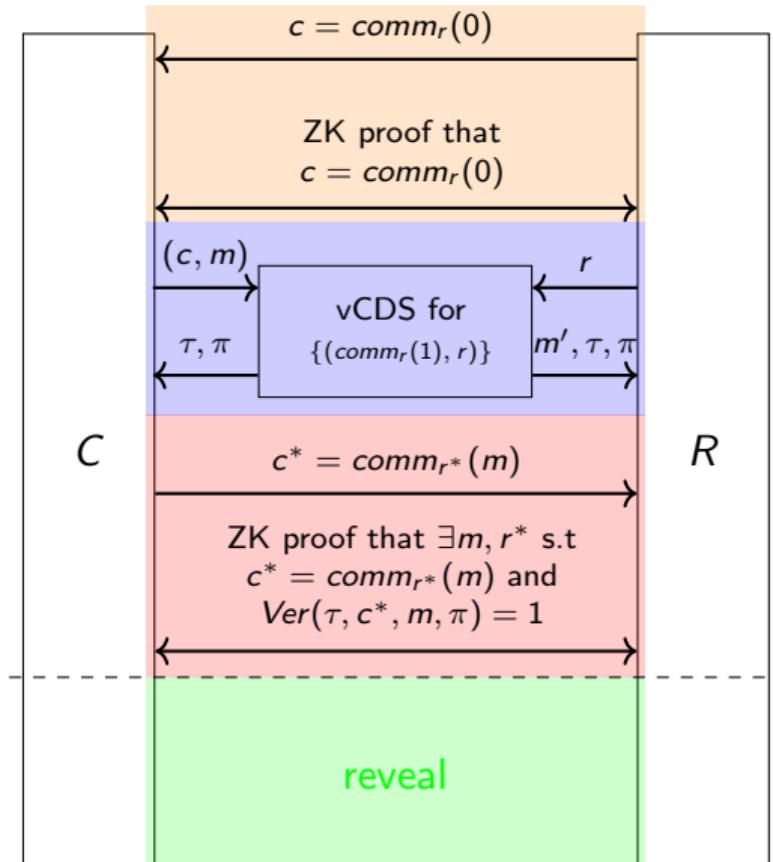
## Extractable commitments from unbounded simulator vCDS



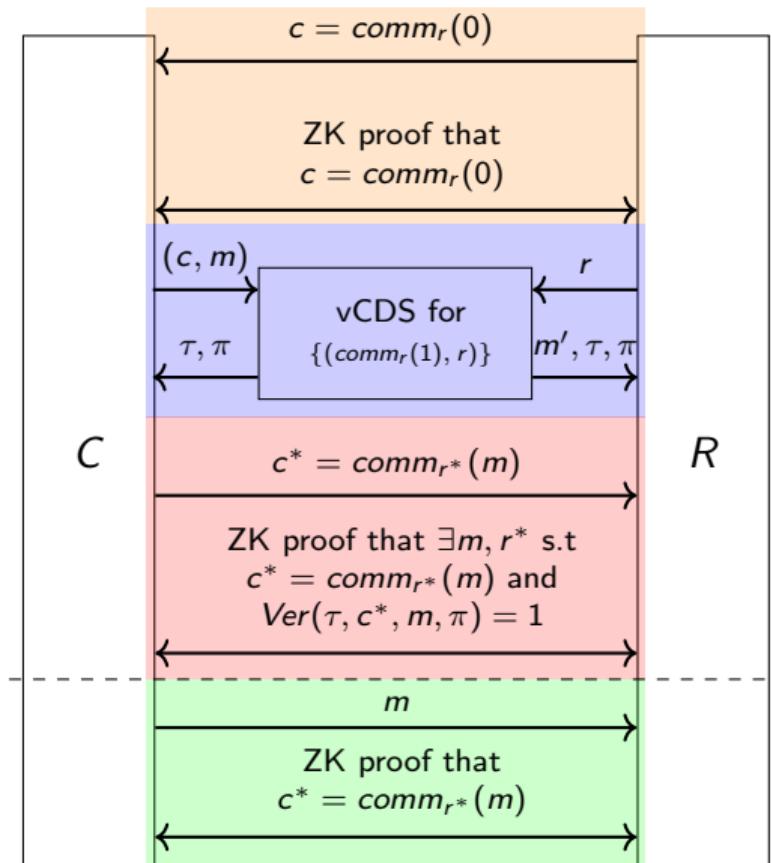
# Extractable commitments from unbounded simulator vCDS



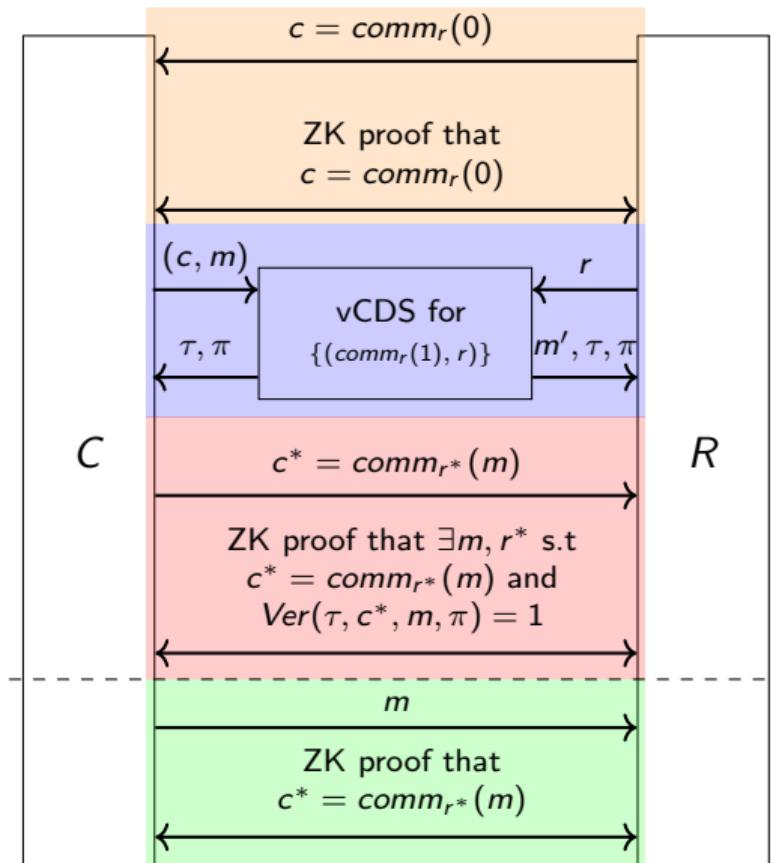
# Extractable commitments from unbounded simulator vCDS



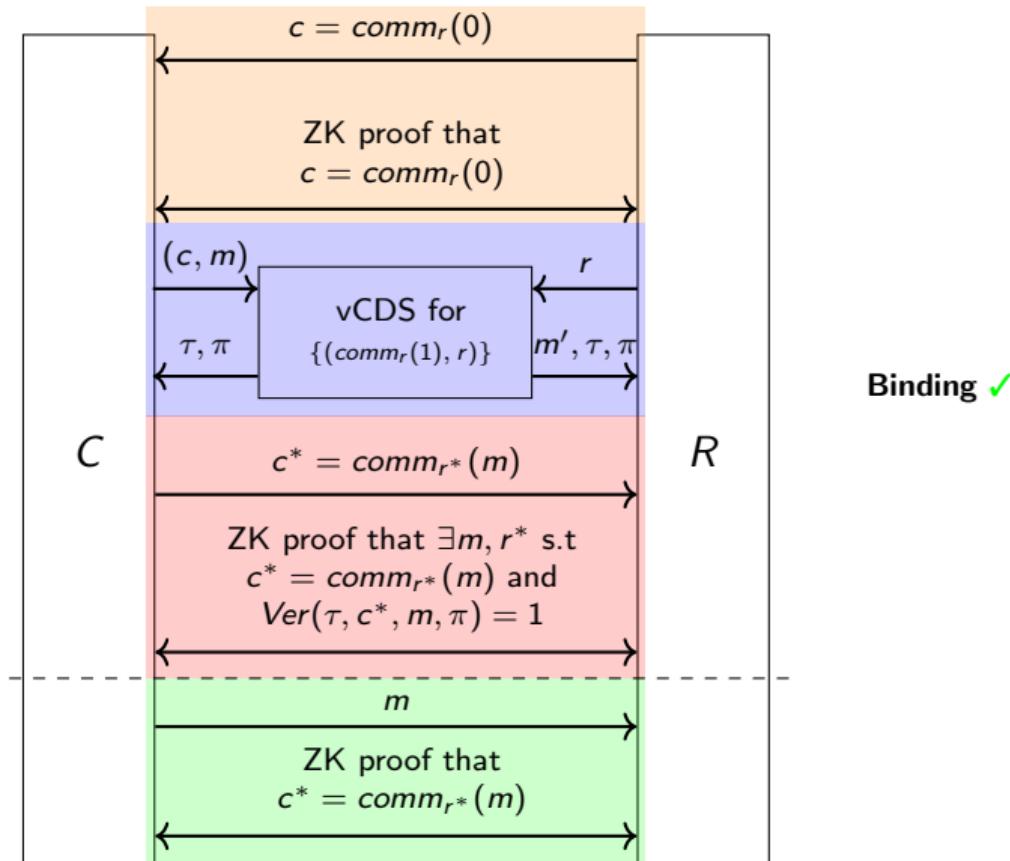
# Extractable commitments from unbounded simulator vCDS



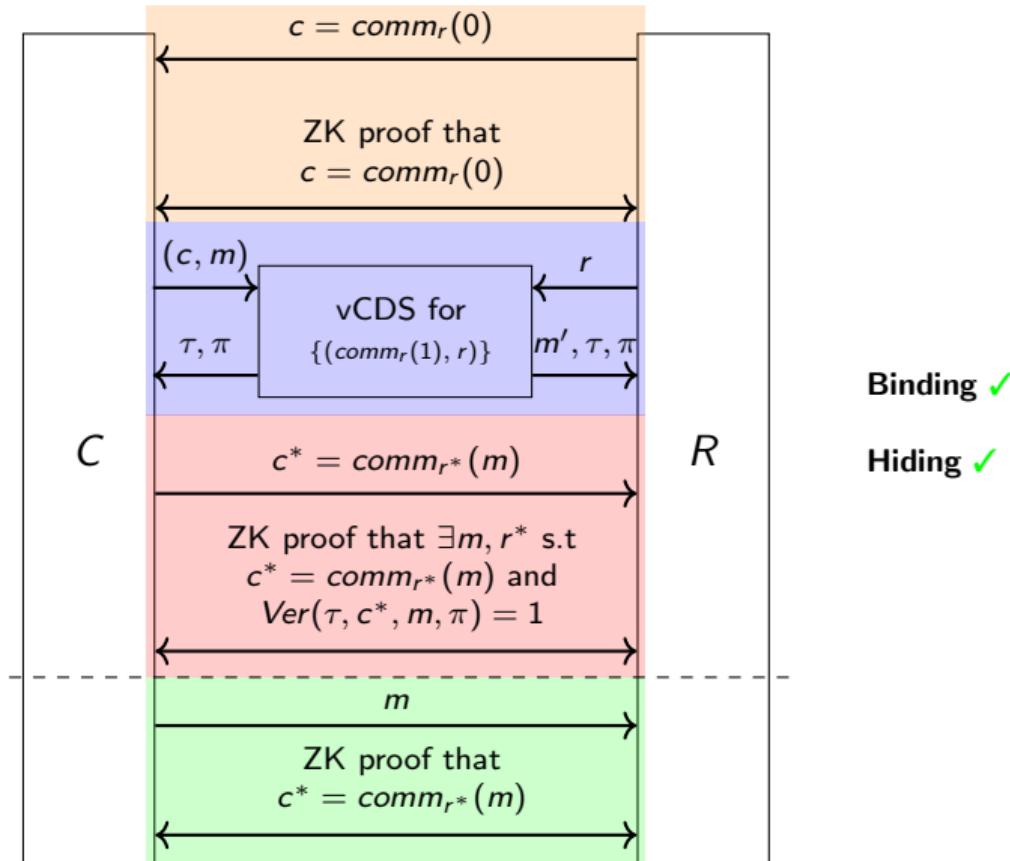
# Extractable commitments from unbounded simulator vCDS



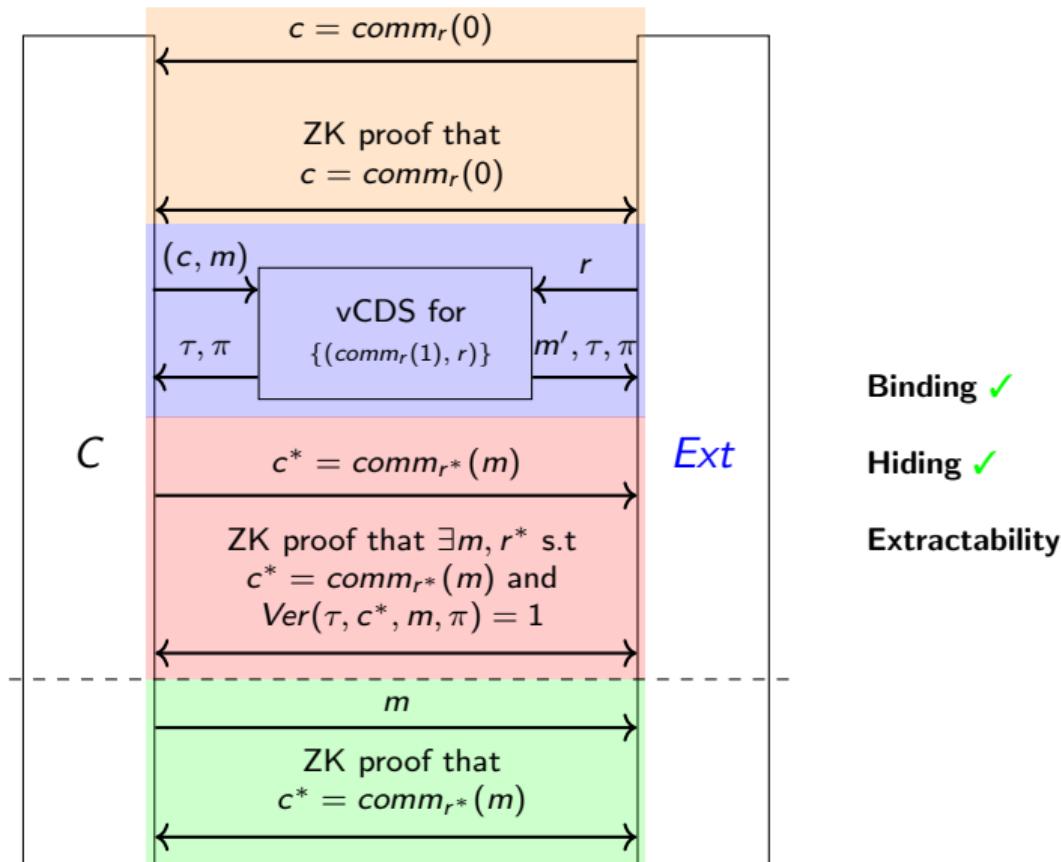
# Extractable commitments from unbounded simulator vCDS



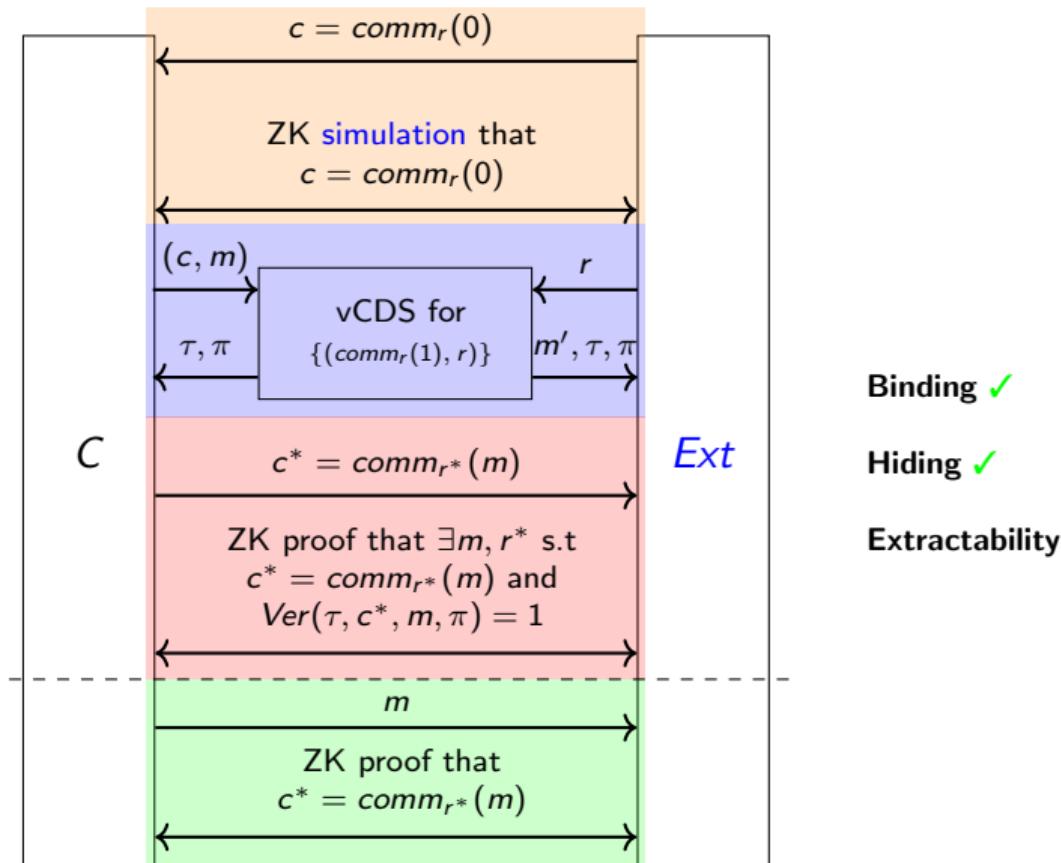
# Extractable commitments from unbounded simulator vCDS



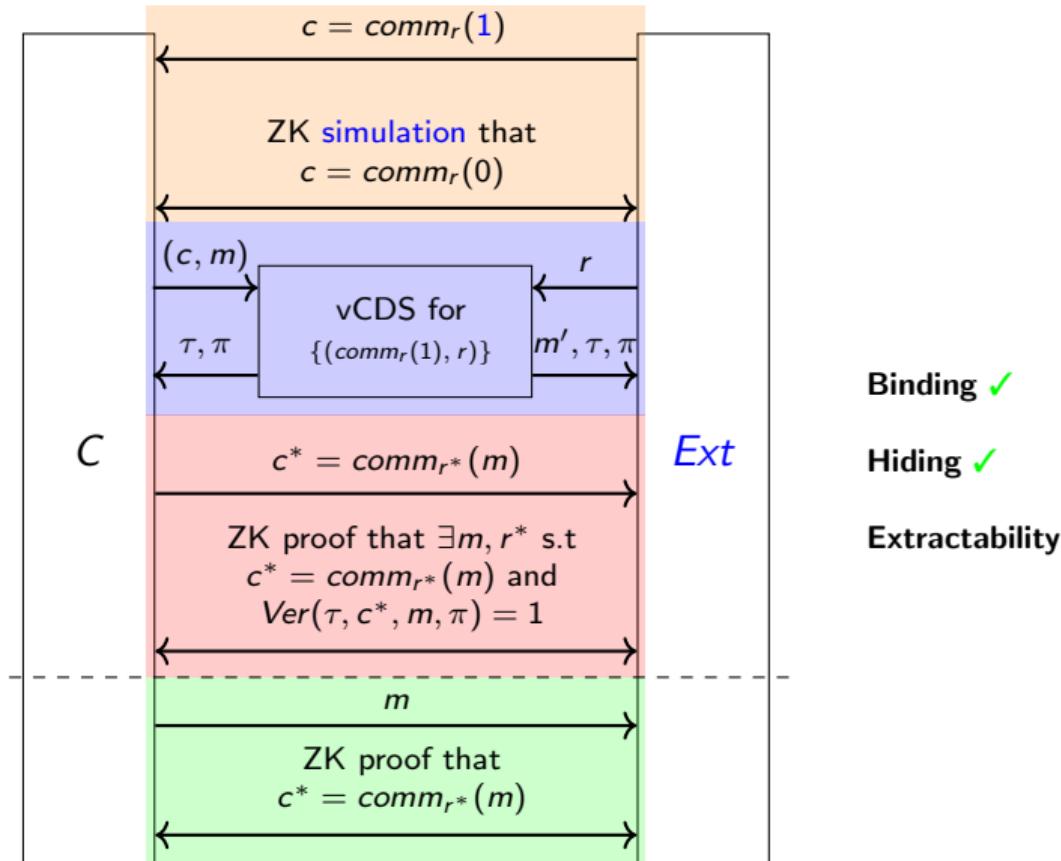
# Extractable commitments from unbounded simulator vCDS



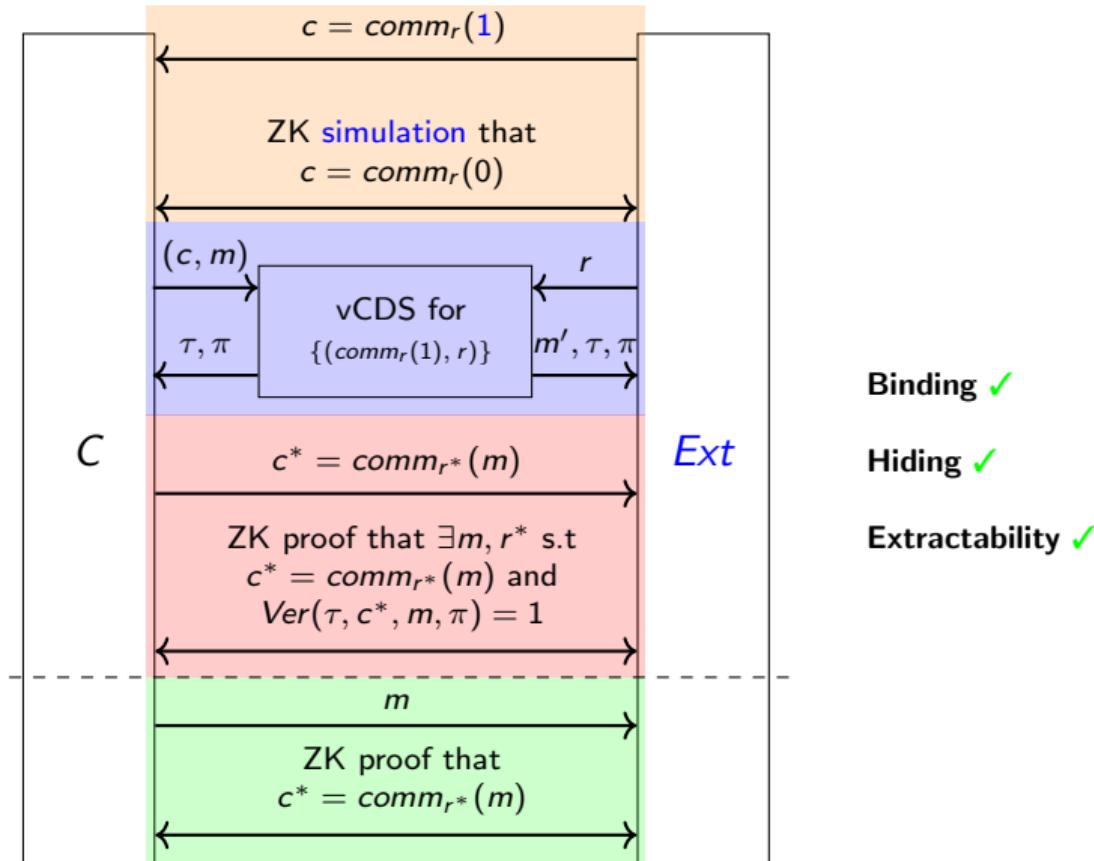
# Extractable commitments from unbounded simulator vCDS



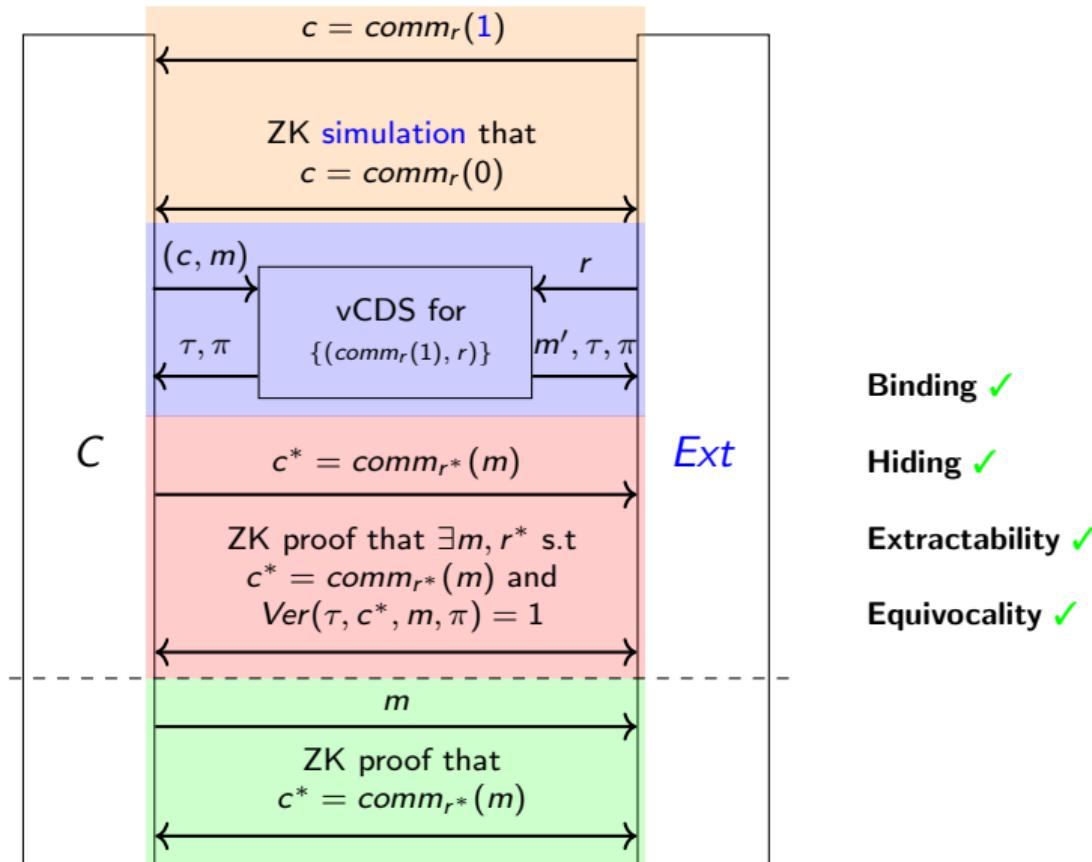
# Extractable commitments from unbounded simulator vCDS



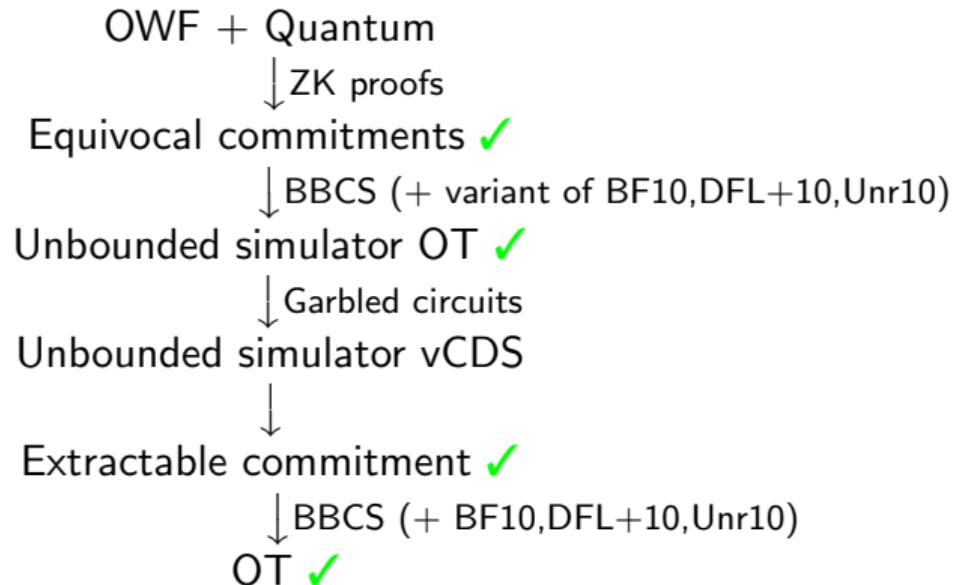
# Extractable commitments from unbounded simulator vCDS



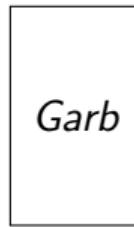
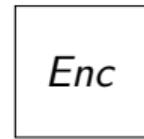
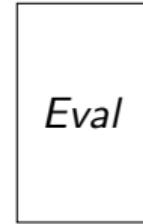
# Extractable commitments from unbounded simulator vCDS



# Bird's-eye view



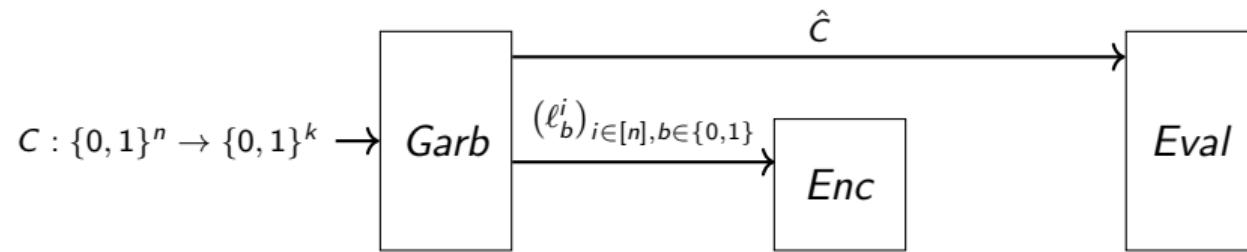
# Garbled circuits



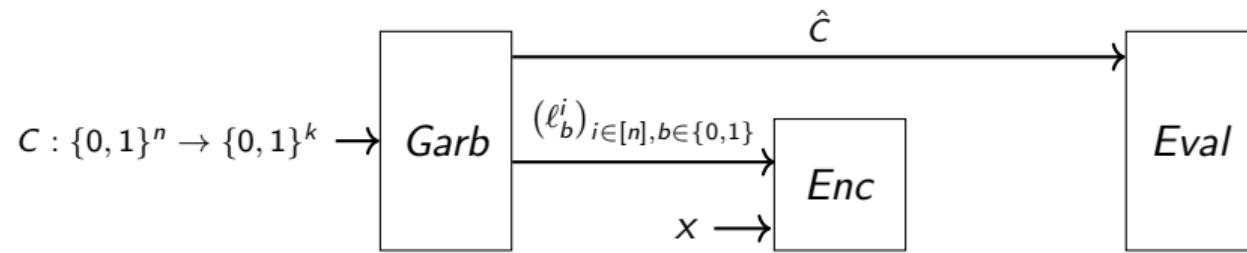
# Garbled circuits



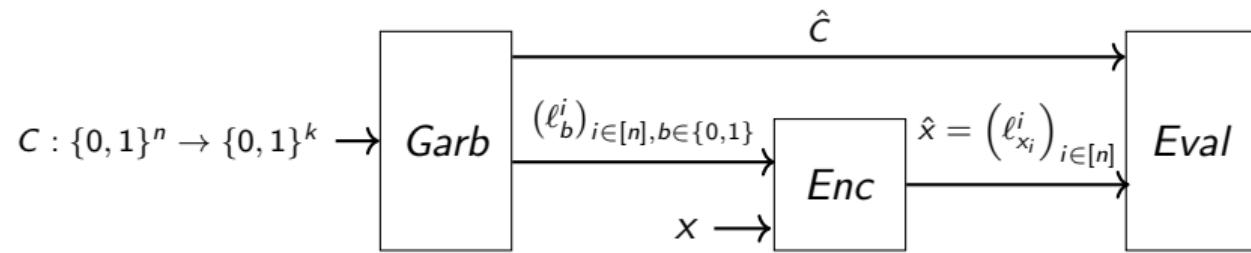
# Garbled circuits



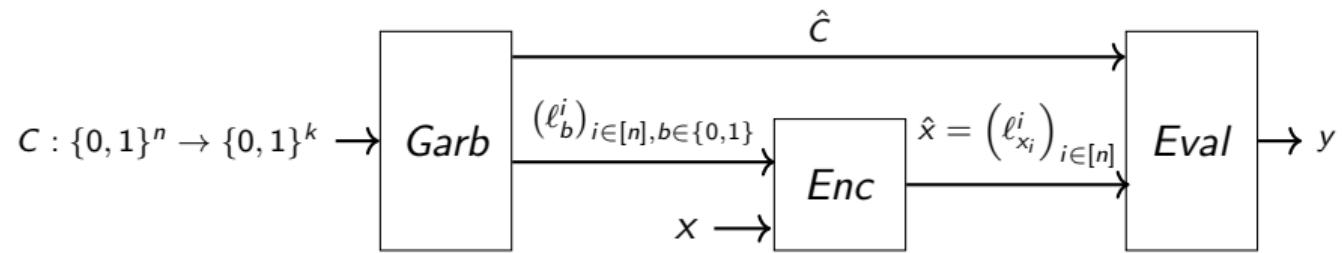
## Garbled circuits



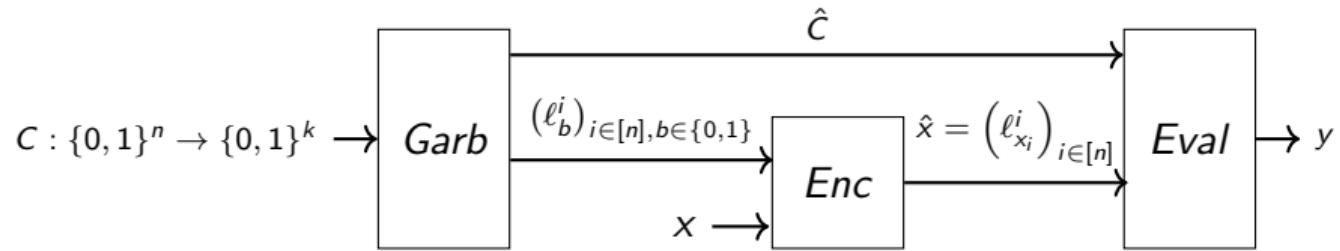
# Garbled circuits



# Garbled circuits



# Garbled circuits

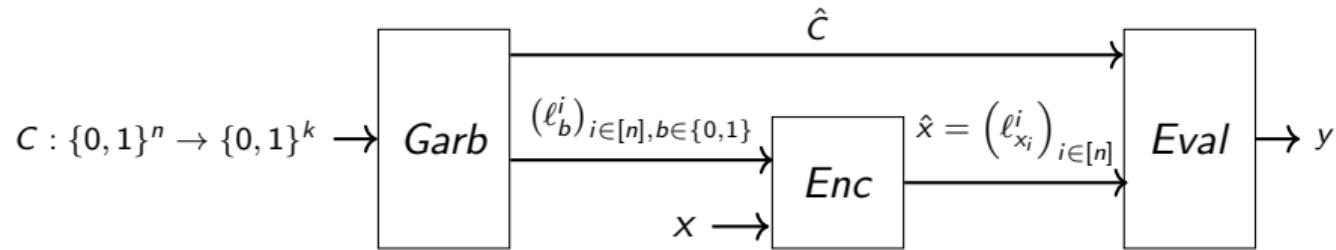


**Correctness:**  $y = Eval(\hat{C}, \hat{x}) = C(x)$

**Security:** There exists  $GarbSim$  such that

$$(\hat{C}, \hat{x}) \approx_c GarbSim(C(x))$$

# Garbled circuits



**Correctness:**  $y = \text{Eval}(\hat{C}, \hat{x}) = C(x)$

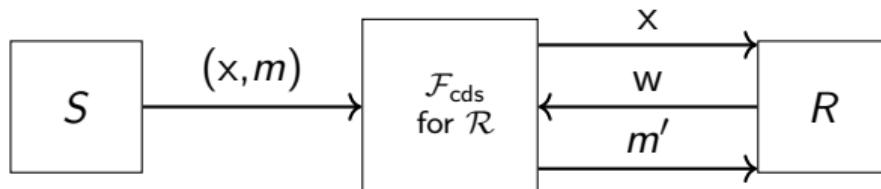
**Security:** There exists  $\text{GarbSim}$  such that

$$(\hat{C}, \hat{x}) \approx_c \text{GarbSim}(C(x))$$

## Theorem [Yao86]

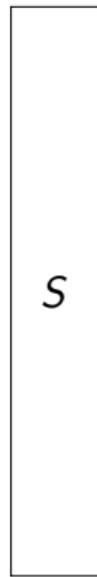
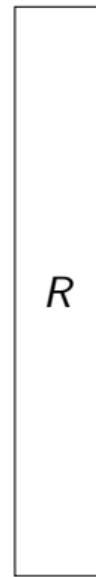
Assuming the existence of post-quantum secure one-way functions, there is a post-quantum secure garbling scheme for polynomial-size circuits.

## Protocol for vCDS from OWF + unbounded simulation OT

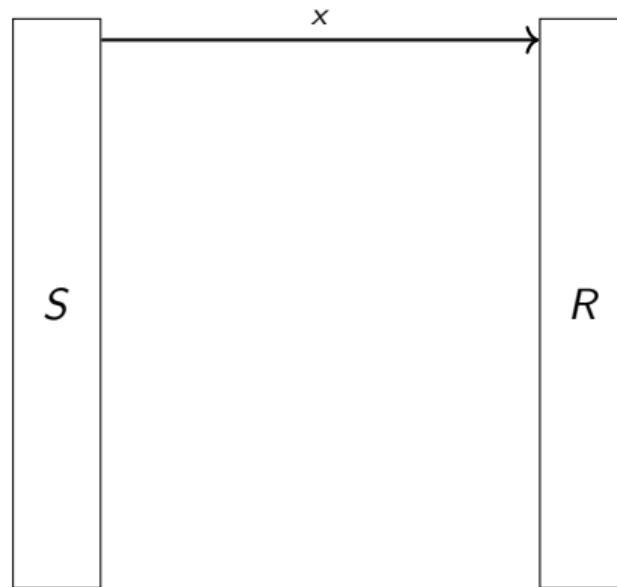


$$m' = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

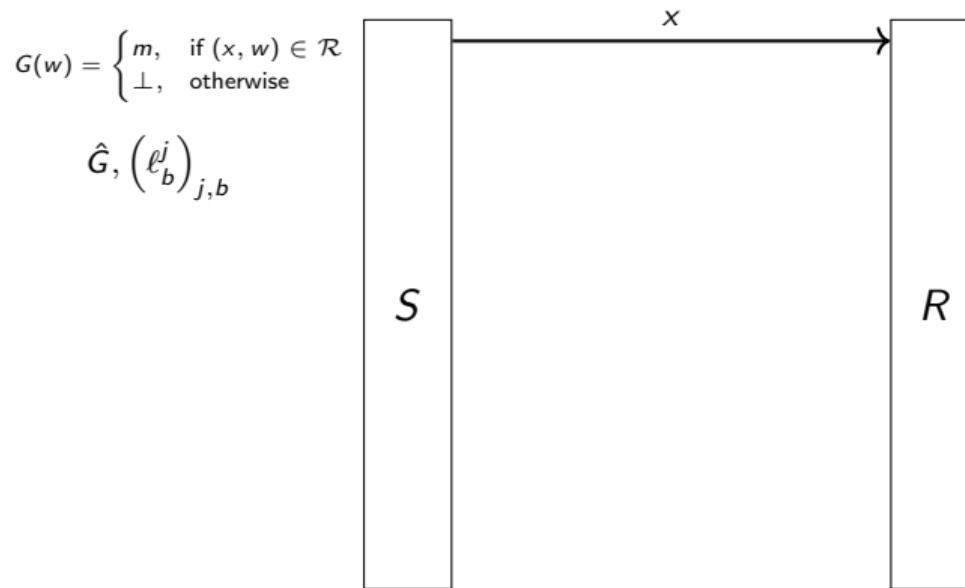
## Protocol for vCDS from OWF + unbounded simulation OT



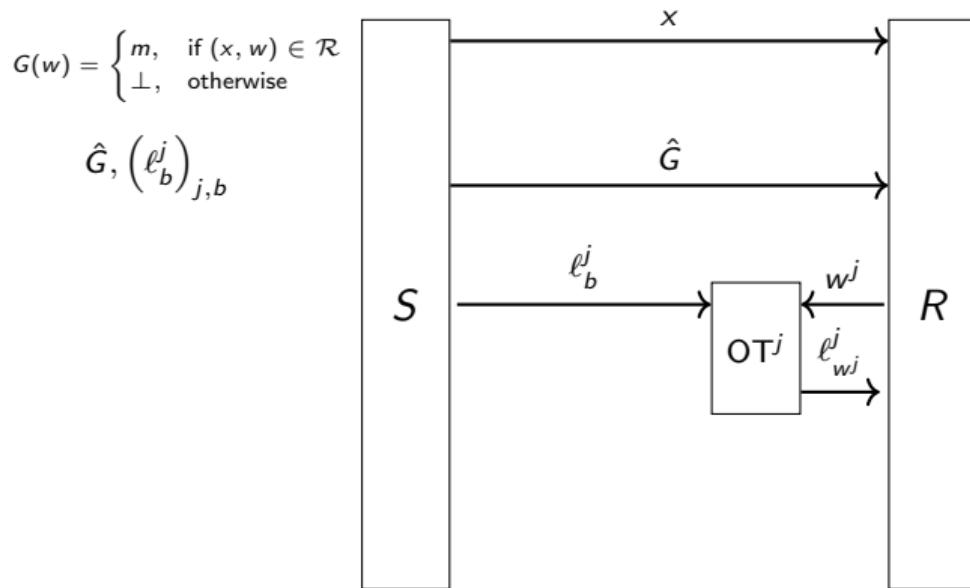
## Protocol for vCDS from OWF + unbounded simulation OT



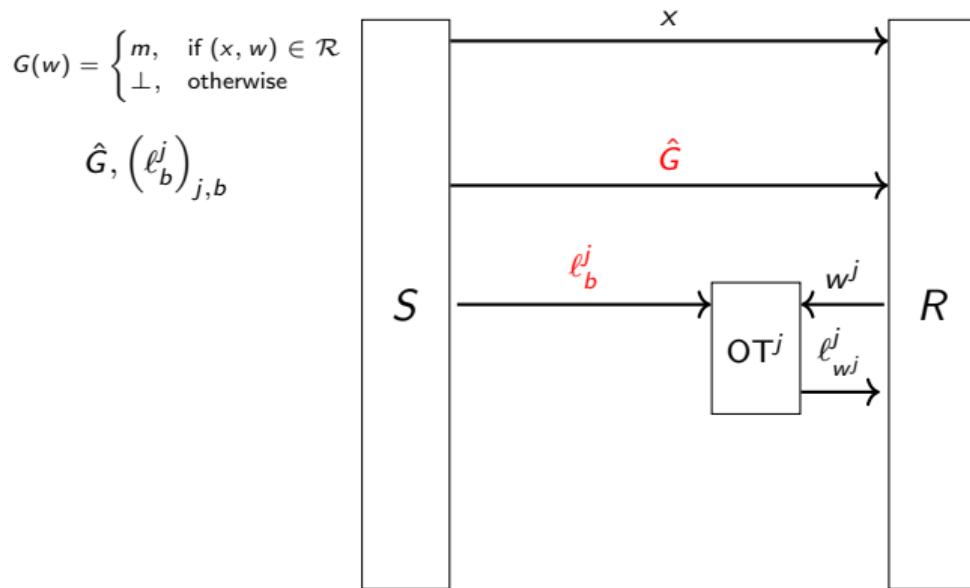
## Protocol for vCDS from OWF + unbounded simulation OT



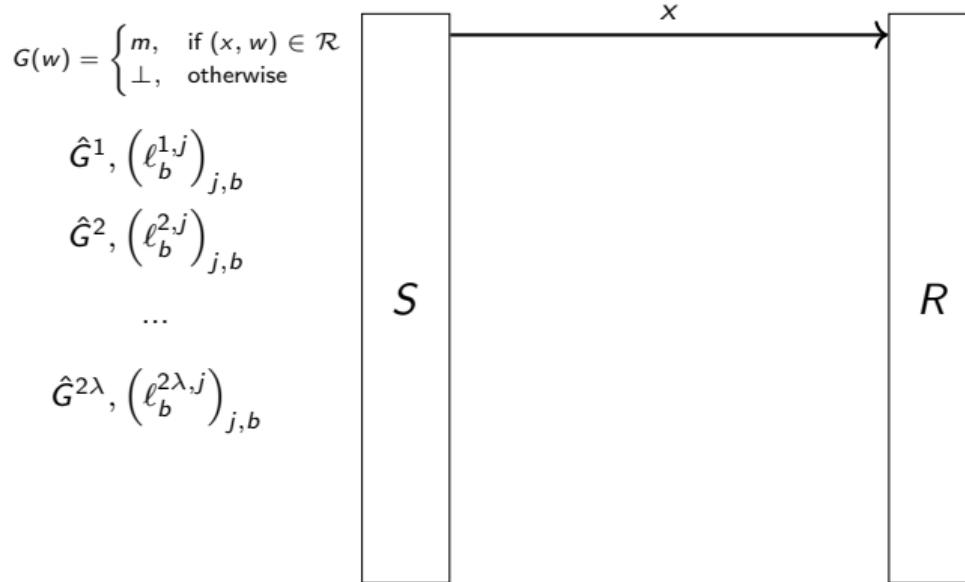
## Protocol for vCDS from OWF + unbounded simulation OT



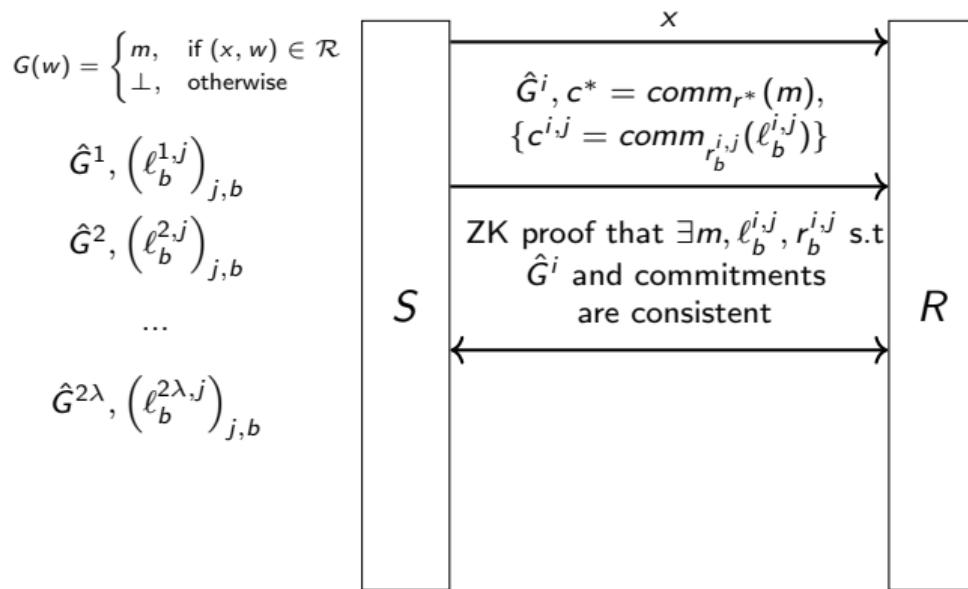
## Protocol for vCDS from OWF + unbounded simulation OT



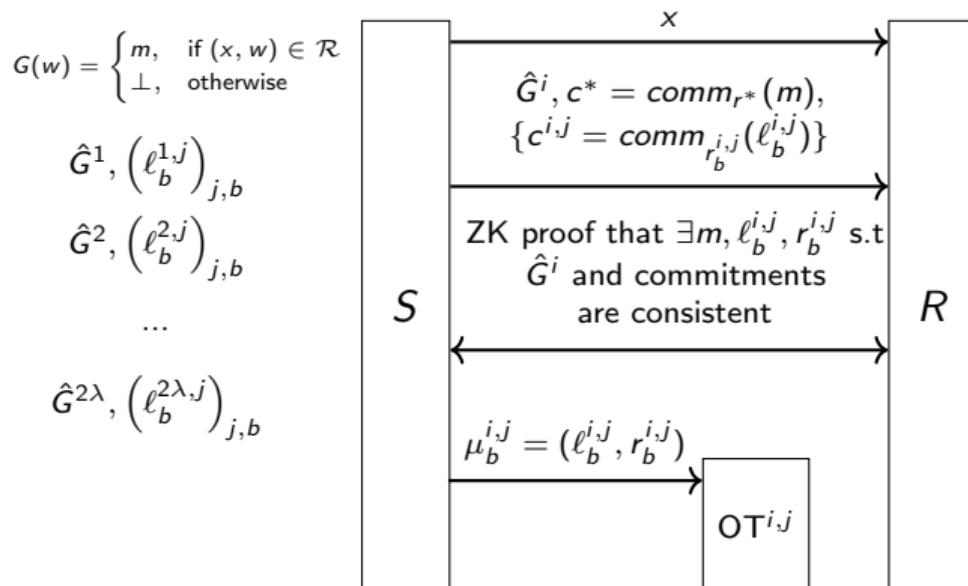
## Protocol for vCDS from OWF + unbounded simulation OT



## Protocol for vCDS from OWF + unbounded simulation OT



## Protocol for vCDS from OWF + unbounded simulation OT



# Protocol for vCDS from OWF + unbounded simulation OT

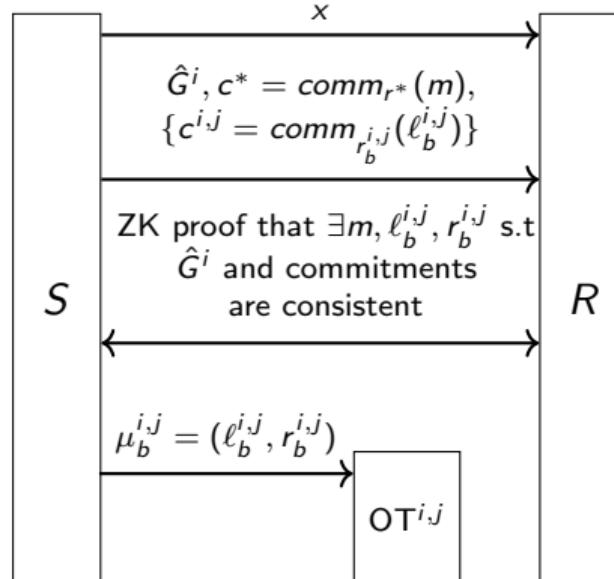
$$G(w) = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

$$\hat{G}^1, \left(\ell_b^{1,j}\right)_{j,b}$$

$$\hat{G}^2, \left(\ell_b^{2,j}\right)_{j,b}$$

...

$$\hat{G}^{2\lambda}, \left(\ell_b^{2\lambda,j}\right)_{j,b}$$



$$\Lambda \subseteq [2\lambda]$$

$$|\Lambda| = \lambda$$

$$\sigma^i = \begin{cases} w, & \text{if } i \in \Lambda \\ s^i \text{ u.a.r,} & \text{o.w.} \end{cases}$$

# Protocol for vCDS from OWF + unbounded simulation OT

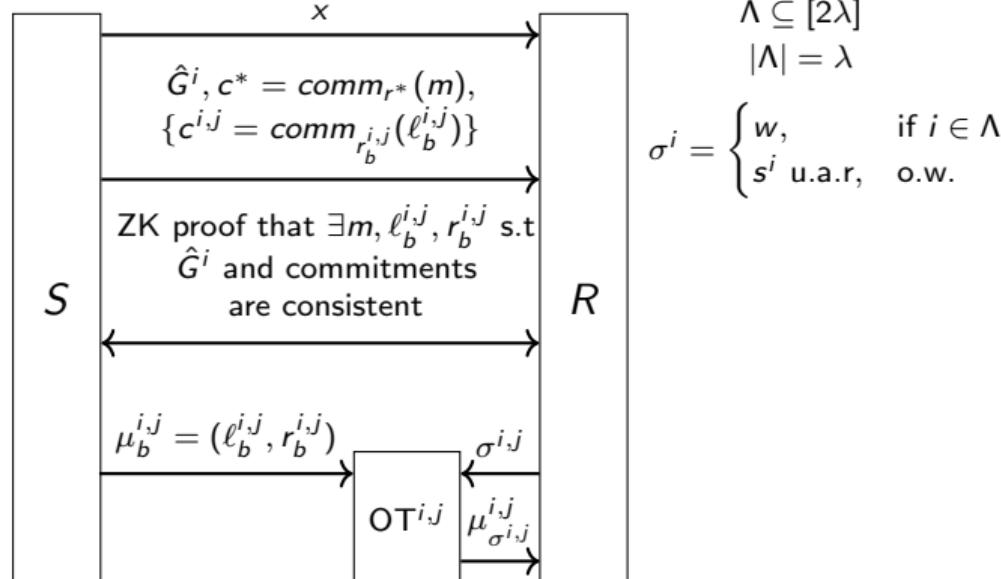
$$G(w) = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

$$\hat{G}^1, \left(\ell_b^{1,j}\right)_{j,b}$$

$$\hat{G}^2, \left(\ell_b^{2,j}\right)_{j,b}$$

...

$$\hat{G}^{2\lambda}, \left(\ell_b^{2\lambda,j}\right)_{j,b}$$



# Protocol for vCDS from OWF + unbounded simulation OT

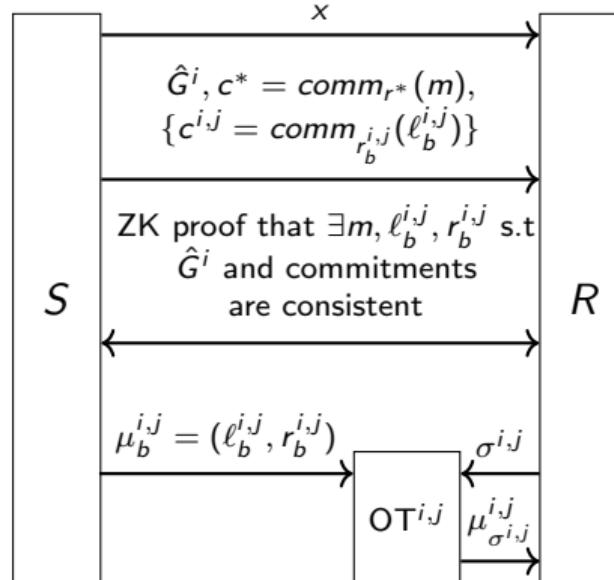
$$G(w) = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

$$\hat{G}^1, \left(\ell_b^{1,j}\right)_{j,b}$$

$$\hat{G}^2, \left(\ell_b^{2,j}\right)_{j,b}$$

...

$$\hat{G}^{2\lambda}, \left(\ell_b^{2\lambda,j}\right)_{j,b}$$



$$\Lambda \subseteq [2\lambda]$$

$$|\Lambda| = \lambda$$

$$\sigma^i = \begin{cases} w, & \text{if } i \in \Lambda \\ s^i \text{ u.a.r,} & \text{o.w.} \end{cases}$$

Aborts if:

1. ZK fails

2.  $\exists i \notin \Lambda, j:$

$$c^{i,j} \neq \text{comm}_{r_b^{i,j}}(\ell_b^{i,j})$$

3.  $\forall i \in \Lambda, \exists j:$

$$c^{i,j} \neq \text{comm}_{r_b^{i,j}}(\ell_b^{i,j})$$

Otherwise

Output  $\text{Eval}(\hat{G}^{i^*}, \hat{w})$

# Protocol for vCDS from OWF + unbounded simulation OT

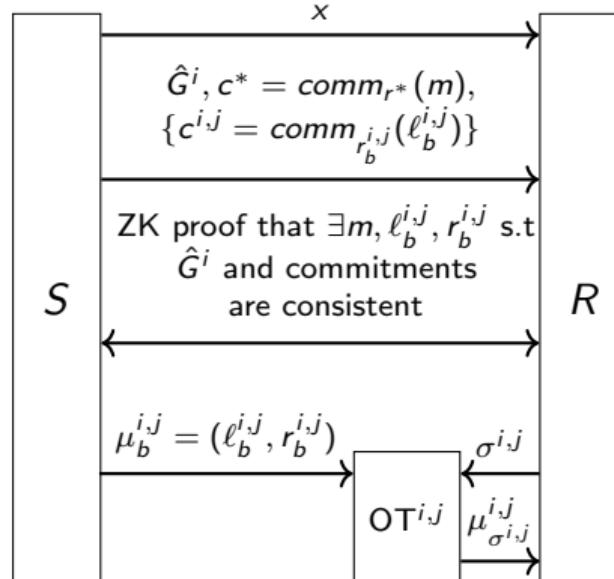
$$G(w) = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

$$\hat{G}^1, \left(\ell_b^{1,j}\right)_{j,b}$$

$$\hat{G}^2, \left(\ell_b^{2,j}\right)_{j,b}$$

...

$$\hat{G}^{2\lambda}, \left(\ell_b^{2\lambda,j}\right)_{j,b}$$



$$\Lambda \subseteq [2\lambda]$$

$$|\Lambda| = \lambda$$

$$\sigma^i = \begin{cases} w, & \text{if } i \in \Lambda \\ s^i \text{ u.a.r,} & \text{o.w.} \end{cases}$$

Aborts if:

1. ZK fails

2.  $\exists i \notin \Lambda, j:$

$$c^{i,j} \neq \text{comm}_{r_b^{i,j}}(\ell_b^{i,j})$$

3.  $\forall i \in \Lambda, \exists j:$

$$c^{i,j} \neq \text{comm}_{r_b^{i,j}}(\ell_b^{i,j})$$

Otherwise

Output  $\text{Eval}(\hat{G}^{i^*}, \hat{w})$

CDS ✓

# Protocol for vCDS from OWF + unbounded simulation OT

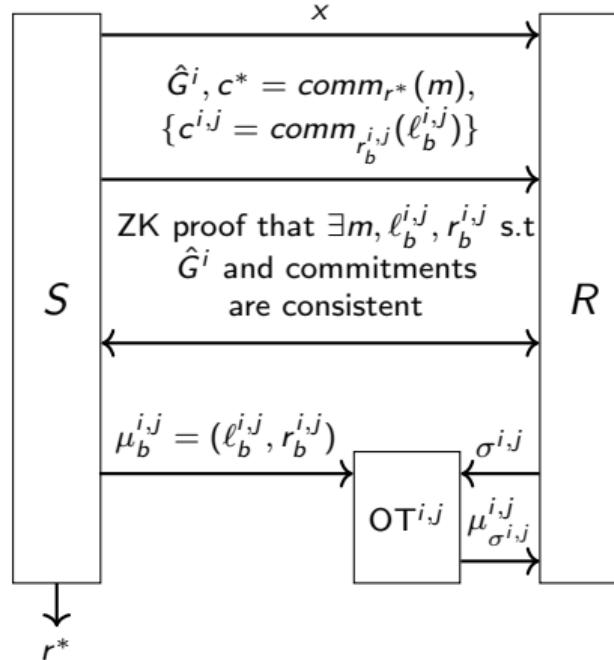
$$G(w) = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

$$\hat{G}^1, \left(\ell_b^{1,j}\right)_{j,b}$$

$$\hat{G}^2, \left(\ell_b^{2,j}\right)_{j,b}$$

...

$$\hat{G}^{2\lambda}, \left(\ell_b^{2\lambda,j}\right)_{j,b}$$



$$\Lambda \subseteq [2\lambda]$$

$$|\Lambda| = \lambda$$

$$\sigma^i = \begin{cases} w, & \text{if } i \in \Lambda \\ s^i \text{ u.a.r,} & \text{o.w.} \end{cases}$$

Aborts if:

1. ZK fails

2.  $\exists i \notin \Lambda, j:$

$$c^{i,j} \neq \text{comm}_{r_b^{i,j}}(\ell_b^{i,j})$$

3.  $\forall i \in \Lambda, \exists j:$

$$c^{i,j} \neq \text{comm}_{r_b^{i,j}}(\ell_b^{i,j})$$

Otherwise

Output  $\text{Eval}(\hat{G}^{i^*}, \hat{w})$

CDS ✓

**Verifiability:**  $\text{Ver}(\tau, x, m, r^*) = 1$  iff  $c^* = \text{comm}_{r^*}(m)$

# Protocol for vCDS from OWF + unbounded simulation OT

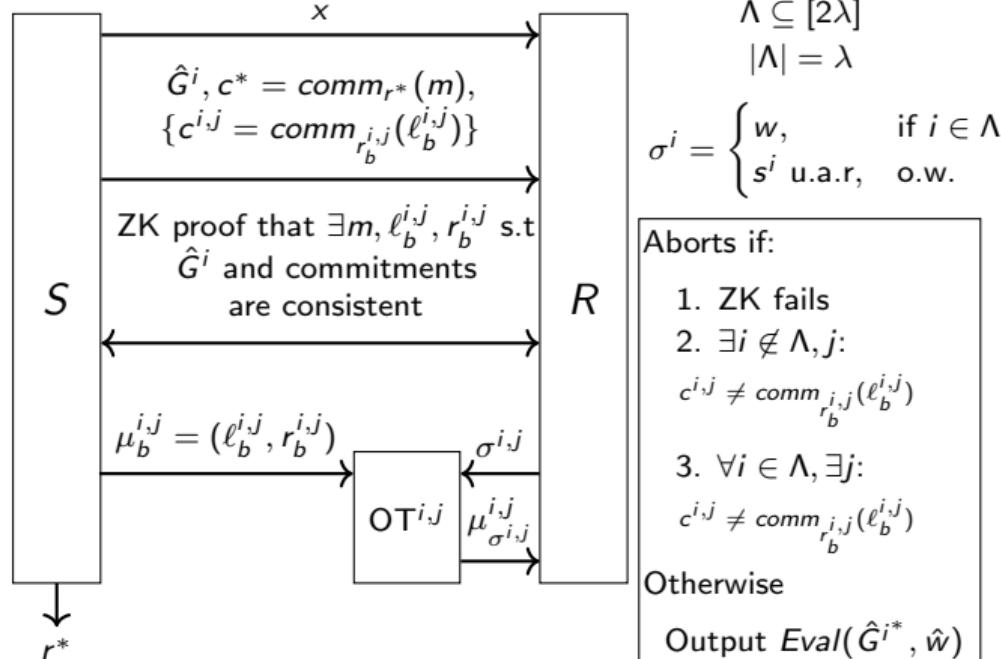
$$G(w) = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

$$\hat{G}^1, \left(\ell_b^{1,j}\right)_{j,b}$$

$$\hat{G}^2, \left(\ell_b^{2,j}\right)_{j,b}$$

...

$$\hat{G}^{2\lambda}, \left(\ell_b^{2\lambda,j}\right)_{j,b}$$



CDS ✓

Verifiability:  $\text{Ver}(\tau, x, m, r^*) = 1$  iff  $c^* = \text{comm}_{r^*}(m)$

1. Correctness ✓

# Protocol for vCDS from OWF + unbounded simulation OT

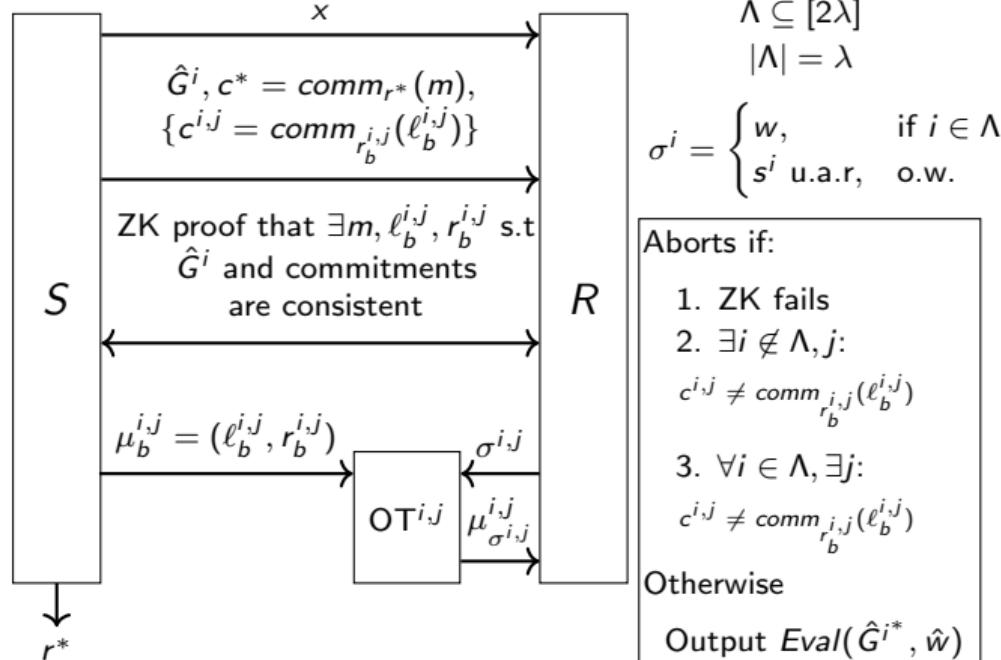
$$G(w) = \begin{cases} m, & \text{if } (x, w) \in \mathcal{R} \\ \perp, & \text{otherwise} \end{cases}$$

$$\hat{G}^1, \left(\ell_b^{1,j}\right)_{j,b}$$

$$\hat{G}^2, \left(\ell_b^{2,j}\right)_{j,b}$$

...

$$\hat{G}^{2\lambda}, \left(\ell_b^{2\lambda,j}\right)_{j,b}$$

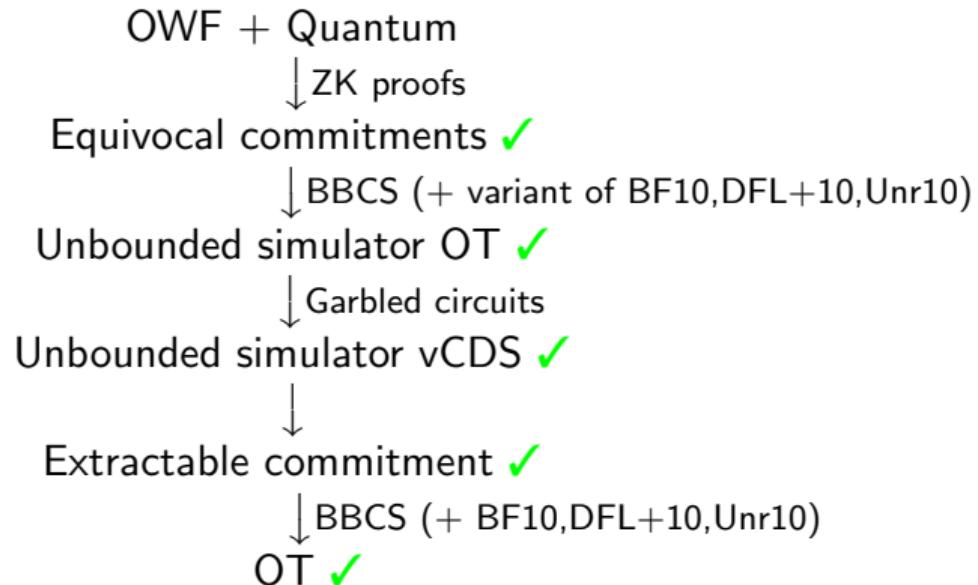


CDS ✓

Verifiability:  $\text{Ver}(\tau, x, m, r^*) = 1$  iff  $c^* = \text{comm}_{r^*}(m)$

1. Correctness ✓
2. Binding ✓

## Bird's-eye view



## [BCKM21]

1. (Black-box) equivocality compiler
2. Extractable commitment from equivocal commitment and quantum communication

### Features:

- **Black-Box** use of one-way functions
- **Statistical** security against malicious receiver

## [GLSV21]

1. Equivocal commitment from Naor's commitment and zero-knowledge
2. Unbounded-simulator OT from equivocal commitment
3. Extractable and equivocal commitment from unbounded-simulator OT and quantum communication

- **Constant-Round** OT in the CRS model
- **Statistically binding** extractable commitment

## Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).

## Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).  
What else?

## Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).  
What else?

Thank you for your attention