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Capacities quantify the optimal rates of information
transmission over noisy channels!



Capacities of quantum channels

Goal: Transmit classical or quantum information over quantum channel T .

E D

T ✕m

Classical 
or 

Quantum 
information

≈
id✕ n

Achievable rate: R = lim infm→∞
nm
m

such that εm → 0 as m→∞.

Capacities C(T ) and Q(T ) are the suprema of achievable rates!
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Capacity formulas

For a quantum channel T :MdA →MdB we have:

• C(T ) = limk→∞
1
k
χ(T⊗k). (Holevo, Schumacher, Westmoreland)

• Q(T ) = limk→∞
1
k
Icoh

(
T⊗k

)
. (Lloyd, Shor, Devetak)

Provocative question: Are these formulas relevant in reality?



Problem

E D

T ✕m

Classical 
or 

Quantum 
information

Assumption in quantum Shannon theory:

E ,D can be executed without faults.

This is not realistic:

Quantum computers are inherently noisy!



What are the optimal rates for sending information reliably
over quantum channels using noisy quantum hardware?



Very short introduction to fault-tolerance.



Quantum circuits

Universal set of elementary operations:

• Single-qubit gates: X ,Y ,Z and T .

• Two-qubit gate: CNOT .

• Identity gate (qubit at rest).

• Preparations and measurements in computational basis.

• Partial traces (throw qubits away).

Quantum circuits: Quantum channels build from elementary operations.

 They are dense in the set of all quantum channels!



Probabilistic local noise models

In this talk: Focus on i. i. d. Pauli noise!

Elementary operations (locations) fail independently with probability p.

 At the failing locations, we insert the noise channel

M(ρ) =
1

3
(XρX + Y ρY + ZρZ)

into the circuit diagram:

• Single qubit gate or preparation: Insert M directly after operation.
• CNOT gate: Insert M directly after gate on both outputs.
• Measurements: Insert M directly before the measurement.

Terminology:

• F(p) denotes this fault model.

• For quantum circuit Γ write [Γ]F(p) for noisy circuit.
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The threshold theorem

Main idea: Implement quantum circuits in quantum error correcting code.

 replace each elementary operation by a corresponding gadget.

Write: ΓC for the implementation of a quantum circuit Γ in C.

Theorem (Threshold Theorem by Aliferis, Gottesman, Preskill1)

There exists a family (Cl)l∈N of QECCs with threshold p0 ∈ (0, 1] such that:

For every quantum circuit Γ with classical input and output we have

‖ [ΓCl ]F(p) − Γ‖1 ≤ C

(
p

p0

)2l

|Loc (Γ) |,

for every p < p0. Here, Loc (Γ) denotes the set of locations in Γ.

1Aliferis, Gottesman, Preskill, “Quantum Accuracy Threshold for Concatenated Distance-3
Codes” Quantum Inf. and Comp. (2006)



For fault-tolerant communication we implement coding
schemes in quantum error correcting codes.



Here, we focus on the classical capacity.



Fault-tolerant classical communication

Problem: How do we get the logical states into and out of the channel?

 Need interface quantum circuits!

 This is noisy as well!



Fault-tolerant classical communication

E

T m

Classical  
information

⊗

D

Problem: How do we get the logical states into and out of the channel?

 Need interface quantum circuits!

 This is noisy as well!



Fault-tolerant classical communication

E

T m

Classical  
information

⊗

D

Problem: How do we get the logical states into and out of the channel?

 Need interface quantum circuits!

 This is noisy as well!



Fault-tolerant classical communication

E

T m

Classical  
information

⊗

Γ DΓ

Problem: How do we get the logical states into and out of the channel?

 Need interface quantum circuits!

 This is noisy as well!



Fault-tolerant classical communication

E

T m

Classical  
information

⊗

ΓC
DΓC

Error correcting code Error correcting code

Problem: How do we get the logical states into and out of the channel?

 Need interface quantum circuits!

 This is noisy as well!



Fault-tolerant classical communication
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Problem: How do we get the logical states into and out of the channel?

 Need interface quantum circuits!  This is noisy as well!



Let’s formalize this!



The fault-tolerant classical capacity
For simplicity: Consider qubit channel T :M2 →M2.

For classical channel S on {1, . . . ,N} define

εcl (S) =
1

N

N∑
i=1

Prob (S(i) 6= i) ,

the average classical communication error.

Definition (Fault-tolerant coding schemes for classical communication)

An (n,m, ε) fault-tolerant coding scheme for classical communication over T
under the noise model F(p) is a pair of quantum circuits ΓE and ΓD with:

• ΓE : C2n →M⊗m
2 has classical input.

• ΓD :M⊗m
2 → C2n has classical output.

• We have

inf
C1,C2

εcl

([
ΓD
C1
◦ EncC1 ◦T

⊗m ◦ DecC2 ◦Γ
E
C2

]
F(p)

)
≤ ε,

with infimum over QECCs C1 and C2, and EncC1 and DecC2 .

 FT capacity: CF(p)(T ) supremum of fault-tolerantly achievable rates.



Main result



Threshold theorem for capacity

FT capacity: CF(p)(T ) supremum of fault-tolerantly achievable rates.

Theorem (Christandl, AMH 2020)

For every quantum channel T :MdA →MdB and every δ > 0, there exists a
threshold p(δ,T ) > 0 such that

CF(p)(T ) ≥ C(T )− δ.

for all 0 ≤ p ≤ p(δ,T ). In particular, we have

lim
p↘0

CF(p)(T ) = C(T ),

for all quantum channels T :Md1 →Md2 .



Sketch of the proof and some difficulties.

For simplicity, we consider qubit channel T : M2 → M2.



Step 1: Choose a circuit code and interface circuit.



Circuit code and interface

E
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Effective channel

Obvious choice: Use codes (Cl)l∈N from threshold theorem.

 Concatenated 7-qubit Steane code: Encode 1 qubit into 7l qubits.
 We can use a product interface.  What is the effective channel?



Step 2: Identify effective channel.



Short intermezzo

How to analyze fault-tolerant circuits under noise?

Following Aliferis, Gottesman and Preskill2

2Following Aliferis, Gottesman, Preskill, “Quantum Accuracy Threshold for Concatenated
Distance-3 Codes” Quantum Inf. and Comp. (2006)



QECCs (Cl)l∈N from threshold theorem

We have
Cl = span

(
|0〉, |1〉

)
⊂ (C2)⊗7l .

There exists direct-sum decomposition

(C2)⊗7l =
⊕

s∈{0,1}7l−1

Es(Cl)

for product-Pauli operator Es .

Es is the Pauli error associated with syndrome s.

To correct errors, we measure syndrome and apply corresponding Es!



Separating data and noise

We have

(C2)⊗7l =
⊕

s∈{0,1}7l−1

Es(Cl) = span

 ⋃
s∈{0,1}7l−1

{Es |0〉,Es |1〉}

 .

Define unitary map D : (C2)⊗7l → C2 ⊗ (C2)⊗7l−1 by

D
(
Es |i〉

)
= |i〉 ⊗ |s〉.

Ideal decoder: Dec∗ :M⊗7l

2 →M2 ⊗M⊗7l−1
2 given by

Dec∗ = AdD .

Ideal encoder: Enc∗ :M2 ⊗M⊗7l−1
2 →M⊗7l

2 given by

Enc∗ = AdD† = (Dec∗)
−1



How to use these ideal operations?



Transforming noise

Most basic case:

Dec∗
(
Es1 |ψ〉〈ψ|Es2

)
= |ψ〉〈ψ| ⊗ |s1〉〈s2|

Advanced case:

For noise channel R(X ) =
∑

k AdAk with each Ak ∈ span (Es) we have

Dec∗
(
R
(
|ψ〉〈ψ|

))
= |ψ〉〈ψ| ⊗ σS

for syndrome state σS depending on R.

Correctable errors transform to products under Dec∗!



Step 2: Identify effective channel.



Identify effective channel

Effective channel: Tp,l :M2 ⊗M⊗(7l−1)
2 →M2
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Effective channel

Have to find coding scheme (Em,Dm) such that

εcl
(
Dm ◦ T⊗m

p,l (· ⊗ σm
S ) ◦ Em

)
→ 0 as m→∞.

 Fully-quantum arbitrarily varying channel3!

Luckily, there is more structure:

Lemma (Christandl, AMH 2020)

There exists interface circuits Encl and Decl for the QECC Cl such that the

effective channel Tp,l :M2 ⊗M⊗(7l−1)
2 →M2 is of the form

Tp,l = (1− 2cp)T ⊗ TrS + 2cpNl ,

for some quantum channel Nl :M2 ⊗M⊗(7l−1)
2 →M2 and some constant c.

See also: “Long-distance quantum communication over noisy networks without
long-time quantum memory”, Mazurek et al. Phys. Rev. A 90, 062311 (2014)

3“Fully Quantum Arbitrarily Varying Channels: Random Coding Capacity and Capacity
Dichotomy”, Boche, Deppe, Nötzel, Winter, Proc. ISIT (2018)



Step 3: Construct a coding scheme.



Construction of coding scheme

Exploit the special structure of

Tp,l = (1− 2cp)T ⊗ TrS + 2cpNl .

Lemma (Simple postselection)

For any syndrome state σ, any m ∈ N and any δ > 0 we have

T⊗m
p,l (· ⊗ σ) ≤ 2m(2cp+δ)T̃⊗m

p + exp(−m2cpδ2

3
)K

for a quantum channel K :M⊗m
2 →M⊗m

2 and where

T̃p = (1− 2cp)T + 2cp
12

2
Tr.

Then, we can show that:

εcl

([
ΓDm
Clm
◦ Enclm ◦T

⊗m ◦ Declm ◦Γ
Em
Clm

]
F(p)

)
≤ 2m(2cp+δ)εcl

(
Dm ◦ T̃⊗m

p ◦ Em

)
+εm.

where εm → 0 as m→∞.



Construction of coding scheme

Have to find coding scheme (Em,Dm) such that

2m(2cp+δ)εcl
(
Dm ◦ T̃⊗m

p ◦ Em

)
→ 0.

as m→∞, for quantum channel

T̃p = (1− 2cp)T + 2cp
12

2
Tr.

1. Random coding: This is possible for rates

R <
1

k
χ
(
T̃⊗k

p

)
− g ′(p),

where g ′(p)→ 0 as p → 0.

2. Continuity bound: Since T̃p ≈ T any rate

R <
1

k
χ
(
T⊗k

)
− g(p),

where g(p)→ 0 as p → 0, is fault-tolerantly achievable.



Quantitative bound

Theorem (Christandl, AMH 2020)

There exists a p0 ∈ (0, 1] such that for every p ≤ p0 we have

CF(p)(T ) ≥ 1

k
χ
(
T⊗k

)
− 2
√

2kcp − 12cp − (1 + 4cp) h2

(
4cp

1 + 4cp

)
,

for any k ∈ N and where h2 denotes the binary entropy.

Corollary (Christandl, AMH 2020)

For every quantum channel T :MdA →MdB and every δ > 0, there exists a
threshold p(δ,T ) > 0 such that

CF(p)(T ) ≥ C(T )− δ.

for all 0 ≤ p ≤ p(δ,T ). In particular, we have

lim
p↘0

CF(p)(T ) = C(T ),

for all quantum channels T :Md1 →Md2 .



There is more!

We have similar results for:

• Fault-tolerant classical capacity of classical-quantum channels.

• Fault-tolerant quantum capacity.

Check out our article: arXiv:2009.07161

Thank you for your attention.


