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Let C be a geometrically local, low-depth 
(logarithmic depth) quantum circuit acting 
on n qubits. 

Problem Statement

• Goal:  Compute the quantity

• What is the classical complexity 
of approximating                             
to additive error 𝜖?

• 1-Dimensional Case.
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• 2-Dimensional Case.

• Must solve worst-case over 
such circuits.

• Arbitrary 2-qubit gates allowed.
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• Goal:  Compute the quantity

• What is the time complexity of 
approximating                             to 
additive error 𝜖?

• 3-Dimensional Case.

• Must solve worst-case over such 
circuits.

• Arbitrary 2-qubit gates allowed.

Problem Statement

Let C be a 3D geometrically local, low-depth 
(logarithmic depth) quantum circuit acting 
on n qubits. 

Depth Use your imagination.



Motivation
• Goal:  Compute the quantity

• Why should we care about this 
task?

• When 𝜖 ≤ 2−𝑛^2 this task is #P-
Hard [Movassagh20].

• So 𝜖 parametrizes difficulty.

• So, can only hope to solve 
efficiently when 𝜖 ≫ 2−𝑛^2.
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Let C be a geometrically local, low-depth 
(logarithmic depth) quantum circuit acting 
on n qubits. 

• Goal:  Compute the quantity

• Why should we care about this 

task for 𝜖 ~
1

𝑝𝑜𝑙𝑦(𝑛)
?

• Relevant for classically 
simulating some hybrid 
quantum algorithms.

• Quantum circuit C composed 
with some classical post-
processing.
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• Goal:  Compute the quantity

• Why should we care about this 

task for 𝜖 ~
1

𝑝𝑜𝑙𝑦(𝑛)
?

• Our algorithm can estimate this 
output bit when
• 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = AND

• 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = OR

• 𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = XOR



Motivation

Let C be a geometrically local, low-depth 
(logarithmic depth) quantum circuit acting 
on n qubits. 

• Goal:  Compute the quantity

• Why should we care about this 

task for 𝜖 ~
1

𝑝𝑜𝑙𝑦(𝑛)
?

• Can also estimate:

• Techniques:  Controlling global 
correlations even though 
lightcones overlap!
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Let C be a geometrically local, low-depth 
(logarithmic depth) quantum circuit acting 
on n qubits. 

Background

• Goal:  Compute the quantity

• What is the classical complexity 
of approximating                             
to additive error 𝜖?

• Well known solutions to 1D case 
in poly-time:

e.g. Matrix Product States.
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Background

• Goal:  Compute the quantity

• What is the time complexity of 
approximating                             
to additive error 𝜖?

• Polynomial time solution to 
the 2D problem is non-trivial:

• Elegant classical algorithm of 
[Bravyi, Gosset, Movassagh
‘20].

• 𝜖-approximation in 

poly(n, 1/ 𝜖) time.

Depth
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(logarithmic depth) quantum circuit acting 
on n qubits. 



• Goal:  Compute the quantity

• What is the time complexity of 
approximating                             to 
additive error 𝜖?

• Techniques of [BGM20] may be limited 
to sub-exponential time in the 3D case.

• [Bravyi, Gosset, Movassagh ‘20], 3D 
case: 

𝜖-approximation in poly(2𝑛
1/3

, 1/ 𝜖) time.

• Could 3D be drastically more complex 
than 2D?

Background

Let C be a 3D geometrically local, low-depth 
(logarithmic depth) quantum circuit acting 
on n qubits. 

Depth Use your imagination.



Let C be a 3D geometrically local, depth-d 
quantum circuit acting on n qubits. 

Main Result
• Gives an inverse-polynomial additive 

approximation for any polynomial 
(asymptotically).

• Solves worst-case circuits.

• Allows arbitrary 2-qubit unitary 
gates.

• We believe our result will generalize 
to constant dimension D > 3, but we 
only prove the 3D case.       



3D Circuits – A New Approach
• Unable to extend the [BGM20] algorithm, we are forced to pursue a new 

approach.

• Idea:
• Lightcones in low-depth geometrically local circuits are local.

• So, it is natural to consider a Divide-and-Conquer approach to estimating 

• But, how should the division step work?



3D Circuits – Divide-and-Conquer

Imagine that this state has most of it’s mass in it’s top few Schmidt vectors across the division M.

The original quantity is close to a sum of a few 3D problems of about half the size! 

This looks like the beginnings of Divide-and-Conquer.



3D Circuits – Divide-and-Conquer

Two Problems:

1) Why should the state have most of it’s mass on a few Schmidt coefficients?

2) We would need to construct the corresponding Schmidt vectors via low-
depth, geometrically local quantum circuits.  Not clear how to do this.



3D Circuits – Divide-and-Conquer

Problem #2:  How to construct the corresponding Schmidt vectors via low-depth, 
geometrically local quantum circuits?

Idea:  Use Block-Encodings,

Traditionally used in quantum algorithms.  Here we use them as a subroutine of a classical 
algorithm!
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3D Circuits – Divide-and-Conquer

So, we can find many cuts for which we can construct the 
largest Schmidt vector with a depth-K, 2D local quantum 
circuit! 
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Imagine that this state has most of it’s mass in it’s top few Schmidt vectors 
across the division M.

Problem: We can only construct the top Schmidt vector with a geometrically 
local constant depth quantum circuit!



Recall:

Imagine that this state has most of it’s mass in it’s top few Schmidt vectors 
across the division M.

Problem: We can only construct the top Schmidt vector with a geometrically 
local constant depth quantum circuit!

But this results in a constant sized error term since 

3D Circuits – Divide-and-Conquer



Idea:  Instead of cutting at only one slice, which results in ¼ additive error, cut 
at many slices, and do “Inclusion-Exclusion”. 
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Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate 
𝜆1
𝑖 , and circuit diagrams for 
𝜙𝐿,𝑖 , 𝜙𝑖,𝑗 , 𝜙𝑗,𝑅 .
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Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate 
𝜆1
𝑖 , and circuit diagrams for 
𝜙𝐿,𝑖 , 𝜙𝑖,𝑗 , 𝜙𝑗,𝑅 .

Runtime Analysis:
• Logarithmically many recursive steps.
• Instance size ``halves” at each step.
• Quasipolynomial additive time cost at each step.
• Standard recursive time analysis gives 

Quasipolynomial runtime bound.



Error Analysis:
• Somewhat involved.
• Intuition follows from our two 

approximation theorems.

Recursive Algorithm:
• To compute the quantity

• Find Δ~ log 𝑛 light-cone-
separated, “heavy” cuts {Ki: i ∈
𝐼 } within log5(n)of the center.

• For each i ∈ 𝐼 , approximate 
𝜆1
𝑖 , and circuit diagrams for 
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Questions?


