

Fault-tolerant Coding for Quantum Communication

Alexander Müller-Hermes

Université Claude Bernard Lyon 1

joint work with

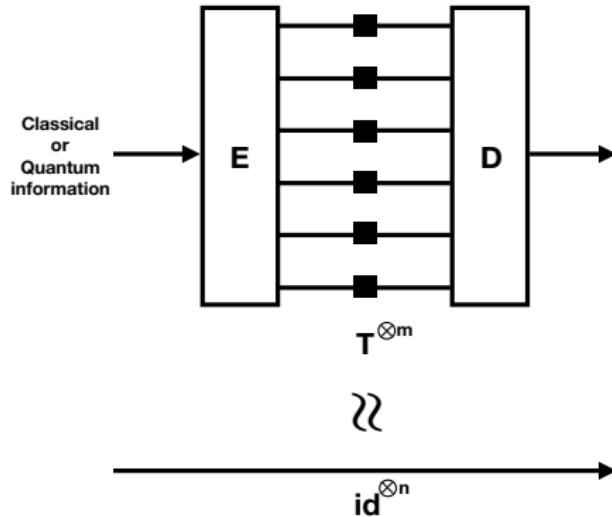
Matthias Christandl

02.02.2021

Capacities quantify the optimal rates of information transmission over noisy channels!

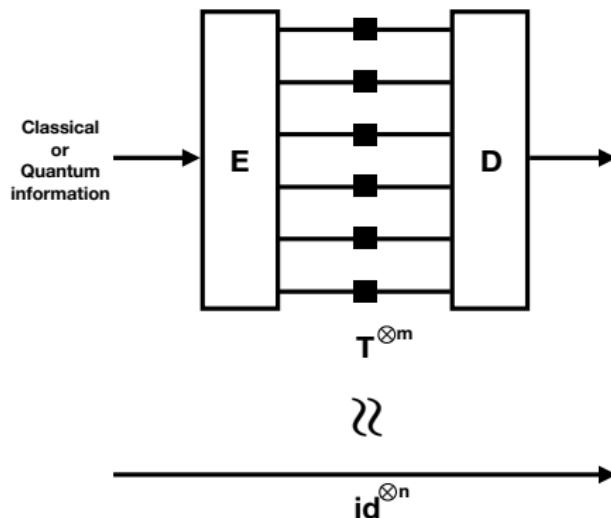
Capacities of quantum channels

Goal: Transmit classical or quantum information over quantum channel T .



Capacities of quantum channels

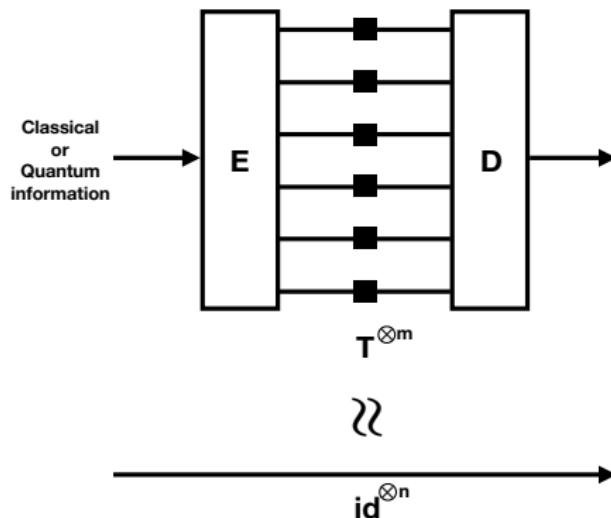
Goal: Transmit classical or quantum information over quantum channel T .



Coding error: $\epsilon = \|\text{id}_2^{\otimes n} - D \circ T^{\otimes m} \circ E\| \rightsquigarrow (n, m, \epsilon)$ -coding scheme.

Capacities of quantum channels

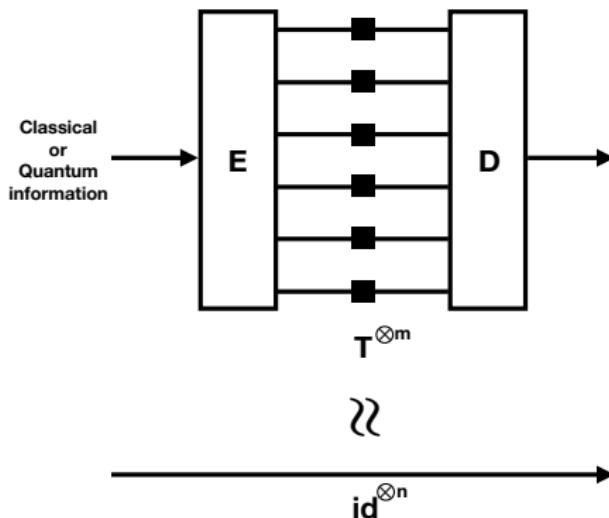
Goal: Transmit classical or quantum information over quantum channel T .



Optimal coding error: $\epsilon_m = \inf_{E_m, D_m} \|\text{id}_2^{\otimes n_m} - D_m \circ T^{\otimes m} \circ E_m\|.$

Capacities of quantum channels

Goal: Transmit classical or quantum information over quantum channel T .



Optimal coding error: $\epsilon_m = \inf_{E_m, D_m} \|\text{id}_2^{\otimes n_m} - D_m \circ T^{\otimes m} \circ E_m\|$.

Achievable rate: $R = \liminf_{m \rightarrow \infty} \frac{n_m}{m}$ such that $\epsilon_m \rightarrow 0$ as $m \rightarrow \infty$.

Capacities $C(T)$ and $Q(T)$ are the suprema of achievable rates!

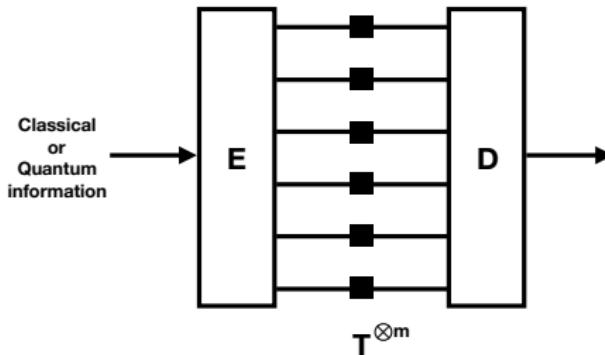
Capacity formulas

For a quantum channel $T : \mathcal{M}_{d_A} \rightarrow \mathcal{M}_{d_B}$ we have:

- $C(T) = \lim_{k \rightarrow \infty} \frac{1}{k} \chi(T^{\otimes k})$. (Holevo, Schumacher, Westmoreland)
- $Q(T) = \lim_{k \rightarrow \infty} \frac{1}{k} I_{\text{coh}}(T^{\otimes k})$. (Lloyd, Shor, Devetak)

Provocative question: Are these formulas relevant in reality?

Problem



Assumption in quantum Shannon theory:

E, D can be executed without faults.

This is not realistic:

Quantum computers are inherently noisy!

What are the optimal rates for sending information reliably over quantum channels using noisy quantum hardware?

Very short introduction to fault-tolerance.

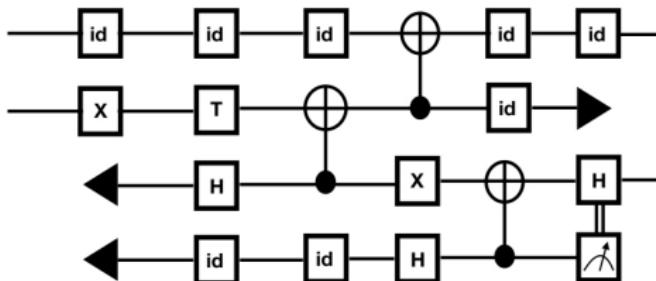
Quantum circuits

Universal set of elementary operations:

- Single-qubit gates: X , Y , Z and T .
- Two-qubit gate: $CNOT$.
- Identity gate (qubit at rest).
- Preparations and measurements in computational basis.
- Partial traces (throw qubits away).

Quantum circuits: Quantum channels build from elementary operations.

~~ They are dense in the set of all quantum channels!



Probabilistic local noise models

In this talk: Focus on i. i. d. Pauli noise!

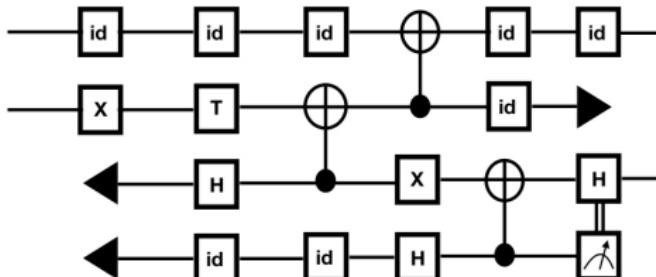
Elementary operations (locations) fail independently with probability p .

~ At the failing locations, we insert the noise channel

$$M(\rho) = \frac{1}{3} (X\rho X + Y\rho Y + Z\rho Z)$$

into the circuit diagram:

- **Single qubit gate or preparation:** Insert M directly after operation.
- **CNOT gate:** Insert M directly after gate on both outputs.
- **Measurements:** Insert M directly before the measurement.



Probabilistic local noise models

In this talk: Focus on i. i. d. Pauli noise!

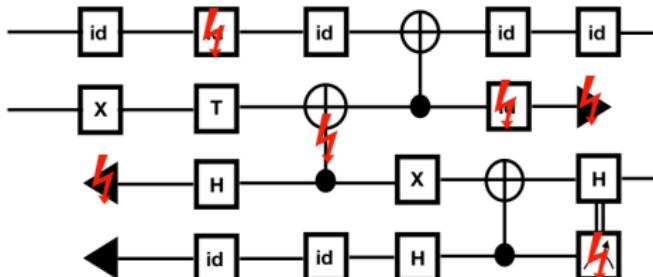
Elementary operations (locations) fail independently with probability p .

~ At the failing locations, we insert the noise channel

$$M(\rho) = \frac{1}{3} (X\rho X + Y\rho Y + Z\rho Z)$$

into the circuit diagram:

- **Single qubit gate or preparation:** Insert M directly after operation.
- **CNOT gate:** Insert M directly after gate on both outputs.
- **Measurements:** Insert M directly before the measurement.



Probabilistic local noise models

In this talk: Focus on i. i. d. Pauli noise!

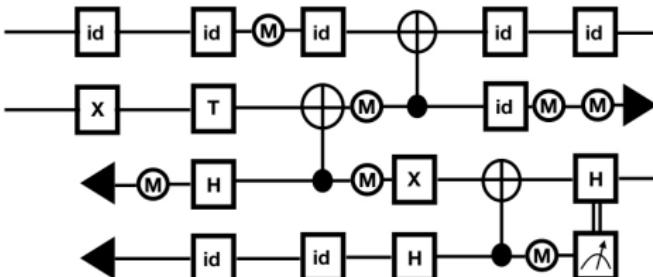
Elementary operations (locations) fail independently with probability p .

~ At the failing locations, we insert the noise channel

$$M(\rho) = \frac{1}{3} (X\rho X + Y\rho Y + Z\rho Z)$$

into the circuit diagram:

- **Single qubit gate or preparation:** Insert M directly after operation.
- **CNOT gate:** Insert M directly after gate on both outputs.
- **Measurements:** Insert M directly before the measurement.



Probabilistic local noise models

In this talk: Focus on i. i. d. Pauli noise!

Elementary operations (locations) fail independently with probability p .

~~ At the failing locations, we insert the noise channel

$$M(\rho) = \frac{1}{3} (X\rho X + Y\rho Y + Z\rho Z)$$

into the circuit diagram:

- **Single qubit gate or preparation:** Insert M directly after operation.
- **CNOT gate:** Insert M directly after gate on both outputs.
- **Measurements:** Insert M directly before the measurement.

Terminology:

- $\mathcal{F}(p)$ denotes this fault model.
- For quantum circuit Γ write $[\Gamma]_{\mathcal{F}(p)}$ for noisy circuit.

The threshold theorem

Main idea: Implement quantum circuits in quantum error correcting code.
~~> replace each elementary operation by a corresponding gadget.

Write: Γ_C for the implementation of a quantum circuit Γ in \mathcal{C} .

Theorem (Threshold Theorem by Aliferis, Gottesman, Preskill¹)

There exists a family $(\mathcal{C}_I)_{I \in \mathbb{N}}$ of QECCs with threshold $p_0 \in (0, 1]$ such that:

For every quantum circuit Γ with classical input and output we have

$$\| [\Gamma_{C_I}]_{\mathcal{F}(p)} - \Gamma \|_1 \leq C \left(\frac{p}{p_0} \right)^{2^I} |Loc(\Gamma)|,$$

for every $p < p_0$. Here, $Loc(\Gamma)$ denotes the set of locations in Γ .

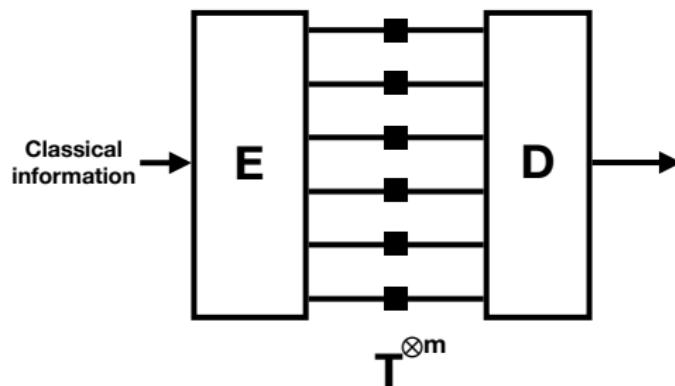
¹Aliferis, Gottesman, Preskill, "Quantum Accuracy Threshold for Concatenated Distance-3 Codes" Quantum Inf. and Comp. (2006)

For fault-tolerant communication we implement coding schemes in quantum error correcting codes.

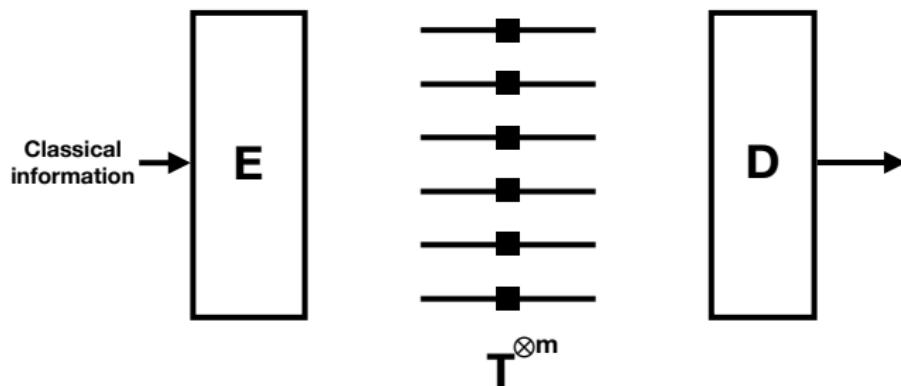
Here, we focus on the classical capacity.

Fault-tolerant classical communication

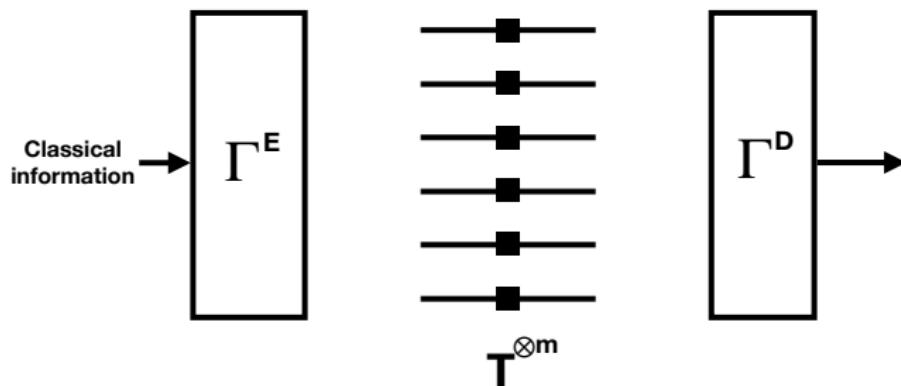
Fault-tolerant classical communication



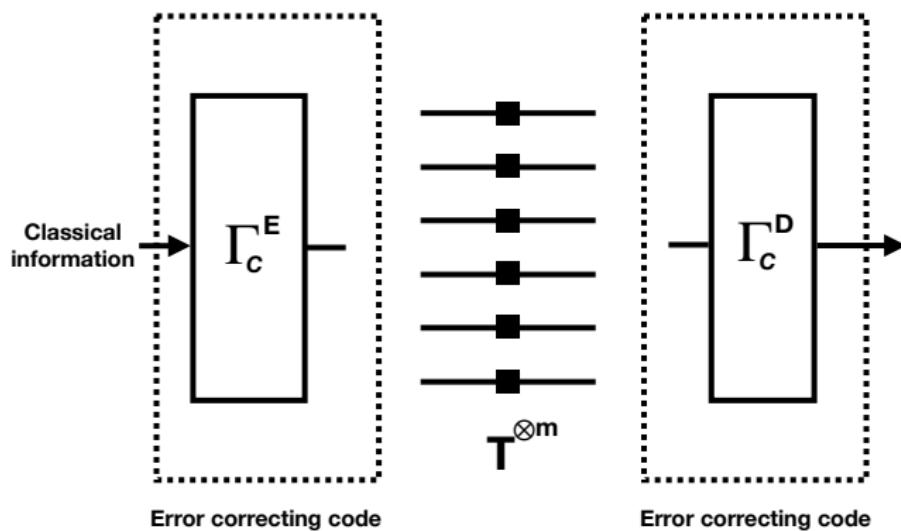
Fault-tolerant classical communication



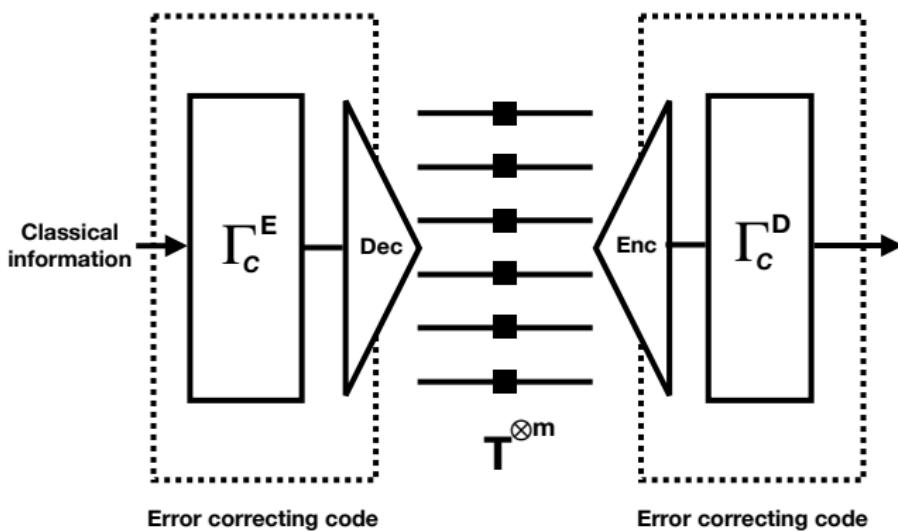
Fault-tolerant classical communication



Fault-tolerant classical communication



Fault-tolerant classical communication



Problem: How do we get the logical states into and out of the channel?
~~ Need interface quantum circuits! ~~ **This is noisy as well!**

Let's formalize this!

The fault-tolerant classical capacity

For simplicity: Consider qubit channel $T : \mathcal{M}_2 \rightarrow \mathcal{M}_2$.

For classical channel S on $\{1, \dots, N\}$ define

$$\epsilon_{cl}(S) = \frac{1}{N} \sum_{i=1}^N \text{Prob}(S(i) \neq i),$$

the average classical communication error.

Definition (Fault-tolerant coding schemes for classical communication)

An (n, m, ϵ) fault-tolerant coding scheme for classical communication over T under the noise model $\mathcal{F}(p)$ is a pair of quantum circuits Γ^E and Γ^D with:

- $\Gamma^E : \mathbb{C}^{2^n} \rightarrow \mathcal{M}_2^{\otimes m}$ has classical input.
- $\Gamma^D : \mathcal{M}_2^{\otimes m} \rightarrow \mathbb{C}^{2^n}$ has classical output.
- We have

$$\inf_{\mathcal{C}_1, \mathcal{C}_2} \epsilon_{cl} \left(\left[\Gamma_{\mathcal{C}_1}^D \circ \text{Enc}_{\mathcal{C}_1} \circ T^{\otimes m} \circ \text{Dec}_{\mathcal{C}_2} \circ \Gamma_{\mathcal{C}_2}^E \right]_{\mathcal{F}(p)} \right) \leq \epsilon,$$

with infimum over QECCs \mathcal{C}_1 and \mathcal{C}_2 , and $\text{Enc}_{\mathcal{C}_1}$ and $\text{Dec}_{\mathcal{C}_2}$.

~~~ **FT capacity:**  $C_{\mathcal{F}(p)}(T)$  supremum of fault-tolerantly achievable rates.

## **Main result**

## Threshold theorem for capacity

**FT capacity:**  $C_{\mathcal{F}(p)}(T)$  supremum of fault-tolerantly achievable rates.

### Theorem (Christandl, AMH 2020)

For every quantum channel  $T : \mathcal{M}_{d_A} \rightarrow \mathcal{M}_{d_B}$  and every  $\delta > 0$ , there exists a threshold  $p(\delta, T) > 0$  such that

$$C_{\mathcal{F}(p)}(T) \geq C(T) - \delta.$$

for all  $0 \leq p \leq p(\delta, T)$ . In particular, we have

$$\lim_{p \searrow 0} C_{\mathcal{F}(p)}(T) = C(T),$$

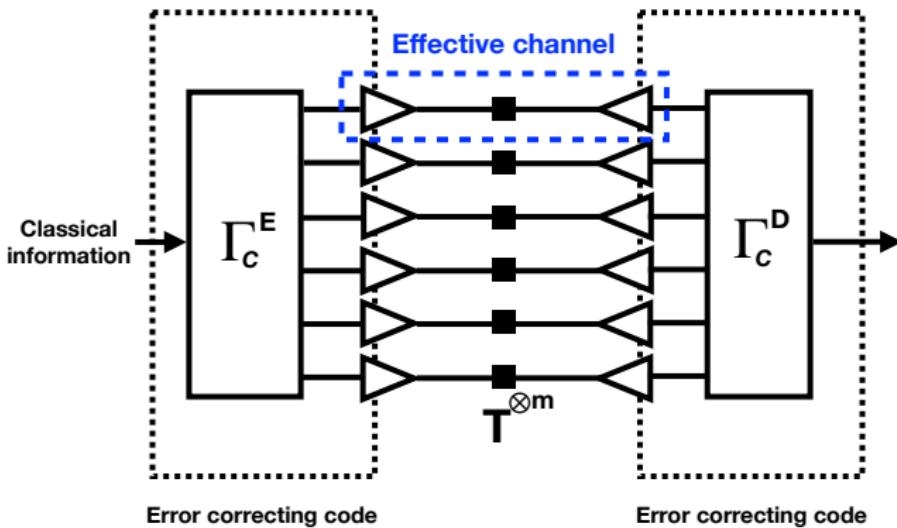
for all quantum channels  $T : \mathcal{M}_{d_1} \rightarrow \mathcal{M}_{d_2}$ .

**Sketch of the proof and some difficulties.**

**For simplicity, we consider qubit channel  $T : \mathcal{M}_2 \rightarrow \mathcal{M}_2$ .**

**Step 1: Choose a circuit code and interface circuit.**

## Circuit code and interface



**Obvious choice:** Use codes  $(\mathcal{C}_l)_{l \in \mathbb{N}}$  from threshold theorem.

~~ **Concatenated 7-qubit Steane code:** Encode 1 qubit into  $7^l$  qubits.

~~ **We can use a product interface.** ~~ What is the effective channel?

**Step 2: Identify effective channel.**

## Short intermezzo

**How to analyze fault-tolerant circuits under noise?**

**Following Aliferis, Gottesman and Preskill<sup>2</sup>**

---

<sup>2</sup>Following Aliferis, Gottesman, Preskill, "Quantum Accuracy Threshold for Concatenated Distance-3 Codes" Quantum Inf. and Comp. (2006)

## QECCs $(\mathcal{C}_l)_{l \in \mathbb{N}}$ from threshold theorem

We have

$$\mathcal{C}_l = \text{span} (|\bar{0}\rangle, |\bar{1}\rangle) \subset (\mathbb{C}^2)^{\otimes 7^l}.$$

There exists direct-sum decomposition

$$(\mathbb{C}^2)^{\otimes 7^l} = \bigoplus_{s \in \{0,1\}^{7^l-1}} E_s(\mathcal{C}_l)$$

for product-Pauli operator  $E_s$ .

$E_s$  is the Pauli error associated with syndrome  $s$ .

**To correct errors, we measure syndrome and apply corresponding  $E_s$ !**

## Separating data and noise

We have

$$(\mathbb{C}^2)^{\otimes 7^l} = \bigoplus_{s \in \{0,1\}^{7^l-1}} E_s(\mathcal{C}_l) = \text{span} \left( \bigcup_{s \in \{0,1\}^{7^l-1}} \{E_s|\bar{0}\rangle, E_s|\bar{1}\rangle\} \right).$$

Define unitary map  $D : (\mathbb{C}^2)^{\otimes 7^l} \rightarrow \mathbb{C}^2 \otimes (\mathbb{C}^2)^{\otimes 7^l-1}$  by

$$D(E_s|\bar{i}\rangle) = |i\rangle \otimes |s\rangle.$$

**Ideal decoder:**  $\text{Dec}^* : \mathcal{M}_2^{\otimes 7^l} \rightarrow \mathcal{M}_2 \otimes \mathcal{M}_2^{\otimes 7^l-1}$  given by

$$\text{Dec}^* = \text{Ad}_D.$$

**Ideal encoder:**  $\text{Enc}^* : \mathcal{M}_2 \otimes \mathcal{M}_2^{\otimes 7^l-1} \rightarrow \mathcal{M}_2^{\otimes 7^l}$  given by

$$\text{Enc}^* = \text{Ad}_{D^\dagger} = (\text{Dec}^*)^{-1}$$

**How to use these ideal operations?**

## Transforming noise

**Most basic case:**

$$\text{Dec}^* (E_{s_1} |\bar{\psi}\rangle\langle\bar{\psi}| E_{s_2}) = |\psi\rangle\langle\psi| \otimes |s_1\rangle\langle s_2|$$

**Advanced case:**

For noise channel  $R(X) = \sum_k \text{Ad}_{A_k}$  with each  $A_k \in \text{span}(E_s)$  we have

$$\text{Dec}^* (R (|\bar{\psi}\rangle\langle\bar{\psi}|)) = |\psi\rangle\langle\psi| \otimes \sigma_S$$

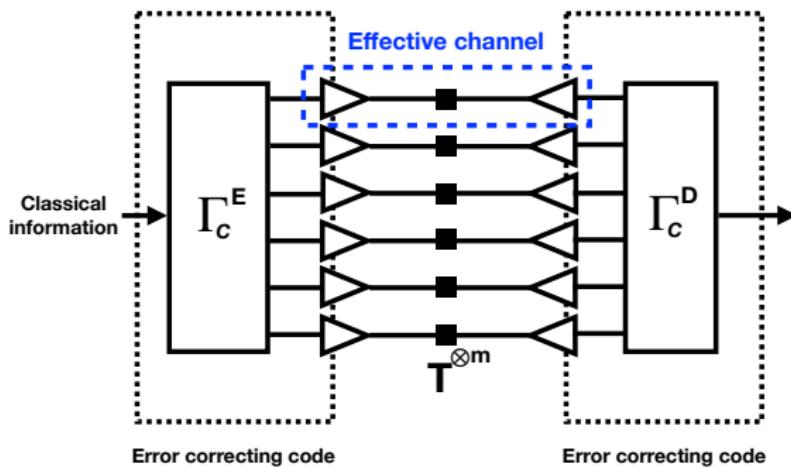
for syndrome state  $\sigma_S$  depending on  $R$ .

**Correctable errors transform to products under  $\text{Dec}^*$ !**

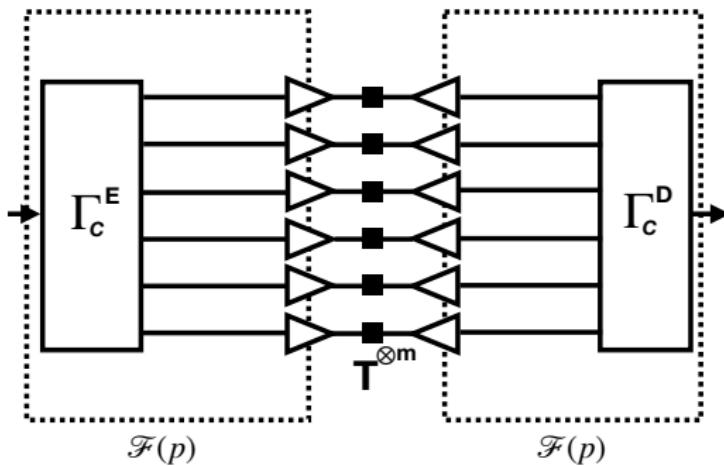
**Step 2: Identify effective channel.**

## Identify effective channel

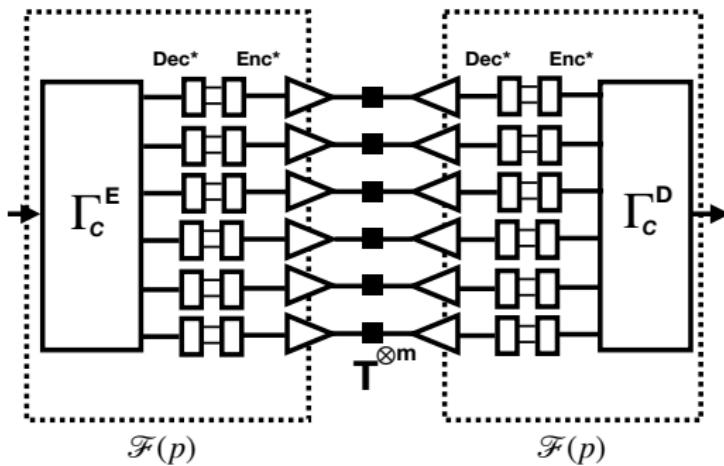
## Identify effective channel



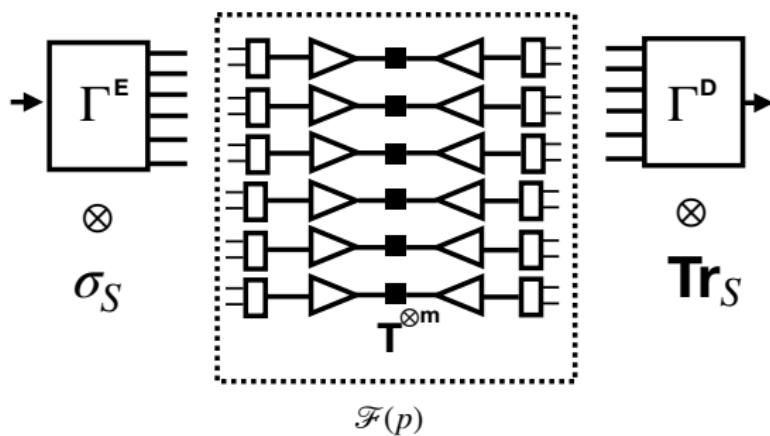
## Identify effective channel



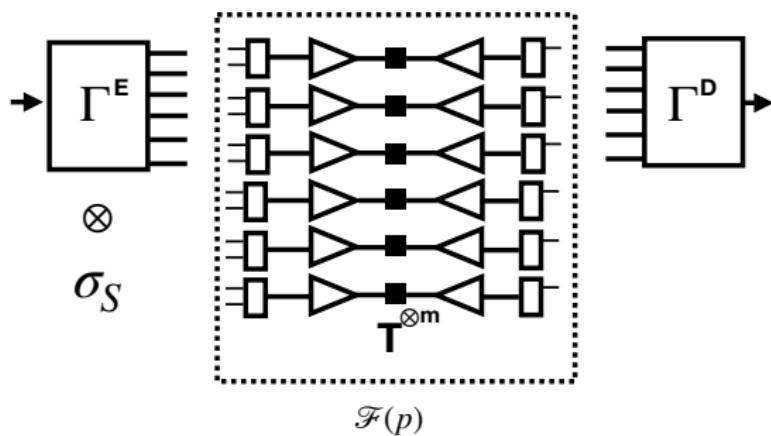
## Identify effective channel



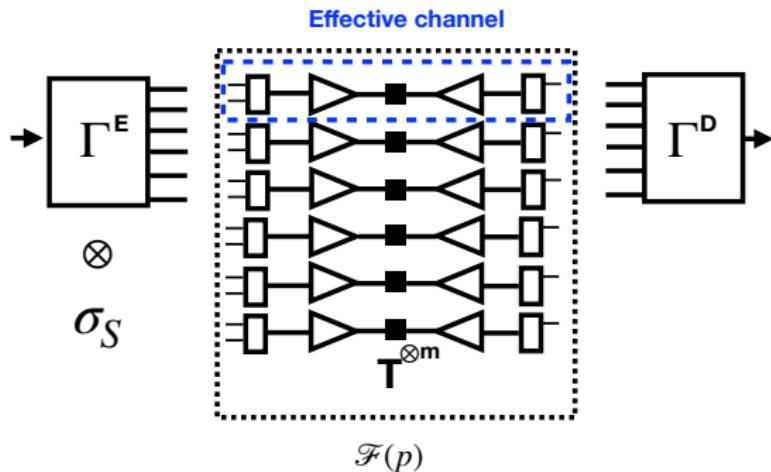
## Identify effective channel



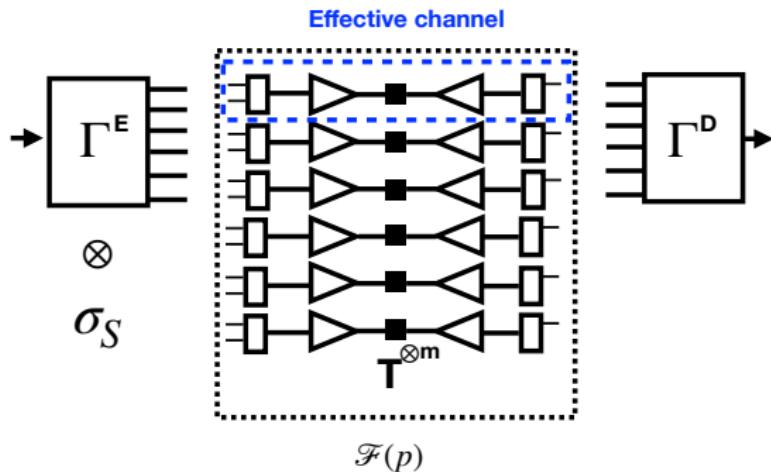
## Identify effective channel



## Identify effective channel



## Identify effective channel



**Effective channel:**  $T_{p,l} : \mathcal{M}_2 \otimes \mathcal{M}_2^{\otimes(7^l-1)} \rightarrow \mathcal{M}_2$

## Effective channel

Have to find coding scheme  $(E_m, D_m)$  such that

$$\epsilon_{cl} (D_m \circ T_{p,I}^{\otimes m} (\cdot \otimes \sigma_S^m) \circ E_m) \rightarrow 0 \quad \text{as } m \rightarrow \infty.$$

~~~ **Fully-quantum arbitrarily varying channel<sup>3</sup>!**

Luckily, there is more structure:

Lemma (Christandl, AMH 2020)

There exists interface circuits Enc_I and Dec_I for the QECC \mathcal{C}_I such that the effective channel $T_{p,I} : \mathcal{M}_2 \otimes \mathcal{M}_2^{\otimes(7^I-1)} \rightarrow \mathcal{M}_2$ is of the form

$$T_{p,I} = (1 - 2cp)T \otimes Trs + 2cpN_I,$$

for some quantum channel $N_I : \mathcal{M}_2 \otimes \mathcal{M}_2^{\otimes(7^I-1)} \rightarrow \mathcal{M}_2$ and some constant c .

See also: “Long-distance quantum communication over noisy networks without long-time quantum memory”, Mazurek et al. Phys. Rev. A 90, 062311 (2014)

³ “Fully Quantum Arbitrarily Varying Channels: Random Coding Capacity and Capacity Dichotomy”, Boche, Deppe, Nötzel, Winter, Proc. ISIT (2018)

Step 3: Construct a coding scheme.

Construction of coding scheme

Exploit the special structure of

$$T_{p,l} = (1 - 2cp)T \otimes \text{Tr}_S + 2cpN_l.$$

Lemma (Simple postselection)

For any syndrome state σ , any $m \in \mathbb{N}$ and any $\delta > 0$ we have

$$T_{p,l}^{\otimes m}(\cdot \otimes \sigma) \leq 2^{m(2cp+\delta)} \tilde{T}_p^{\otimes m} + \exp(-m \frac{2cp\delta^2}{3})K$$

for a quantum channel $K : \mathcal{M}_2^{\otimes m} \rightarrow \mathcal{M}_2^{\otimes m}$ and where

$$\tilde{T}_p = (1 - 2cp)T + 2cp \frac{\mathbb{1}_2}{2} \text{Tr}.$$

Then, we can show that:

$$\epsilon_{cl} \left(\left[\Gamma_{\mathcal{C}_{l_m}}^{D_m} \circ \text{Enc}_{l_m} \circ T^{\otimes m} \circ \text{Dec}_{l_m} \circ \Gamma_{\mathcal{C}_{l_m}}^{E_m} \right]_{\mathcal{F}(p)} \right) \leq 2^{m(2cp+\delta)} \epsilon_{cl} \left(D_m \circ \tilde{T}_p^{\otimes m} \circ E_m \right) + \epsilon_m.$$

where $\epsilon_m \rightarrow 0$ as $m \rightarrow \infty$.

Construction of coding scheme

Have to find coding scheme (E_m, D_m) such that

$$2^{m(2cp+\delta)} \epsilon_{cl} \left(D_m \circ \tilde{T}_p^{\otimes m} \circ E_m \right) \rightarrow 0.$$

as $m \rightarrow \infty$, for quantum channel

$$\tilde{T}_p = (1 - 2cp)T + 2cp \frac{\mathbb{1}_2}{2} \text{Tr}.$$

1. Random coding: This is possible for rates

$$R < \frac{1}{k} \chi \left(\tilde{T}_p^{\otimes k} \right) - g'(p),$$

where $g'(p) \rightarrow 0$ as $p \rightarrow 0$.

2. Continuity bound: Since $\tilde{T}_p \approx T$ any rate

$$R < \frac{1}{k} \chi \left(T^{\otimes k} \right) - g(p),$$

where $g(p) \rightarrow 0$ as $p \rightarrow 0$, is fault-tolerantly achievable.

Quantitative bound

Theorem (Christandl, AMH 2020)

There exists a $p_0 \in (0, 1]$ such that for every $p \leq p_0$ we have

$$C_{\mathcal{F}(p)}(T) \geq \frac{1}{k} \chi(T^{\otimes k}) - 2\sqrt{2kcp} - 12cp - (1 + 4cp) h_2\left(\frac{4cp}{1 + 4cp}\right),$$

for any $k \in \mathbb{N}$ and where h_2 denotes the binary entropy.

Corollary (Christandl, AMH 2020)

For every quantum channel $T : \mathcal{M}_{d_A} \rightarrow \mathcal{M}_{d_B}$ and every $\delta > 0$, there exists a threshold $p(\delta, T) > 0$ such that

$$C_{\mathcal{F}(p)}(T) \geq C(T) - \delta.$$

for all $0 \leq p \leq p(\delta, T)$. In particular, we have

$$\lim_{p \searrow 0} C_{\mathcal{F}(p)}(T) = C(T),$$

for all quantum channels $T : \mathcal{M}_{d_1} \rightarrow \mathcal{M}_{d_2}$.

There is more!

We have similar results for:

- Fault-tolerant classical capacity of classical-quantum channels.
- Fault-tolerant quantum capacity.

Check out our article: arXiv:2009.07161

Thank you for your attention.