
Quasi-polynomial Time Approximation
of Output Probabilities of Low-depth,
Geometrically-local Quantum Circuits

Nolan Coble Matthew Coudron
UMD Math NIST/QuICS UMD

Let C be a geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

Problem Statement

• Goal: Compute the quantity

• What is the classical complexity
of approximating
to additive error 𝜖?

• 1-Dimensional Case.

Depth

Problem Statement

• Goal: Compute the quantity

• What is the time complexity of
approximating
to additive error 𝜖?

• 2-Dimensional Case.

• Must solve worst-case over
such circuits.

• Arbitrary 2-qubit gates allowed.

Depth

Let C be a 2D geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

• Goal: Compute the quantity

• What is the time complexity of
approximating to
additive error 𝜖?

• 3-Dimensional Case.

• Must solve worst-case over such
circuits.

• Arbitrary 2-qubit gates allowed.

Problem Statement

Let C be a 3D geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

Depth Use your imagination.

Motivation
• Goal: Compute the quantity

• Why should we care about this
task?

• When 𝜖 ≤ 2−𝑛^2 this task is #P-
Hard [Movassagh20].

• So 𝜖 parametrizes difficulty.

• So, can only hope to solve
efficiently when 𝜖 ≫ 2−𝑛^2.

Let C be a geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

Motivation

Let C be a geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

• Goal: Compute the quantity

• Why should we care about this

task for 𝜖 ~
1

𝑝𝑜𝑙𝑦(𝑛)
?

• Relevant for classically
simulating some hybrid
quantum algorithms.

• Quantum circuit C composed
with some classical post-
processing.

C 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙

Motivation

Let C be a geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

C 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙

• Goal: Compute the quantity

• Why should we care about this

task for 𝜖 ~
1

𝑝𝑜𝑙𝑦(𝑛)
?

• Our algorithm can estimate this
output bit when
• 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = AND

• 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = OR

• 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = XOR

Motivation

Let C be a geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

• Goal: Compute the quantity

• Why should we care about this

task for 𝜖 ~
1

𝑝𝑜𝑙𝑦(𝑛)
?

• Can also estimate:

• Techniques: Controlling global
correlations even though
lightcones overlap!

C 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙

Let C be a geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

Background

• Goal: Compute the quantity

• What is the classical complexity
of approximating
to additive error 𝜖?

• Well known solutions to 1D case
in poly-time:

e.g. Matrix Product States.

Depth

Background

• Goal: Compute the quantity

• What is the time complexity of
approximating
to additive error 𝜖?

• Polynomial time solution to
the 2D problem is non-trivial:

• Elegant classical algorithm of
[Bravyi, Gosset, Movassagh
‘20].

• 𝜖-approximation in

poly(n, 1/ 𝜖) time.

Depth

Let C be a 2D geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

• Goal: Compute the quantity

• What is the time complexity of
approximating to
additive error 𝜖?

• Techniques of [BGM20] may be limited
to sub-exponential time in the 3D case.

• [Bravyi, Gosset, Movassagh ‘20], 3D
case:

𝜖-approximation in poly(2𝑛
1/3

, 1/ 𝜖) time.

• Could 3D be drastically more complex
than 2D?

Background

Let C be a 3D geometrically local, low-depth
(logarithmic depth) quantum circuit acting
on n qubits.

Depth Use your imagination.

Let C be a 3D geometrically local, depth-d
quantum circuit acting on n qubits.

Main Result
• Gives an inverse-polynomial additive

approximation for any polynomial
(asymptotically).

• Solves worst-case circuits.

• Allows arbitrary 2-qubit unitary
gates.

• We believe our result will generalize
to constant dimension D > 3, but we
only prove the 3D case.

3D Circuits – A New Approach
• Unable to extend the [BGM20] algorithm, we are forced to pursue a new

approach.

• Idea:
• Lightcones in low-depth geometrically local circuits are local.

• So, it is natural to consider a Divide-and-Conquer approach to estimating

• But, how should the division step work?

3D Circuits – Divide-and-Conquer

Imagine that this state has most of it’s mass in it’s top few Schmidt vectors across the division M.

The original quantity is close to a sum of a few 3D problems of about half the size!

This looks like the beginnings of Divide-and-Conquer.

3D Circuits – Divide-and-Conquer

Two Problems:

1) Why should the state have most of it’s mass on a few Schmidt coefficients?

2) We would need to construct the corresponding Schmidt vectors via low-
depth, geometrically local quantum circuits. Not clear how to do this.

3D Circuits – Divide-and-Conquer

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local quantum circuits?

Idea: Use Block-Encodings,

Traditionally used in quantum algorithms. Here we use them as a subroutine of a classical
algorithm!

3D Circuits – Divide-and-Conquer

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local quantum circuits?

Idea: Use Block-Encodings,

3D Circuits – Divide-and-Conquer

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local quantum circuits?

Idea: Use Block-Encodings,

3D Circuits – Divide-and-Conquer

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local quantum circuits?

3D Circuits – Divide-and-Conquer

Problem #1: Why should the state have most of it’s mass on a few Schmidt
coefficients? In particular, why should even be non-zero?

Problem #1: Why should the state have most of it’s mass on a few Schmidt
coefficients? In particular, why should even be non-zero?

3D Circuits – Divide-and-Conquer

3D Circuits – Divide-and-Conquer

So, we can find many cuts for which we can construct the
largest Schmidt vector with a depth-K, 2D local quantum
circuit!

3D Circuits – Divide-and-Conquer

Recall:

Imagine that this state has most of it’s mass in it’s top few Schmidt vectors
across the division M.

Problem: We can only construct the top Schmidt vector with a geometrically
local constant depth quantum circuit!

Recall:

Imagine that this state has most of it’s mass in it’s top few Schmidt vectors
across the division M.

Problem: We can only construct the top Schmidt vector with a geometrically
local constant depth quantum circuit!

But this results in a constant sized error term since

3D Circuits – Divide-and-Conquer

Idea: Instead of cutting at only one slice, which results in ¼ additive error, cut
at many slices, and do “Inclusion-Exclusion”.

3D Circuits – Divide-and-Conquer

3D Circuits – Divide-and-Conquer

Idea: Instead of cutting at only one slice, which results in ¼ additive error, cut
at many slices, and do “Inclusion-Exclusion”.

3D Circuits – Divide-and-Conquer

Idea: Instead of cutting at only one slice, which results in ¼ additive error, cut
at many slices, and do “Inclusion-Exclusion”.

3D Circuits – Divide-and-Conquer

Idea: Instead of cutting at only one slice, which results in ¼ additive error, cut
at many slices, and do “Inclusion-Exclusion”.

3D Circuits – Divide-and-Conquer

Idea: Instead of cutting at only one slice, which results in ¼ additive error, cut
at many slices, and do “Inclusion-Exclusion”.

3D Circuits – Divide-and-Conquer

Idea: Instead of cutting at only one slice, which results in ¼ additive error, cut
at many slices, and do “Inclusion-Exclusion”.

Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate
𝜆1
𝑖 , and circuit diagrams for
𝜙𝐿,𝑖 , 𝜙𝑖,𝑗 , 𝜙𝑗,𝑅 .

Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate
𝜆1
𝑖 , and circuit diagrams for
𝜙𝐿,𝑖 , 𝜙𝑖,𝑗 , 𝜙𝑗,𝑅 .

Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate
𝜆1
𝑖 , and circuit diagrams for
𝜙𝐿,𝑖 , 𝜙𝑖,𝑗 , 𝜙𝑗,𝑅 .

Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate
𝜆1
𝑖 , and circuit diagrams for
𝜙𝐿,𝑖 , 𝜙𝑖,𝑗 , 𝜙𝑗,𝑅 .

Runtime Analysis:
• Logarithmically many recursive steps.
• Instance size ``halves” at each step.
• Quasipolynomial additive time cost at each step.
• Standard recursive time analysis gives

Quasipolynomial runtime bound.

Error Analysis:
• Somewhat involved.
• Intuition follows from our two

approximation theorems.

Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate
𝜆1
𝑖 , and circuit diagrams for
𝜙𝐿,𝑖 , 𝜙𝑖,𝑗 , 𝜙𝑗,𝑅 .

Questions?

