
Secure	Computation	is	in	
MiniQCrypt

Merge	of:

Oblivious	Transfer	is	in	MiniQCrypt

Alex	Bredariol Grilo (LIP6,	CNRS/Sorbonne	Université)

Huijia Lin	(University	of	Washington)

Fang	Song	(Portland	State	University)
Vinod	Vaikuntanathan (MIT)

One-Way	Functions	Imply	Secure	Computation
In	a	Quantum	World

James	Bartusek (UC	Berkeley)

Andrea	Coladangelo (UC	Berkeley)

Dakshita Khurana (UIUC)

Fermi	Ma	(Princeton	and	NTT	Research)

Secure	Multi-Party	Computation

!"

!#

!$

!%

Goal:	Compute	
C(!", !#, !$, !%)

Secure	Multi-Party	Computation

!"

!#

!$

!%

Goal:	Compute	
C(!", !#, !$, !%)

Security:	adversary	learns	
nothing	about	!", !%	apart	

from C(!", !#, !$, !%)

In	a	Classical	World

Multi-Party	
Computation

Oblivious	
Transfer

+,, +" -

+.

One-Way	
Functions

Learning	with	Errors,	
Diffie-Hellman,	etc.

[Kil88,	CvT95][IR89]

(black-box)

Multi-Party	
(Quantum)	
Computation

Oblivious	
Transfer

One-Way	
Functions

Learning	
with	Errors

[Kil88],	[CvT95],
[DNS12],	[DGJMS20]

[CK88],	[BBCS92]:	
Template	for	building	OT	
from	bit	commitments

[DFLSS09]

[BF10]

Weak	OT	*

In	a	Quantum	World

*	Not	known	to	imply	MPC

In	a	Classical	World:

Multi-Party	
Computation

Oblivious	
Transfer

One-Way	
Functions

[Kil88,	CvT95][IR89]

(black-box)

In	a	Quantum	World:

Multi-Party	
(Quantum)	
Computation

Oblivious	
Transfer

One-Way	
Functions

[Kil88],	[CvT9508],
[DNS12],	[DGJMS20]

[GLSV21],	
[BCKM21]

MiniCrypt

MiniQCrypt

+,, +" -

s0

1 2

Oblivious	Transfer	

+,, +"

2345

1 2

Security	Against	Malicious	Receiver	

+,, +"

2345

1 2

Security	Against	Malicious	Receiver	

Sim

2345

2

Security	Against	Malicious	Receiver	

Sim

b
+.

Sim	must	extract	implicit	choice	bit	b from	R

+,, +"

[CK88],	[BBCS92]	Template	for	OT	from	Bit	Commitment

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

[CK88],	[BBCS92]	Template	for	OT	from	Bit	Commitment

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<
A. = 	 3,4,6
A"E. = 1,2,5A,, A"

! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +" Cheating	R can	wait	
until	receiving	< to	

measure				

Aside:	Bit	Commitment

C - R

Hiding:	R does	not	learn	-

Binding:	C can	only	make	
box	open	to	-

b

[CK88],	[BBCS92]	Template	for	OT	from	Bit	Commitment

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<
A. = 	 3,6
A"E. = 1,5A,, A"

! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +"

↕, 1 ↔, 1 ↕, 1 ↕, 0 ↕, 0 ↔, 1

Sample	subset	 2,4 2,4

Open ↔,1 , ↕, 0 ,
Check	that	green	bits	match	!

Measurement	
check	sub-protocol

[DFLSS09]:	Simulation	security	of	OT	follows	from	using	
commitment	with	certain	properties:

• Extractability→ security	against	malicious	receiver
• Equivocality	→ security	against	malicious	sender

Security	against	malicious	receiver:	extract	b from	R

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<
A. = 	 3,6
A"E. = 1,5A,, A"

! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +"

↕, 1 ↔, 1 ↕, 1 ↕, 0 ↕, 0 ↔, 1

Sample	subset	 2,4 2,4

Open ↔,1 , ↕, 0 ,
Check	that	green	bits	match	!

Measurement	
check	sub-protocol

Extract
<@, !@

- ← 	 <, <@, A,, A"

Security	against	malicious	sender:	extract	 +,, +" from	S

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<
A. = 	 3,6
A"E. = 1,5A,, A"

! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +"

↕, 1 ↔, 1 ↕, 1 ↕, 0 ↕, 0 ↔, 1

Sample	subset	 2,4 2,4

Open ↔,1 , ↕, 0 ,
Check	that	green	bits	match	!

Measurement	
check	sub-protocol

Security	against	malicious	sender:	extract	 +,, +" from	S

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<

A. = 	 3,6
A"E. = 1,5

A,, A"
! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +"

Sample	subset	 2,4 2,4

Open ↔,1 , ↕, 0 ,
Check	that	green	bits	match	!

Equiv Equiv Equiv Equiv Equiv Equiv

Measure	qubits	2	and	4:
↔,1 , ↕, 0↔, 1 ↕, 0

Measure	qubits	1,3,5,6	in	<

Security	against	malicious	sender:	extract	 +,, +" from	S

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<

A. = 	 3,6
A"E. = 1,5

A,, A"
! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +"

Sample	subset	 2,4 2,4

Open ↔,1 , ↕, 0 ,
Check	that	green	bits	match	!

Equiv Equiv Equiv Equiv Equiv Equiv

Measure	qubits	2	and	4:
↔,1 , ↕, 0↔, 1 ↕, 0

Measure	qubits	1,3,5,6	in	<

Obtain	 +,, +"

Goal:	(quantum-secure)	Extractable and	Equivocal	
bit	commitment	from	one-way	functions

[BCKM21] [GLSV21]

1. (Black-box)	equivocality	compiler

2. Extractable	commitment	from	
equivocal	commitment	and	
quantum	communication

1. Equivocal	commitment	from	Naor’s
commitment	and	zero-knowledge

2. Unbounded-simulator	OT	from	
equivocal	commitment

3. Extractable	and	equivocal	
commitment	from	unbounded-
simulator	OT	and	quantum	
communication

Goal:	(quantum-secure)	Extractable and	Equivocal	
bit	commitment	from	one-way	functions

[BCKM21] [GLSV21]

1. (Black-box)	equivocality	compiler

2. Extractable	commitment	from	
equivocal	commitment	and	
quantum	communication

1. Equivocal	commitment	from	Naor’s
commitment	and	zero-knowledge

2. Unbounded-simulator	OT	from	
equivocal	commitment

3. Extractable	and	equivocal	
commitment	from	unbounded-
simulator	OT	and	quantum	
communication

Alex’s	talk

Goal:	(quantum-secure)	Extractable and	Equivocal	
bit	commitment	from	one-way	functions

[BCKM21]

1. (Black-box)	equivocality	compiler

2. Extractable	commitment	from	
equivocal	commitment	and	
quantum	communication

Vanilla	commitment	from	one-
way	functions	[Naor91]

Equivocal	Commitment

2

Extractable	Commitment

Extractable	and	equivocal	
commitment

1

1

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

1 +,, +" 2 -

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

<

A. = 	 3,6
A"E. = 1,5

A,, A"
! , = 	 !H H∈JK
! " = 	 !H H∈JL

EncP K +, , EncP L +"

Sample	subset	 2,4 2,4

Open ↔,1 , ↕, 0 ,
Check	that	green	bits	match	!

Equiv Equiv Equiv Equiv Equiv Equiv

Measure	qubits	2	and	4:
↔,1 , ↕, 0↔, 1 ↕, 0

Measure	qubits	1,3,5,6	in	<

Obtain	 +,, +"

2.	Extractable	Commitment	from	Equivocal	Commitment

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

|0⟩

|1⟩
|+⟩ |−⟩

ExtractCom - 2

Sample	bases	< =↔↕↕↕↔↔
Sample	bits					! = 011011

Sample	bases	<@ =	↕↔↕↕↕↔
Measure										!@ = 111001

Sample	subset	 2,4 2,4

Open ↔,1 , ↕, 0 ,
Check	that	green	bits	match	!

Equiv Equiv Equiv Equiv Equiv Equiv

Measure	qubits	2	and	4:
↔,1 , ↕, 0↔, 1 ↕, 0

Measure	qubits	1,3,5,6	in	<
to	obtain	! TU

2.	Extractable	Commitment	from	Equivocal	Commitment

<,	EncP VW -
! TU = !H H∉Y

1.	Black-Box	Equivocality	Compiler:	Com	→ EquivCom

RecEquivCom -

Sample	`,, `" ← 0,1

`, `,

`" `"

c	(=0)

Sample	c	← 0,1

1.	Black-Box	Equivocality	Compiler:	Com	→ EquivCom

RecEquivCom -

Sample	`,, `" ← 0,1

`, `,

`" `"

c	(=0)

Sample	c	← 0,1

`, `,
,	- ⊕ `"

EquivOpen

1.	Black-Box	Equivocality	Compiler:	Com	→ EquivCom

RecEquivCom -

Sample	`,, `" ← 0,1

`, `,

`" `"

c	(=0)

Sample	c	← 0,1

`, `,
,	- ⊕ `"

EquivOpen `"

1.	Black-Box	Equivocality	Compiler:	Com	→ EquivCom

RecEquivCom

Sample	`,, `" ← 0,1

`, `,

`" 1 − `"

c

Sample	c	← 0,1

Rewind	until	c = 0

1.	Black-Box	Equivocality	Compiler:	Com	→ EquivCom

RecEquivCom

Sample	`,, `" ← 0,1

`, `,

`" 1 − `"

c

Sample	c	← 0,1

`, `,
,	e

EquivOpen `"

Rewind	until	c = 0

Sample	e ← 0,1

1 − `"OR

Watrous
Rewinding	Lemma

[BCKM21] [GLSV21]

1. (Black-box)	equivocality	compiler

2. Extractable	commitment	from	
equivocal	commitment	and	
quantum	communication

1. Equivocal	commitment	from	Naor’s
commitment	and	zero-knowledge

2. Unbounded-simulator	OT	from	
equivocal	commitment

3. Extractable	and	equivocal	
commitment	from	unbounded-
simulator	OT	and	quantum	
communication

Features:

• Black-Box use	of	one-way	functions

• Statistical security	against	
malicious	receiver

• Constant-Round OT	in	the	CRS	model

• Statistically	binding extractable	commitment

1 / 16

Bird’s-eye view

OWF + Quantum

?yZK proofs

Equivocal commitments?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT?yGarbled circuits

Unbounded simulator vCDS?y

Extractable commitment?yBBCS (+ BF10,DFL+10,Unr10)

OT

2 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments

?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT?yGarbled circuits

Unbounded simulator vCDS?y

Extractable commitment?yBBCS (+ BF10,DFL+10,Unr10)

OT

2 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT

?yGarbled circuits

Unbounded simulator vCDS?y

Extractable commitment?yBBCS (+ BF10,DFL+10,Unr10)

OT

2 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT?yGarbled circuits

Unbounded simulator vCDS

?y

Extractable commitment?yBBCS (+ BF10,DFL+10,Unr10)

OT

2 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT?yGarbled circuits

Unbounded simulator vCDS?y
Extractable commitment?yBBCS (+ BF10,DFL+10,Unr10)

OT

2 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

V

0/1

x 2 X

⇢

P

1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

V

0/1

x 2 X

⇢

P

1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

V

0/1

x 2 X

⇢

P 1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

V

0/1

x 2 X

⇢

P 1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

V

0/1

x 2 X

⇢

P 1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R
..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

V

0/1

x 2 X

⇢

P 1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R
..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

Ṽ

0/1

x 2 X

⇢

P

1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

Ṽ

0/1

x 2 X

⇢

P

1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

(post-quantum) Zero-knowledge protocol for relations

R ✓ X ⇥W

Ṽ

0/1

x 2 X

⇢

P

1. If P knows w s.t. (x ,w) 2 R, V accepts whp

2. If 6 9w s.t. (x ,w) 2 R, V rejects whp

3. Ṽ does not learn w s.t. (x ,w) 2 R

..
.

SṼ

�

Quantum computational zero-knowledge

⇢ and � cannot be e�ciently distinguished:

8 quantum poly-time A : |Pr [A(⇢) = 1]� Pr [A(�) = 1]|  negl(n)

3 / 16

post-quantum ZK for NP relations

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

Theorem (Watrous’09)

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum
zero-knowledge protocol for all NP relations.

4 / 16

post-quantum ZK for NP relations

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

Theorem (Watrous’09)

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum
zero-knowledge protocol for all NP relations.

4 / 16

post-quantum ZK for NP relations

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

Theorem (Watrous’09)

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum
zero-knowledge protocol for all NP relations.

4 / 16

Equivocal commitments

Vanilla commitment Equivocal commitment

C R

pp

c = commr (m)

m, r
C R

pp

c = commr (m)

m

ZK proof that
9r : c = commr (m)

Equivocator

1 Sends c = commr (m)

2 Sends m0

3 Use ZK simulator to convince R that c = commr (m0
)

5 / 16

Equivocal commitments

Vanilla commitment

Equivocal commitment

C R

pp

c = commr (m)

m, r

C R

pp

c = commr (m)

m

ZK proof that
9r : c = commr (m)

Equivocator

1 Sends c = commr (m)

2 Sends m0

3 Use ZK simulator to convince R that c = commr (m0
)

5 / 16

Equivocal commitments

Vanilla commitment Equivocal commitment

C R

pp

c = commr (m)

m, r
C R

pp

c = commr (m)

m

ZK proof that
9r : c = commr (m)

Equivocator

1 Sends c = commr (m)

2 Sends m0

3 Use ZK simulator to convince R that c = commr (m0
)

5 / 16

Equivocal commitments

Vanilla commitment Equivocal commitment

C R

pp

c = commr (m)

m, r
C R

pp

c = commr (m)

m

ZK proof that
9r : c = commr (m)

Equivocator

1 Sends c = commr (m)

2 Sends m0

3 Use ZK simulator to convince R that c = commr (m0
)

5 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments 3?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT

3

?yGarbled circuits

Unbounded simulator vCDS?y
Extractable commitment?yBBCS (+ BF10,DFL+10,Unr10)

OT

6 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments 3?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT 3?yGarbled circuits

Unbounded simulator vCDS?y
Extractable commitment?yBBCS (+ BF10,DFL+10,Unr10)

OT

6 / 16

Conditional Disclosure of Secrets (CDS)

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

CDS for R
For a chosen x 2 X and message m, S will reveal m to R i↵ R knows w s.t. (x ,w) 2 R

S
Fcds

for R R

(x,m)

x

w

m0

m0
=

(
m, if (x ,w) 2 R
?, otherwise

7 / 16

Conditional Disclosure of Secrets (CDS)

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

CDS for R
For a chosen x 2 X and message m, S will reveal m to R i↵ R knows w s.t. (x ,w) 2 R

S
Fcds

for R R

(x,m)

x

w

m0

m0
=

(
m, if (x ,w) 2 R
?, otherwise

7 / 16

Conditional Disclosure of Secrets (CDS)

NP relations

R ✓ X ⇥W is an NP-relation if there exists a polynomial-time algorithm V s.t.

V (x ,w) = 1 i↵ (x ,w) 2 R.

CDS for R
For a chosen x 2 X and message m, S will reveal m to R i↵ R knows w s.t. (x ,w) 2 R

S
Fcds

for R R
(x,m)

x

w

m0

m0
=

(
m, if (x ,w) 2 R
?, otherwise

7 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Verifiable CDS protocol

S(x ,m) R w

⇡

· · ·

Classical and quantum menssages
Classical transcript: ⌧

The protocol is a verifiable CDS if

1 It implements Fcds

2 The protocols binds (x ,m) that a malicious sender uses and this is verifiable

After interacting with R , S outputs ⇡ such that

Correctness: 9 poly-time algorithm Ver s.t. for honest R , S Ver(⌧, x ,m,⇡) = 1

Binding: For every malicious S̃ that interacts with R and outputs (m̃, ⇡̃) then with negl.

probability we have

Ver(⌧, x , m̃, ⇡̃) = 1 and R gets m0 6=
(
m̃, if (x ,w) 2 R
?, otherwise

8 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C

R

Ext

trapdoor set up

c = commr (0)

ZK proof that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C

R

Ext

trapdoor set up

c = commr (0)

ZK simulation that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C

R

Ext

trapdoor set up

c = commr (1)

ZK simulation that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability

3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C

R

Ext

trapdoor set up

c = commr (1)

ZK simulation that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability 3

Equivocality 3

9 / 16

Extractable commitments from unbounded simulator vCDS

C

R

Ext

trapdoor set up

c = commr (1)

ZK simulation that

c = commr (0)

message extraction

(if trapdoor)

vCDS for

{(commr (1), r)}

(c,m)

⌧,⇡

r

m0, ⌧,⇡

message commitment

c⇤ = commr⇤ (m)

ZK proof that 9m, r⇤ s.t

c⇤ = commr⇤ (m) and

Ver(⌧, c⇤,m,⇡) = 1

reveal

m

ZK proof that

c⇤ = commr⇤ (m)

Binding 3

Hiding 3

Extractability 3

Equivocality 3

9 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments 3?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT 3?yGarbled circuits

Unbounded simulator vCDS?y
Extractable commitment 3?yBBCS (+ BF10,DFL+10,Unr10)

OT 3

10 / 16

Garbled circuits

Garb

C : {0, 1}n ! {0, 1}k

Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Garbled circuits

GarbC : {0, 1}n ! {0, 1}k Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Garbled circuits

GarbC : {0, 1}n ! {0, 1}k Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Garbled circuits

GarbC : {0, 1}n ! {0, 1}k Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Garbled circuits

GarbC : {0, 1}n ! {0, 1}k Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]

y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Garbled circuits

GarbC : {0, 1}n ! {0, 1}k Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Garbled circuits

GarbC : {0, 1}n ! {0, 1}k Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Garbled circuits

GarbC : {0, 1}n ! {0, 1}k Eval
Enc

Ĉ

�
`ib
�
i2[n],b2{0,1}

x

x̂ =

⇣
`ixi

⌘

i2[n]
y

Correctness: y = Eval(Ĉ , x̂) = C (x)

Security: There exists GarbSim such that

(Ĉ , x̂) ⇡c GarbSim(C (x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum

secure garbling scheme for polynomial-size circuits.

11 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S
Fcds

for R R
(x,m)

x

w

m0

m0
=

(
m, if (x ,w) 2 R
?, otherwise

12 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b

Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b

Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb)

�i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb)

�i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3

Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3

2. Binding 3

13 / 16

Protocol for vCDS from OWF + unbounded simulation OT

S R

x

G(w) =

(
m, if (x,w) 2 R
?, otherwise

Ĝ ,
⇣
`jb

⌘

j,b
Ĝ

OTj

`jb w j

`j
wj

Ĝ

OTj

`jb w j

`j
wj

Ĝ1,
⇣
`1,jb

⌘

j,b

Ĝ2,
⇣
`2,jb

⌘

j,b

...

Ĝ2�,
⇣
`2�,jb

⌘

j,b

⇤ ✓ [2�]

|⇤| = �

�i =

(
w , if i 2 ⇤

si u.a.r, o.w.

Aborts if:

1. ZK fails

2. 9i 62 ⇤, j :

ci,j 6= comm
r
i,j
b

(`i,jb)

3. 8i 2 ⇤, 9j :
ci,j 6= comm

r
i,j
b

(`i,jb)

Otherwise

Output Eval(Ĝ i⇤ , ŵ)

Ĝ i , c⇤ = commr⇤ (m),

{ci,j = comm
ri,jb

(`i,jb)}

ZK proof that 9m, `i,jb , r i,jb s.t

Ĝ i and commitments

are consistent

OTi,j

µi,j
b = (`i,jb , r i,jb) �i,j

µi,j
�i,j

r⇤

CDS 3
Verifiability: Ver(⌧, x ,m, r⇤) = 1 i↵ c⇤ = commr⇤ (m)

1. Correctness 3
2. Binding 3

13 / 16

Bird’s-eye view

OWF + Quantum?yZK proofs

Equivocal commitments 3?yBBCS (+ variant of BF10,DFL+10,Unr10)

Unbounded simulator OT 3?yGarbled circuits

Unbounded simulator vCDS 3?y
Extractable commitment 3?yBBCS (+ BF10,DFL+10,Unr10)

OT 3

14 / 16

•

•

•

•

15 / 16

Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).

What else?

Thank you for your attention

16 / 16

Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).

What else?

Thank you for your attention

16 / 16

Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).

What else?

Thank you for your attention

16 / 16

