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It is a basic problem in quantum Shannon theory to transmit classical or quantum mes-
sages via multiple uses of a noisy quantum channel. The famous capacity theorems by Holevo,
Schumacher and Westmoreland [5, 8] in the case of classical messages, and by Lloyd, Shor and
Devetak [4, 7, 9] in the case of quantum messages characterize the optimal communication rates
achievable with vanishing error in the asymptotic limit of infinitely many channel uses. However,
these theorems assume that encoding and decoding operations on large quantum systems can
be implemented without faults. This assumption is unlikely to be satisfied in the near future,
and it is even possible that the error rates of quantum logic gates will never effectively vanish,
unlike the error rates of logic gates on a classical computer. While this issue has been resolved
in quantum computing by using quantum error correcting codes and fault-tolerant implemen-
tations [1, 2], no such theory has been developed for the communication problems of quantum
Shannon theory. Specifically, it is a priori not clear that the overall error of a coding scheme
can vanish in the asymptotic limit of infinitely many channel uses at strictly positive communi-
cation rates when the quantum logic gates in the coding circuits fail with some fixed non-zero
probability.

Difficulties arise when applying fault-tolerant techniques to quantum communication prob-
lems: The noise affecting a long communication line will typically be much larger than the noise
affecting local gates, and special channel codes are needed to achieve communication rates close
to the capacity. The encoding and decoding operations of such channel codes are large quantum
circuits and to execute them reliably in the presence of gate errors they need to be implemented
fault-tolerantly in a circuit code. However, the circuit code will in general not be compatible
with the physical communication line (which might involve entirely different quantum hard-
ware), and some kind of interface between this system and the circuit code will be needed. This
setup is depicted in the figure below. Note that the interface is a quantum circuit itself and
therefore affected by gate errors. Moreover, its execution has to leave the circuit code eventually
and it will typically fail with a probability similar to that of individual gate errors.
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We study the aforementioned setting of communication via quantum channels when the gates
in encoding and decoding circuits are affected by a small level of noise. We focus on achievable
communication rates with asymptotically vanishing overall coding error and the basic capacities
in quantum Shannon theory, i.e. the classical capacity and the quantum capacity. For simplicity
we focus on the noise model Fπ(p) of Pauli errors affecting each location in a quantum circuit
independently and which are identically distributed with a fixed probability p ∈ [0, 1]. Our
results can easily be adapted to local Markovian noise models. Our main contributions are:
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• We study interfaces for the concatenated 7-qubit Steane code, and determine the structure
of the effective communication channel (see figure above) under the noise model Fπ(p).

• We define the fault-tolerant classical capacity CFπ(p)(T ) of a classical-quantum or quantum
channel T , and the fault-tolerant quantum capacity QFπ(p)(T ) of a quantum channel T .
These capacities take gate errors under the noise model Fπ(p) affecting the encoder and
decoder into account.

• We find a probability p̃ > 0 and an explicit function f : [0, 1] × N → R
+ satisfying

f(p, d)→ 0 as p→ 0 such that

CFπ(p)(T ) ≥ C(T )− f(p, d)

for any 0 ≤ p ≤ p̃ and any classical-quantum channel T : A →Md.

• We find a probability p̃ > 0 and explicit functions g, h : [0, 1]×N×N×N→ R+ satisfying
g(p, dA, dB, k), h(p, dA, dB, k)→ 0 as p→ 0 such that

CFπ(p)(T ) ≥ 1
k
χ

(
T⊗k

)
−g(p, dA, dB, k) and QFπ(p)(T ) ≥ 1

k
Icoh

(
T⊗k

)
−h(p, dA, dB, k).

for any 0 ≤ p ≤ p̃ and any quantum channel T :MdA →MdB .

• Our results immediately imply threshold theorems for fault-tolerant capacities:

– For every ε > 0 and dimension d ≥ 2 there exists a threshold p(ε, d) > 0 such that

CFπ(p)(T ) ≥ C(T )− ε

for all 0 ≤ p ≤ p(ε, d) and for all classical-quantum channels T : A →Md.
– For every ε > 0 and every quantum channel T : MdA → MdB there exists a
p(ε, T ) > 0 such that

CFπ(p)(T ) ≥ C(T )− ε and QFπ(p)(T ) ≥ Q(T )− ε

for all 0 ≤ p ≤ p(ε, T ).

Our results show that communication at strictly positive rates and with vanishing communi-
cation error is possible in non-trivial cases and in realistic scenarios where all local gates are
affected by noise. To obtain our results we have to overcome several obstacles:

First, it is not immediately obvious how to define quantum communication rates in a fault-
tolerant way. Fault-tolerance usually considers quantum computations with classical inputs and
outputs, which are stable against errors thanks to classical error correcting codes. However,
quantum communication also considers quantum messages, which are inherently prone to er-
rors. We solve this issue by defining the fault-tolerant quantum capacity in an operational way
embedding the coding scheme into an arbitrary quantum computation with classical input and
output. Intuitively, the fault-tolerant quantum capacity then quantifies the optimal rates with
which identity channels occuring in any quantum circuit can be approximated by the coding
scheme involving a certain number of channel uses. This definition reduces to the ideal quantum
capacity in the case of vanishing gate error rates. For more details see our attached article [3].

Second, we have to find fault-tolerant implementations of encoding and decoding circuits
that yield efficient codes for the effective communication channel arising from an interface and
the communication channel T : MdA → MdB . For simplicity, we will focus on the special
case dA = dB = 2 in the following outline of the proof strategy, and we refer to the attached
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article [3] for the general case. For proving our main results we use concatenated codes with
the same concatenation level l ∈ N to protect quantum circuits at the sender and receiver,
and we consider particular interface circuits which can be found in the attached article [3]. We
show that the effective channel for the concatenated 7-qubit Steane code at noise parameter p,
denoted by Tp,l :M2 ⊗M⊗(7l−1)

2 →M2, is of the form

Tp,l = (1− cp)T ⊗ TrS +cpNl,

for some quantum channel Nl : M2 ⊗M⊗(7l−1)
2 → M2 and where c denotes a constant. This

effective channel takes as an input the ideal data before the interface circuit acts (i.e. the
logical state encoded in the 7-qubit Steane code), and a syndrome state corresponding to some
correctable fault pattern affecting the data (see [2] or our article [3] for more details). Here, the
probability cp corresponds to the event where the interface circuit is not executed correctly. From
the form of the effective channel it is clear that the coding scheme should consider the quantum
channels T⊗mp,l (· ⊗ σS) for syndrome states σS instead of the ideal quantum channel T . Since the
syndrome state σS depends on the coding scheme itself, and since it might be entangled across
several code blocks of the concatenated code, this is not an i.i.d. coding scenario and techniques
from beyond-i.i.d. quantum Shannon theory need to be applied.

Our strategy to find a fault-tolerant coding scheme works as follows: For any fixed δ > 0 we
can apply the Chernoff bound to show that

T⊗mp,l (· ⊗ σS) ≤ 2m(q+δ)T̃⊗mq + exp(−mδ2q

3 )E (1)

for a quantum channel E :M⊗m2 →M⊗m2 and where

T̃q = (1− q)T + q
12
2 Tr .

Here, we write S1 ≤ S2 for linear maps S1 and S2 when S2 − S1 is completely positive. Finally,
we apply the following strategy:

1. Find a coding scheme for classical or quantum communication respectively for the quan-
tum channel T̃q at a fixed blocklength k ∈ N.

2. Show that the coding scheme from 1. is a fault-tolerant coding scheme for the original
quantum channel T , i.e. it transmits information over the channels T⊗mp,l (· ⊗ σS) when
implemented in the quantum error correcting code.

3. Apply a continuity inequality (see [6]) for the quantity Icoh, to relate the resulting capacity
bound involving T̃q to a similar bound involving the original channel T .

Note that step 1. in the previous strategy can be done using standard techniques from quantum
Shannon theory (i.e. random code constructions). For step 2. we use (1) from above together
with the fact that communication errors are monotone in the CP-ordering ≤. This leads to an
error bound εFT (m) ≤ 2m(q+δ)εm of the fault-tolerant communication error εFT (m) in terms
of the ideal communication error εm of the coding scheme constructed in step 1. involving m
copies of the quantum channel T̃q. To finish step 2. we need to determine communication rates
for which 2m(q+δ)εm → 0 as m → ∞, which can be achieved by carefully chasing constants in
the known capacity theorems from [4, 5, 7–9]. The final step 3. is straightforward.
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