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[CK88],	[BBCS92]	Template	for	OT	from	Bit	Commitment

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011



[CK88],	[BBCS92]	Template	for	OT	from	Bit	Commitment

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<
A. = 	 3,4,6
A"E. = 1,2,5A,, A"

! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +" Cheating	R can	wait	
until	receiving	< to	

measure				



Aside:	Bit	Commitment

C - R

Hiding:	R does	not	learn	-

Binding:	C can	only	make	
box	open	to	-
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[DFLSS09]:	Simulation	security	of	OT	follows	from	using	
commitment	with	certain	properties:

• Extractability→ security	against	malicious	receiver
• Equivocality	→ security	against	malicious	sender
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Goal:	(quantum-secure)	Extractable and	Equivocal	
bit	commitment	from	one-way	functions
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Goal:	(quantum-secure)	Extractable and	Equivocal	
bit	commitment	from	one-way	functions

[BCKM21]

1. (Black-box)	equivocality	compiler

2. Extractable	commitment	from	
equivocal	commitment	and	
quantum	communication

Vanilla	commitment	from	one-
way	functions	[Naor91]

Equivocal	Commitment

2

Extractable	Commitment

Extractable	and	equivocal	
commitment

1

1
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1.	Black-Box	Equivocality	Compiler:	Com	→ EquivCom

RecEquivCom

Sample	`,, `" ← 0,1

`, `,

`" 1 − `"

c

Sample	c	← 0,1

`, `,
,	e

EquivOpen `"

Rewind	until	c = 0

Sample	e ← 0,1

1 − `"OR

Watrous
Rewinding	Lemma



[BCKM21] [GLSV21]

1. (Black-box)	equivocality	compiler

2. Extractable	commitment	from	
equivocal	commitment	and	
quantum	communication

1. Equivocal	commitment	from	Naor’s
commitment	and	zero-knowledge

2. Unbounded-simulator	OT	from	
equivocal	commitment

3. Extractable	and	equivocal	
commitment	from	unbounded-
simulator	OT	and	quantum	
communication

Features:

• Black-Box use	of	one-way	functions

• Statistical security	against	
malicious	receiver

• Constant-Round OT	in	the	CRS	model

• Statistically	binding extractable	commitment
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(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

V

0/1

x 2 X

⇢

P

1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)
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post-quantum ZK for NP relations

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

Theorem (Watrous’09)

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum
zero-knowledge protocol for all NP relations.
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Equivocal commitments

Vanilla commitment Equivocal commitment

C R

pp

c = commr (m)

m, r
C R

pp

c = commr (m)

m

ZK proof that
9r : c = commr (m)

Equivocator

1 Sends c = commr (m)

2 Sends m0

3 Use ZK simulator to convince R that c = commr (m0
)
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Conditional Disclosure of Secrets (CDS)

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

CDS for R
For a chosen x 2 X and message m, S will reveal m to R i↵ R knows w s.t. (x ,w) 2 R

S
Fcds

for R R

(x,m)

x

w

m0

m0
=

(
m, if (x ,w) 2 R
?, otherwise
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Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise
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Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3
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Bird’s-eye view
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Garbled circuits

Garb

C : {0, 1}n ! {0, 1}k

Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.
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Protocol for vCDS from OWF + unbounded simulation OT

S
Fcds

for R R
(x,m)

x

w

m0

m0
=

(
m, if (x ,w) 2 R
?, otherwise
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Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb )

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb )

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),
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Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb ) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16



Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise
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Ĝ

OTj

`jb w j

`j
wj
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Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb )}

ZK proof that 9m, `i,jb , r i,jb s.t
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Ĝ

OTj

`jb w j

`j
wj
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Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments 3?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT 3?yGarbled circuits

Unbounded simulator vCDS 3?y
Extractable commitment 3?yBBCS (+ BF10,DFL+10,Unr10)

OT 3

14 / 16



•

•

•

•

15 / 16



Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).

What else?

Thank you for your attention
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