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Capacities quantify the optimal rates of information
transmission over noisy channels!



Capacities of quantum channels

Goal: Transmit classical or quantum information over quantum channel T.
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Coding error: ¢ = [idS" — Do T®™ o E|| ~ (n, m, ¢)-coding scheme.
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Capacities of quantum channels
Goal: Transmit classical or quantum information over quantum channel T.
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Optimal coding error: ¢, = infg,, p,, |[idS"™ — Do T®™ o En|.
Achievable rate: R = liminf, 0o %2 such that €, — 0 as m — oo.

Capacities C(T) and Q(T) are the suprema of achievable rates!



Capacity formulas

For a quantum channel T : My, — Mg, we have:

o C(T) = limisoo 1X( T®k).  (Holevo, Schumacher, Westmoreland)

o Q(T) =limksoo thon (T®¥).  (Lloyd, Shor, Devetak)

Provocative question: Are these formulas relevant in reality?
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Assumption in quantum Shannon theory:
E, D can be executed without faults.

This is not realistic:

Quantum computers are inherently noisy!



What are the optimal rates for sending information reliably
over quantum channels using noisy quantum hardware?



Very short introduction to fault-tolerance.



Quantum circuits

Universal set of elementary operations:
Single-qubit gates: X,Y,Z and T.
e Two-qubit gate: CNOT.

Identity gate (qubit at rest).

e Preparations and measurements in computational basis.

Partial traces (throw qubits away).

Quantum circuits: Quantum channels build from elementary operations.

~~ They are dense in the set of all quantum channels!




Probabilistic local noise models
In this talk: Focus on i. i. d. Pauli noise!

Elementary operations (locations) fail independently with probability p.

~~ At the failing locations, we insert the noise channel

1
M(p) = 3 (XpX +YpY + ZpZ)

into the circuit diagram:
o Single qubit gate or preparation: Insert M directly after operation.

e CNOT gate: Insert M directly after gate on both outputs.
e Measurements: Insert M directly before the measurement.
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Probabilistic local noise models

In this talk: Focus on i. i. d. Pauli noise!

Elementary operations (locations) fail independently with probability p.

~~ At the failing locations, we insert the noise channel
1
M(p) = 3 (XpX +YpY +2ZpZ)

into the circuit diagram:

e Single qubit gate or preparation: Insert M directly after operation.

e CNOT gate: Insert M directly after gate on both outputs.

o Measurements: Insert M directly before the measurement.
Terminology:

e F(p) denotes this fault model.
e For quantum circuit " write [[] £, for noisy circuit.



The threshold theorem

Main idea: Implement quantum circuits in quantum error correcting code.

~~ replace each elementary operation by a corresponding gadget.

Write: ¢ for the implementation of a quantum circuit I in C.

Theorem (Threshold Theorem by Aliferis, Gottesman, Preskill®)

There exists a family (C),c of QECCs with threshold po € (0, 1] such that:

For every quantum circuit ' with classical input and output we have

2/
p
Feds =M< € (2) Itoc(],

for every p < po. Here, Loc(I') denotes the set of locations in T.

L Aliferis, Gottesman, Preskill, “Quantum Accuracy Threshold for Concatenated Distance-3
Codes” Quantum Inf. and Comp. (2006)



For fault-tolerant communication we implement coding
schemes in quantum error correcting codes.



Here, we focus on the classical capacity.



Fault-tolerant classical communication
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Fault-tolerant classical communication
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Problem: How do we get the logical states into and out of the channel?

~> Need interface quantum circuits! ~~This is noisy as well!



Let’s formalize this!



The fault-tolerant classical capacity
For simplicity: Consider qubit channel T : My — Mo.

For classical channel S on {1,..., N} define

@ (S) =+ > Prob(S() # 1),

the average classical communication error.

Definition (Fault-tolerant coding schemes for classical communication)

An (n, m, €) fault-tolerant coding scheme for classical communication over T
under the noise model F(p) is a pair of quantum circuits TE and T'° with:

o TE.C*" — ME™ has classical input.
o M2 MP™ — C?" has classical output.
e We have

inf eq ( [F8, 0 Ence, 0T®" o Dece, of g | <
CTCZ €cl < ¢, © nce, © o Deceg, © @ o)) = €,
with infimum over QECCs C1 and C», and Ence, and Dece,.

~» FT capacity: Cx(,)(T) supremum of fault-tolerantly achievable rates.



Main result



Threshold theorem for capacity

FT capacity: Cr(,)(T) supremum of fault-tolerantly achievable rates.

Theorem (Christandl, AMH 2020)

For every quantum channel T : My, — Mg, and every 6 > 0, there exists a
threshold p(d, T) > 0 such that

Crp(T) = C(T) -6
for all 0 < p < p(8, T). In particular, we have

,1'\""0 Crp(T) = C(T),

for all quantum channels T : Mg — Mag,.



Sketch of the proof and some difficulties.

For simplicity, we consider qubit channel T : My — M.



Step 1: Choose a circuit code and interface circuit.



Circuit code and interface
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Obvious choice: Use codes (C/),c from threshold theorem.

~+ Concatenated 7-qubit Steane code: Encode 1 qubit into 7' qubits.
~~ We can use a product interface. ~~ What is the effective channel?



Step 2: Identify effective channel.



Short intermezzo

How to analyze fault-tolerant circuits under noise?

Following Aliferis, Gottesman and Preskill?

2Following Aliferis, Gottesman, Preskill, “Quantum Accuracy Threshold for Concatenated
Distance-3 Codes” Quantum Inf. and Comp. (2006)



QECCs (/) from threshold theorem

We have ,
¢ = span ([0), 1)) C (C*)®".

There exists direct-sum decomposition
!
@)= @ E©
se{0,1}7' -1

for product-Pauli operator E;.

E is the Pauli error associated with syndrome s.

To correct errors, we measure syndrome and apply corresponding E!



Separating data and noise

We have
! P~ —
@ = @ EE)=span| |J {E[0),ED}
sefo1)7' se{0,137'-1
Define unitary map D : (®2)®7' S ® (@2)®7’71 by

D (E[i)) =) @s).

Ideal decoder: Dec™ : Mfﬂl - M2 ® M?ﬂ*l given by
Dec” = Adp.
Ideal encoder: Enc* : M> ® M;gﬂl_l — M?ﬂ given by

Enc® = Adpi = (Dec”) ™"



How to use these ideal operations?



Transforming noise

Most basic case:

Dec” (Eq [¥)(¥|Es,) = [¥)¢| ® |s1)s2|

Advanced case:
For noise channel R(X) =", Ada, with each Ay € span (E;) we have

Dec” (R ([9)X¢])) = [¥)¢| @ o5

for syndrome state os depending on R.

Correctable errors transform to products under Dec*!



Step 2: Identify effective channel.
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Identify effective channel

Effective channel
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Effective channel: T, : M, ® M?U b M,



Effective channel

Have to find coding scheme (Em, D) such that
€t (Dmo TS (®0§)0En) =0 asm— oco.

~+ Fully-quantum arbitrarily varying channel®!

Luckily, there is more structure:

Lemma (Christandl, AMH 2020)

There exists interface circuits Enc, a;md Dec; for the QECC C; such that the
effective channel T, ;: Mz ® MSW Y M, is of the form

T =(1—2cp)T ® Trs + 2¢cpNj,

7=

for some quantum channel N : M> ® .M;@( ) = My and some constant c.

See also: “Long-distance quantum communication over noisy networks without
long-time quantum memory”, Mazurek et al. Phys. Rev. A 90, 062311 (2014)

3”FuIIy Quantum Arbitrarily Varying Channels: Random Coding Capacity and Capacity
Dichotomy”, Boche, Deppe, Nétzel, Winter, Proc. ISIT (2018)



Step 3: Construct a coding scheme.



Construction of coding scheme

Exploit the special structure of

Tpi=(1—2cp)T @ Trs + 2cpN,.

Lemma (Simple postselection)
For any syndrome state o, any m € N and any 6 > 0 we have

2cpd?

Tor (- ®0) < 2mCTITEN 4 exp(—m =

K
for a quantum channel K : M$™ — MS™ and where

Tp=(1—-2cp)T + 2cp% Tr.

Then, we can show that:

€cl ([rg{’:’ o Ency, oT®m o Decy, org;’:"] ) < 2m(2Cp+6)ed (Dm o 7~'p®m o Em) +€m.

F(p)

where €, — 0 as m — oo.



Construction of coding scheme

Have to find coding scheme (Ey,, D) such that
2m(2cp+5)€d (Dm ° -'i—;@m ° Em) 0.
as m — oo, for quantum channel

- 1
To=(1—2ep)T + 2cp72Tr.

1. Random coding: This is possible for rates

R < %x (ﬂ?@’k) —£'(p),

where g’(p) — 0 as p — 0.
2. Continuity bound: Since T, ~ T any rate
1 Rk
R <X (T ) —&(p);

where g(p) — 0 as p — 0, is fault-tolerantly achievable.



Quantitative bound

Theorem (Christandl, AMH 2020)

There exists a po € (0, 1] such that for every p < py we have

1 ®k 4cp
e = = = ({1l <=
Crp(T) > kX(T ) 24/2kep — 12¢p — (1 4cp)h2(1 i)

for any k € N and where h, denotes the binary entropy.

Corollary (Christandl, AMH 2020)

For every quantum channel T : Mg, — Mg, and every 6 > 0, there exists a
threshold p(d, T) > 0 such that

Crp(T) = C(T) 6.
for all 0 < p < p(4, T). In particular, we have

lim Co(T) = €(T),

for all quantum channels T : Mg, — Ma,.



There is more!

We have similar results for:

e Fault-tolerant classical capacity of classical-quantum channels.

e Fault-tolerant quantum capacity.

Check out our article: arXiv:2009.07161

Thank you for your attention.



