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In this work we present a classical algorithm that, for any geometrically-local, constant-depth quantum
circuit C, and any bit string x ∈ {0, 1}n, can compute the quantity | 〈0⊗n|C |x〉 |2 to within any inverse-
polynomial additive error in quasi-polynomial time. See Theorem 1 below for the full statement. It is
known that it is #P-hard to compute this same quantity to within 2−n2

additive error [Mov20]. The previous
best known algorithm for this problem used O(2n1/3

poly(1/ε)) time to compute probabilities to within
additive error ε [BGM20]. Notably, the [BGM20] paper included an elegant polynomial time algorithm
for estimating the quantity | 〈0⊗n|C |x〉 |2 when C is a 2D, geometrically-local, constant-depth circuit. That
algorithm makes a novel use of 1D Matrix Product States carefully tailored to the 2D geometry of the
circuit in question. Surprisingly, it is not clear that it is possible to extend this use of MPS to address the
case of 3D circuits in polynomial time. This raises a natural question as to whether the computational
complexity of the 3D problem might be drastically higher than that of the 2D problem. In this work we
address this question by exhibiting a quasi-polynomial time algorithm for the 3D case. We believe that
our algorithm extends naturally to any fixed dimension D by induction on the dimension, but we focus
on the 3D case, as the simplest unresolved case, for concreteness. Furthermore, we show that, under a
natural, polynomial-time-checkable condition on the circuit C, our algorithm runs in polynomial time.
This highlights the possibility that the super-polynomial time cost of our algorithm in the worst-case might
be due to limitations in our analysis. In order to surpass the technical barriers encountered by previously
known techniques we are forced to pursue a novel approach: Constructing a recursive sub-division of the
given 3D circuit using carefully designed block-encodings. See the Results and Techniques section below
for more.

Our algorithm has a Divide-and-Conquer structure, demonstrating how to approximate the desired
quantity via several instantiations of the same problem type, each involving 3D-local circuits on at most
half the number of qubits as the original. This division step is then applied recursively, expressing the orig-
inal quantity as a weighted sum of smaller and smaller 3D-local quantum circuits. A central technical chal-
lenge is to control correlations arising from the entanglement that may exist between the different circuit
“pieces” produced this way. We believe that the division step, which makes a novel use of block-encodings
[GSLW19], together with an Inclusion-Exclusion style argument to reduce error, may be of interest for fu-
ture research on constant-depth quantum circuits.

Background Our motivation for estimating the quantity | 〈0⊗n|C |x〉 |2 lies in the relationship between
this computational problem and a popular paradigm for near-term quantum computing experiments.
Many schemes for obtaining a quantum computational advantage with near-term quantum hardware
are motivated by mathematical results proving the computational hardness of sampling from near-term
quantum circuits. Indeed, an extensive line of research [AA11, BJS11, BMS17, NSC+17, BFNV19, AA11]
has established hardness of sampling results for a wide variety of quantum circuit classes, including the
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constant-depth, geometrically-local quantum circuits that are the focus of this work. It has even been
shown, under several computational assumptions, that there is no classical polynomial time algorithm
which, given a constant-depth, geometrically-local quantum circuit, K, can produce samples whose distri-
bution lies within a constant, in the `1 distance, of the output distribution of K in the computational basis
[BVHS+18]. Note that sampling from the output state of a quantum circuit is not the same task as esti-
mating the weights of the outputs, especially if the latter estimate has inverse polynomial additive error.
However, we believe that understanding computational problems of the latter type will help us determine
whether constant-depth quantum circuits can produce a quantum advantage for a Decision problem. Our
result represents only one step in this direction, as we do not cover the case of constant-depth quantum cir-
cuits which are not geometrically-local, and the computational power of constant-depth quantum circuits
with classical pre-processing and post-processing remains uncharacterized. Our result resolves a natural
question which is prerequisite to answering these others.

A number of classical simulation algorithms for various near-term quantum architectures have already
been proposed [DHKLP20, HZN+20, NPD+20]. These results highlight the subtle nature of identifying a
quantum advantage based on these architectures, even in the case of sampling problems. They also con-
trast with the computational problem studied in Theorem 5 in [BGM20]: The problem of estimating output
probabilities of 2D-local constant depth circuits to inverse polynomial additive error in polynomial time. In
fact, the original algorithm in [BGM20], actually estimates quantities of the form 〈0⊗n|C† (⊗n

i=1Pi
)

C |0⊗n〉,
where each Pi ∈ {X, Y, Z, I} is a single-qubit Pauli observable operator. However, it is straightfor-
ward to convert their algorithm to compute the quantity 〈0⊗n|C† (⊗n

i=1 |xi〉 〈xi|
)

C |0⊗n〉 = | 〈0⊗n|C |x〉 |2,
x ∈ {0, 1}n, instead. This focus of [BGM20] raises a pertinent observation. While it is hard to sample
from constant-depth quantum circuits, it is still unresolved whether it is hard to estimate any property of
such a circuit which could have been computed using a polynomial number of samples from the output
of the quantum circuit itself. In particular: A polynomial number of samples from a 2D-local, constant-
depth quantum circuit only allows one to estimate output probabilites of that circuit to inverse polynomial
additive error. But, it is shown in Theorem 5 of [BGM20] that this same task can be done in classical polyno-
mial time! Is there a well-defined Decision problem which can be solved using only a polynomial number
of samples from such a quantum circuit, together with classical post-processing, and yet cannot also be
efficiently solved using classical computing alone? This is unknown.

Techniques and Results: The algorithm for 2D circuits presented in Theorem 5 of [BGM20] makes a novel
use of 1D Matrix Product States, carefully tailored to the 2D geometry of the circuit in question. However,
the authors of [BGM20] point out that it is not clear that it is possible to extend this use of MPS to address
the case of 3D circuits in polynomial time. Instead they provide a sub-exponential time algorithm for
the 3D case, which has time complexity O(2n1/3

poly(1/ε)) for computing the desired quantity to within
additive error ε. In other words, their algorithm is exponential in the length of one side of the 3D cubic
lattice of qubits on which the 3D circuit acts. In this work we introduce a new set of techniques culminating
in a divide-and-conquer algorithm which moves beyond this barrier, and solves the 3D case in quasi-
polynomial time.

Our algorithm has a divide-and-conquer structure with the goal being to divide the circuit C into pieces,
and reduce the original problem to a small number of new 3D-circuit problems involving circuits on only a
fraction of the number of qubits as the original. This division step requires the ability to construct Schmidt
vectors of the state C |0⊗n〉, across a given cut, via a constant-depth geometrically local quantum circuit, so
that the new subproblems can be expressed as smaller instantiations of the original problem type. We ac-
complish this through the use of block-encodings, a technique designed for quantum algorithms [GSLW19],
but used here as a subroutine of a classical simulation algorithm instead. However, to date, we are only
able to construct, as a block-encoding circuit, the leading Schmidt vector across certain “heavy” cuts. Due
to this restriction we are forced to use a novel division step in our Divide-and-Conquer approach. Instead
of dividing about a single cut and constructing many of its Schmidt vectors as constant-depth geometri-
cally local block-encodings, we must divide across many cuts and construct only their leading Schmidt
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vectors. Interestingly, this process can still lead to low approximation error via an Inclusion-Exclusion style
argument.

These techniques culminate in a worst-case quasi-polynomial time algorithm for 3D circuits, which is
our main result:

Theorem 1. Let C be any depth-d, 3D geometrically local quantum circuit on n qubits. Algorithm 1, A f ull(C,B, δ)
(where B is the base case algorithm, chosen to be the algorithm in Theorem 5 of [BGM20]) will produce the scalar
quantity | 〈0⊗n|C |0⊗n〉 |2 to within δ error in time

T(n) = 2polylog(n)(1/δ)1/ log2(n) · 2d3
(1)

(See technical abstract for the precise definition of Algorithm 1, A f ull(C,B, δ).)

Note that, for any δ = Ω(1/nlog(n)), we have (1/δ)1/ log2(n) = O(1), and this runtime is quasi-
polynomial. In particular, for any δ(n) which scales inverse-polynomially (or even for some inverse-
quasi-polynomial scaling), the algorithm runs in quasi-polynomial time. Furthermore, under a natural,
polynomial-time-checkable assumption on the circuit C, we obtain a polynomial time algorithm:

Theorem 2. Let C be any depth-d, 3D geometrically local quantum circuit on n qubits. If we assume Assumption
33, then Algorithm 3, Aconst(C,B, δ) (where B is the base case algorithm chosen to be as in Theorem 5 of [BGM20]),
will approximate the scalar quantity | 〈0⊗n|C |0⊗n〉 |2 to within δ additive error in time

T(n) = poly(n, 2(1/δ)1/ log2(n)
) · 2d3

. (2)

(See technical abstract for the precise definition of Algorithm 3, Aconst(C,B, δ).)

Note that, for any δ = Ω(1/(n)log(n)), we have (1/δ)1/ log2(n) = O(1), and this runtime is polynomial.
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