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Secure Multi-Party Computation

Goal: Compute
X1
C(x1»x2»x3»x4) g




Secure Multi-Party Computation

Goal: Compute
C(xl' X2, X3, X4)

Security: adversary learns
nothing about x4, x, apart
from C(xq, x5, X3,X4)




In a Classical World

Learning with Errors,
Diffie-Hellman, etc.

~

[IR89] — [Kil88, CvT95] _
One-Way )e Oblivious Multi-Party
. —— .
Functions Transfer Computation

(black-box)




4 )

[CK88], [BBCS92]:
Template for building OT

In @ Quantum World

; from bit commitments
Learning N J
with Errors
[DFLSS09]
[Kil88], [CvT95],
. Multi-Party
One-Way Oblivious |[PNS12], [DGIMS20]
I— (Quantum)
{ Functions } { Transfer } Computation

w]

{ Weak OT * }

* Not known to imply MPC



In a Classical World:

[Kil88, CvT95]

One-Way Oblivious Multi-Party
Functions Transfer Computation
black-b
MiniCrypt (blackcbox)
In a Quantum World:
[GLSV21], [Kil88], [CvT9508],
One-Way [BCKM21] Oblivious [DNS12], [DGIMS20] | Multi-Party
) ) ——) (Quantum)
nctions Transfer o

\MiniQCrypt /




Oblivious Transfer




Security Against Malicious Receiver




Security Against Malicious Receiver

/Sim




Security Against Malicious Receiver

/Sim N

S0, 51

o= | /

Sim must extract implicit choice bit b from R



[CK88], [BBCS92] Template for OT from Bit Commitment
S(sg.51) R(b)

|+r>\ N N rloN r|\_>r|\_>
\ /7 \|n/ \1/ \ / « ./ \ J

Sample bases 8 = &Jlleoo
Sample bits x =011011




[CK88], [BBCS92] Template for OT from Bit Commitment
S(sg.51) R(b)

TN W N A N A N
CJ Uyl Uil N J Y

Sample bases § = oo : Sample bases 8' = <117
Sample bits x = 011011 Measure x' =11100
7,
Iy, 1, ,-p ={1,2,5}

x©) = (xi)ier,

xM = (xi)iEIl

Enc, © (so), Enc, ) (s1) Cheating R can wait

until receiving 0 to
measure




Aside: Bit Commitment

C(b) R
b
{ Hiding: R does not learn b ]
Binding: C can only make
< { box opento b J




[CK88], [BBCS92] Template for OT from Bit Commitment

S(sg.51)

|+)

Sample bases 8 = <—>$II<—><—>
Sample bits x =011011

(<, 1),(1,0)

x(O) (xl)lEIo

xM = (xl)lEIl

\/

“
1 <—>,1 7,1147,0 I,O o,
@@ @@
7,
10111

Enc, ) (sp), Enc, ) (s1)

R(b)
Sample bases ' =117
Measure x'=11100
Il—b — {115}



4 N

[DFLSS09]: Simulation security of OT follows from using
commitment with certain properties:

e Extractability — security against malicious receiver
* Equivocality — security against malicious sender

\_ J




Security against malicious receiver: extract b from R

S(Sq.51)

LY Y 0N AN N
\ 7/ \|/ \ |/ \ J \ J
Sample bases 8 = &Jlleoo
S le bit = 011011
PR T e
b a— 1LY T2l 0] 0o 1
@', x") )
Sample subset {2,4} {2,4}
@@ @@
Open (e, 1), (1,0),
Check that green bits match x 0
b « {9,9,,10,11} 10,11

x0) = (xi)ier,

Enc, ) (sp), Enc, ) (s1)

xM = (xi)iell

R(b)

Sample bases ' =[]l
Measure x'=111001

—

Measurement
check sub-protocol

SE—

I, = {3,6}
Il—b — {115}



Security against malicious sender: extract (sg,s1) from S

S(Sq.51)

LY Y 0N AN N
\ 7/ \|/ \ |/ \ J \ J
Sample bases 8 = &Jlleoo
S le bit = 011011
ample bits x
L,1||o, 1T, 1)T,0fT,0]e,1
Sample subset {2,4} {2,4}
@@ @@
Open (e, 1), (1,0),
Check that green bits match x 0
10'11

x0) = (xi)ier,

Enc, ) (sp), Enc, ) (s1)

xM = (xi)iell

R(b)

Sample bases 8’ = <111«
Measure x'=111001

—

Measurement
check sub-protocol

SE—

I, = {3,6}
Il—b — {115}



Security against malicious sender: extract (sg,s;) from S

S(Sq.51)

LY Y 0N AN N
\ 7/ \|/ \ |/ \ J \ J
Sample bases 8 = <]l
S le bit = 011011
ample bits x
Equiv||Equiv||[EquivlEquiv||Equiv||[Equiv
Sample subset {2,4} {2,4}
SC) <9
Open (<, 1), (1, 0), — =D 40
Check that green bits match x 0
10111

x© = (xier,

Enc, ) (sp), Enc, ) (s1)

xM = (xi)iEIl

R(b)

S
|—)
J
Sample bases ' =[]l
—Measure—x=311+50—

Measure qubits 2 and 4:
(«,1),(1,0)

Measure qubits 1,3,5,6 in 0

I, = {3,6}
Il—b — {1)5}



Security against malicious sender: extract (sg,s;) from S

S(Sq.51)

LY Y 0N AN N
\ 7/ \|/ \ |/ \ J \ J
Sample bases 8 = <]l
S le bit = 011011
ample bits x
Equiv||Equiv||[EquivlEquiv||Equiv||[Equiv
Sample subset {2,4} {2,4}
SC) <9
Open (<, 1), (1, 0), — =D 40
Check that green bits match x 0
10111

x© = (xier,

Enc, ) (sp), Enc, ) (s1)

xM = (xi)iEIl

S
|—)
J
Sample bases ' =[]l
—Measure—x=311+50—

Measure qubits 2 and 4:
(«,1),(1,0)

Measure qubits 1,3,5,6 in 0

I, = {3,6}
Il—b — {175}

Obtain (sg, S1)



Goal: (quantum-secure) Extractable and Equivocal
bit commitment from one-way functions

[BCKM21] [GLSV21]

1. (Black-box) equivocality compiler 1. Equivocal commitment from Naor’s

commitment and zero-knowledge

2. Extractable commitment from
equivocal commitment and 2. Unbounded-simulator OT from
quantum communication equivocal commitment

3. Extractable and equivocal
commitment from unbounded-
simulator OT and quantum
communication




Goal: (quantum-secure) Extractable and Equivocal
bit commitment from one-way functions

[BCKM21] [GLSV21]

1. (Black-box) equivocality compiler

2. Extractable commitment from
equivocal commitment and
gquantum communication

[ Alex’s talk J




Goal: (quantum-secure) Extractable and Equivocal
bit commitment from one-way functions

[BCKMZ]_] Vanilla commitment from one-

way functions [Naor91]

11

Equivocal Commitment

1. (Black-box) equivocality compiler

2. Extractable commitment from
equivocal commitment and l 2

gquantum communication
Extractable Commitment

11

Extractable and equivocal
commitment




2. Extractable Commitment from Equivocal Commitment

S(Sq.51) R(b)

LY Y 0N O~ CN 0N
\ 7/ \|/ \ |/ \ J <« ./ \ J

Sample bases = oo : Sample bases ' =<1
S le bit = 011011 —Meastre—x=11—"0—
ample bits  x

Equiv|[Equiv|[Equiv|[Equiv||Equiv][Equiv

Sample subset {2,4} 12,4}

=0 -0 : Measure qubits 2 and 4:
Open ((_); 1)) (]:) O)) < (H’ 1) (i’ 0) ((_)’ 1)' (il 0)
Check that green bits match x 0
Measure qubits 1,3,5,6 in 0
- lo. Iy I, = {3,6)
x(o) — (x) b B ,
/1€l Il—b — {1,5}

Enc, (0 (o), Enc,a(s1)

x(D) = (xi)iell
Obtain (s, S1)



2. Extractable Commitment from Equivocal Commitment

ExtractCom(b)
LY Y 0N AN N
\ 7/ \|/ \ |/ \ J \ J
Sample bases 8 = &Jlleoo
S le bit = 011011
ample bits x
Equiv|[Equiv|[Equiv|[Equiv||Equiv][Equiv
Sample subset {2,4} {2,4}
<=9 9
(e,1) (1,0)

Open (e, 1),(1,0),

Check that green bits match x
0, Ean(sk) (b)

x (K = (xi)iGET

R
S
|—)
J
Sample bases ' =[]l
—Measure—x—=1+1+50+—

Measure qubits 2 and 4:
(«,1),(1,0)

Measure qubits 1,3,5,6 in 0
to obtain xSk



1. Black-Box Equivocality Compiler: Com — EquivCom

EquivCom(b) Rec
) T 0 0
Sample u, u; « 10,1} S s Sample ¢ « {0,1}




1. Black-Box Equivocality Compiler: Com — EquivCom

EquivCom(b) 1y Rec
* ~ 0 0
Sample uy, u; <« {0,1} 1] [ M Sample c « {0,1}
c (=0)
c@u()@@uo ; b @ ul

EquivOpen




1. Black-Box Equivocality Compiler: Com — EquivCom

EquivCom(b) 1y Rec
* ~ 0 0
y
Sample uy, u; <« {0,1} 1] [ M Sample c « {0,1}
c (=0)
c@u()@@uo ; b @ ul

EquivOpen <9y,




1. Black-Box Equivocality Compiler: Com — EquivCom

EquivCom Rec
* o| [Uo
Sample uy, u; <« {0,1} 18 I Sample c « {0,1}

¢ ' Rewind untilc = 0



1. Black-Box Equivocality Compiler: Com — EquivCom

. Rec
EquivCom | g ==
Sample uy, u; <« {0,1} 18 I Sample c « {0,1}
C : ) . .
) Rewind untilc = 0
SeCHC=CN
Sample v « {0,1} o o’ ¥ Watrous
e Rewinding Lemma




[BCKM21] [GLSV21]

1. (Black-box) equivocality compiler 1. Equivocal commitment from Naor’s

commitment and zero-knowledge

2. Extractable commitment from
equivocal commitment and 2. Unbounded-simulator OT from
guantum communication equivocal commitment

3. Extractable and equivocal
commitment from unbounded-
simulator OT and quantum
communication

Features:

* Black-Box use of one-way functions * Constant-Round OT in the CRS model

. Statistical security against e Statistically binding extractable commitment

malicious receiver
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Bird's-eye view

OWF 4+ Quantum

Extractable commitment
| BBCS (+ BF10,DFL+10,Unr10)
oT
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(post-quantum) Zero-knowledge protocol for relations

RCXxW

pd
xeX
AN




(post-quantum) Zero-knowledge protocol for relations

RCXxW

pd
xeX
AN

(_

0/1



(post-quantum) Zero-knowledge protocol for relations

X €

A
X
N

<_

0/1

RCXxW

1. If P knows w s.t. (x,w) € R, V accepts whp
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(post-quantum) Zero-knowledge protocol for relations
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(post-quantum) Zero-knowledge protocol for relations

RCXxW

pd
xeX
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(post-quantum) Zero-knowledge protocol for relations

X €

A
X
N

T

p

N IS

RCXxW

Sy

g

Quantum computational zero-knowledge

p and o cannot be efficiently distinguished:

V quantum poly-time A : |Pr[A(p) = 1] — Pr[A(c) = 1]| < negl(n)

3/16
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post-quantum ZK for NP relations

NP relations

R C X x W is an NP-relation if there exists a polynomial-time algorithm V s.t.
V(x,w) =1Iiff (x,w) € R.




post-quantum ZK for NP relations

NP relations

R C X x W is an NP-relation if there exists a polynomial-time algorithm V s.t.
V(x,w) =1iff (x,w) € R.

Theorem (Watrous'09)

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum
zero-knowledge protocol for all NP relations.

5 T
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Equivocal commitments

Vanilla commitment

pp

A}

L4

¢ = comm,(m)




Equivocal commitments

Vanilla commitment

pp

V) \
A} L4

¢ = comm,(m)
AN

Aa
X

Equivocal commitment

PP

\
L4

4

ZK proof that
3r: ¢ = comm.(m

\
4

)

\
4

5/16



Equivocal commitments

Vanilla commitment

pp

Equivocal commitment

PP

V)
A}

\
L4

¢ = comm,(m)
\

~

Equivocator
@ Sends ¢ = comm,(m)
@ Sends m’

N

\
L4

4

ZK proof that

\
4

3r : ¢ = comm,(m)
Vi \

Y

© Use ZK simulator to convince R that ¢ = comm,(m'’)

5/16
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Conditional Disclosure of Secrets (CDS)

NP relations

R C X x W is an NP-relation if there exists a polynomial-time algorithm V s.t.
V(x,w) =1iff (x,w) € R.




Conditional Disclosure of Secrets (CDS)

NP relations

R C X x W is an NP-relation if there exists a polynomial-time algorithm V s.t.
V(x,w) =1iff (x,w) € R.

CDS for R

For a chosen x € X and message m, S will reveal m to R iff R knows w s.t. (x,w) € R

X \
(x,m) ’
S : o ek v R
for R m .
4

1, otherwise

o {m, if (x,w) eR

e 7/16
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Classical and quantum menssages
Classical transcript: T
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A

(x, m) S

R w

The protocol is a verifiable CDS if
Q It implements Fys

Classical and quantum menssages
Classical transcript: T
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Verifiable CDS protocol

\
4

A

(x,m) | S R | w

\
4
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Verifiable CDS protocol

\
4

A

(x,m) | S R | w

\
4

Classical and quantum menssages
Classical transcript: T

The protocol is a verifiable CDS if
Q It implements Fys
@ The protocols binds (x, m) that a malicious sender uses and this is verifiable

After interacting with R, S outputs 7 such that
Correctness: 3 poly-time algorithm Ver s.t. for honest R, S Ver(r,x,m,7) =1
Binding: For every malicious S that interacts with R and outputs (17, 7) then with negl.
probability we have

i »
Ver(r,x,m,7)=1 and R gets m’ # {m, if (x,w) €

1, otherwise

e 8 /16



Extractable commitments from unbounded simulator vCDS

trapdoor set up

message extraction
(if trapdoor)

message commitment
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Extractable commitments from unbounded simulator vCDS

¢ = comm.(0)

ZK proof that
¢ = comm,(0)

(¢, m)

vCDS for
T, T {(comm,(1), r)}

m°, T, T

message commitment

9/16



Extractable commitments from unbounded simulator vCDS

¢ = comm.(0)

ZK proof that
¢ = comm,(0)

(C7 m) r
vCDS for
T, T {(commy(1), 1)} |M, T,
C c* = comm,=(m) R

ZK proof that Im, r* s.t
c* = comm,=(m) and
Ver(r,c*,m,m) =1

e 9/16
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ZK proof that
c* = comm,«(m)

Binding v/
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Extractable commitments from unbounded simulator vCDS

¢ = comm.(0)

AN

ZK proof that
¢ = comm,(0)

A) 7|
(C7 m) r
vCDS for
T, T {(commy (1), )} M’ T,
Binding v/
C c* = comm,=(m) R Hiding /

ZK proof that Im, r* s.t
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Extractable commitments from unbounded simulator vCDS
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Extractable commitments from unbounded simulator vCDS

¢ = comm.(0)

AN

ZK simulation that
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Extractable commitments from unbounded simulator vCDS

¢ = comm,(1)

AN

ZK simulation that
¢ = comm,(0)

A) 7|
(C7 m) r
vCDS for
T, T {(commy (1), )} M’ T,
Binding v/
C c* = comm,=(m) Ext Hiding /
ZK proof that Im, r* s.t Extractability /
c* = comm,=(m) and
Ver(r,c*,m,m) =1 Equivocality /
P A et -

ZK proof that
c* = comm,«(m)

e 9/16



Bird's-eye view

OWF + Quantum
lZK proofs
Equivocal commitments v/
| BBCS (+ variant of BF10,DFL+10,Unr10)
Unbounded simulator OT v/
J,Garbled circuits
Unbounded simulator vCDS

Extractable commitment v/
| BBCS (+ BF10,DFL+10,Unr10)
oT v
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Garbled circuits

C:{0,1}" = {0,1}k —»
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Eval




Garbled circuits

AP o
C: {0,117 - (0,1} = Garb | Wictiecon $=(),0| Eval

Enc

X —>




Garbled circuits

C:{0,1}" = {0,1}k —»

Garb

(%) iy be (01}

X —>

Enc

x>
Il

(.

).ci

Eval

—




Garbled circuits

b

Il
/N
~
X =

C:{0,1}" — {0,1}* = Garb (KL)iE[anE{O,l} X .")ie[n] Eval = v

Enc

X —>

Correctness: y = Eval(C,%) = C(x)
Security: There exists GarbSim such that

(€, ) ~c GarbSim(C(x))

S e S SRV



Garbled circuits

o

b

C: {0,117 - (0,1} = Garb | Wictiecon $=(),c| Eval v

Enc

X —>

Correctness: y = Eval(C,%) = C(x)
Security: There exists GarbSim such that

(€, %) ~¢ GarbSim(C(x))

Theorem [Yao86]

Assuming the existence of post-quantum secure one-way functions, there is a post-quantum
secure garbling scheme for polynomial-size circuits.

S e S SRV



Protocol for vCDS from OWF + unbounded simulation OT

g

S (X'm) J:cds
for R m'

Py

ol if (x,w) eR
B 1, otherwise
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are consistent
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,w) ER

G(w) m, if (
w) =
1, otherwise

¢, (z}”j)j b

¢?, (Zid.)j b

GAQ)‘, (Z?\J)

Jjsb

X

G, c* = comm,« (.nt1)’
{c/ = commré,j(ﬁgj)}

ZK proof that Im, Z . st

G’ and commltments
are consistent

,J _ (Z”’ J) i

o1 |

ol

AC [2)]
A=A
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Protocol for vCDS from OWF + unbounded simulation OT

1L, otherwise

Glw) = {m, if (x,w) € R

¢, (z}”j)j b

¢?, (Zij)j b

62, (eik,j)j b

X
AN
4
G', c* = comm,~ (.nt1),
{c/ = commr,-,j(f;)”)}
b
AN
4

ZK proof that 3m, £, r;”’ s.t
G’ and commitments
are consistent

AN

h'd

ij _ (pid s .
wy = (L’ rp”) o'l
AN
4

OTiH Hivj

AC 2]
Al =X
ol = w, ifien
T )]s var, ow.
Aborts if:
1. ZK fails
2. i €N, j:

i # commrl,-;j(eiﬂ)
3. VieA 3
' # commr[,-;j(ZL’J)

Otherwise

Output Eval(G'", W)
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1L, otherwise

Glw) = {m, if (x,w) € R

ér, (z};f)j

é2, (zi’f)j

GAQ)‘, (z?\d‘)

CDS /

b

b

Jjsb

X AN
4
G', c* = comm,~ (.nt1),
{c = commr,-,j(f;)”)}
b
AN
4

ZK proof that 3m, £, r;”’ s.t
G’ and commitments
are consistent

AC [2)]
A=A

ifieA

i w,
o = i
S u.a.r, O.w.

AN

h'd

ij _ (pid s .
wy = (L’ rp”) o'l
AN
4

OTiH #"J

Aborts if:

1. ZK fails

2. 3igA,j:

¢ comm ,-,j(eﬁ;f)
b

3. VieA, 3

i # comm ,-J(ZL’J‘)
b

Otherwise

Output Eval(G'", W)
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A 2,j i
G2, (gbd)' ZK proof that 3m, E st Aborts if:
J>b G’ and commltments )
S are consistent R 1. ZK fails
’ > 2. 3i ¢ A,ji
GAQ)‘, (@ik’j) ) cld # commr,-,j(ei;j)
J:b »J — (6, r ,J) oy ' b.
> ¢ 3. Vie A )
oT/ }L;’j/jyj\ o # commr[,-;j(ei;j)
\L Y Otherwise
e Output Eval(G'", W)

CDS /
Verifiability: Ver(r,x, m, r*) = 1 iff ¢* = comm,=(m)
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X N AC 2]
_fm, if(x,w) eR > -
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o= (P ) e os
e, (z},’j) {c = comm,; (Gal; ol = {V\I/, ifi e
Jsb > s’ u.a.r, o.w.
A 2,j i
G2, (gbd)' ZK proof that 3m, E st Aborts if:
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GAQ)‘, (@ik’j) ) cld # commr,-,j(ei;j)
J:b »J — (6, r ,J) oy ' b.
> ¢ 3. Vie A )
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CDS /
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Protocol for vCDS from OWF + unbounded

G(w) = {I

¢, (gi’f)j

é2, (zi’f)j

GAQ)‘, (z?\d‘)

CDS /

if (x,w) € R

otherwise

b

b

Jjsb

X AN
4
G', c* = comm,~ (.".7)’
{c = commr,-,j(f;)”)}
b
AN
4

ZK proof that 3m, £, r;”’ s.t
G’ and commitments
are consistent

simulation OT

-
*

Vi \
A) 4
ij _ (pid s L
wy =) o'
AN vi
4 '\
i |,
OT™ \p i,
AN
4

Verifiability: Ver(r,x, m, r*) = 1 iff ¢* = comm,=(m)

1. Correctness v/

2. Binding /
e

AC 2]
Al =X
ol = w, ifien
T )]s var, ow.
Aborts if:
1. ZK fails
2. i €N, j:

¢l # comm ,-,j(éi;j)
b
3.VieA 3
i # comm ; ; (ZL’J‘)
b
Otherwise
Output Eval(G'", W)
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Bird's-eye view

OWF + Quantum
lZK proofs
Equivocal commitments v/
| BBCS (+ variant of BF10,DFL+10,Unr10)
Unbounded simulator OT v/
J,Garbled circuits
Unbounded simulator vCDS v/

Extractable commitment v/
| BBCS (+ BF10,DFL+10,Unr10)
oT v
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[BCKM21]

[GLSV21]

Features:

(Black-box) equivocality compiler
Extractable commitment from

equivocal commitment and
quantum communication

Black-Box use of one-way functions

* Statistical security against malicious

receiver

Equivocal commitment from Naor’s
commitment and zero-knowledge

Unbounded-simulator OT from
equivocal commitment

Extractable and equivocal
commitment from
unbounded-simulator OT and
quantum communication

Constant-Round OT in the CRS model

Statistically binding extractable commitment
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Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).
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Conclusions and open problems

Secure (quantum) multi-party computation is in MiniQCrypt (OWF+quantum).
What else?

Thank you for your attention
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