

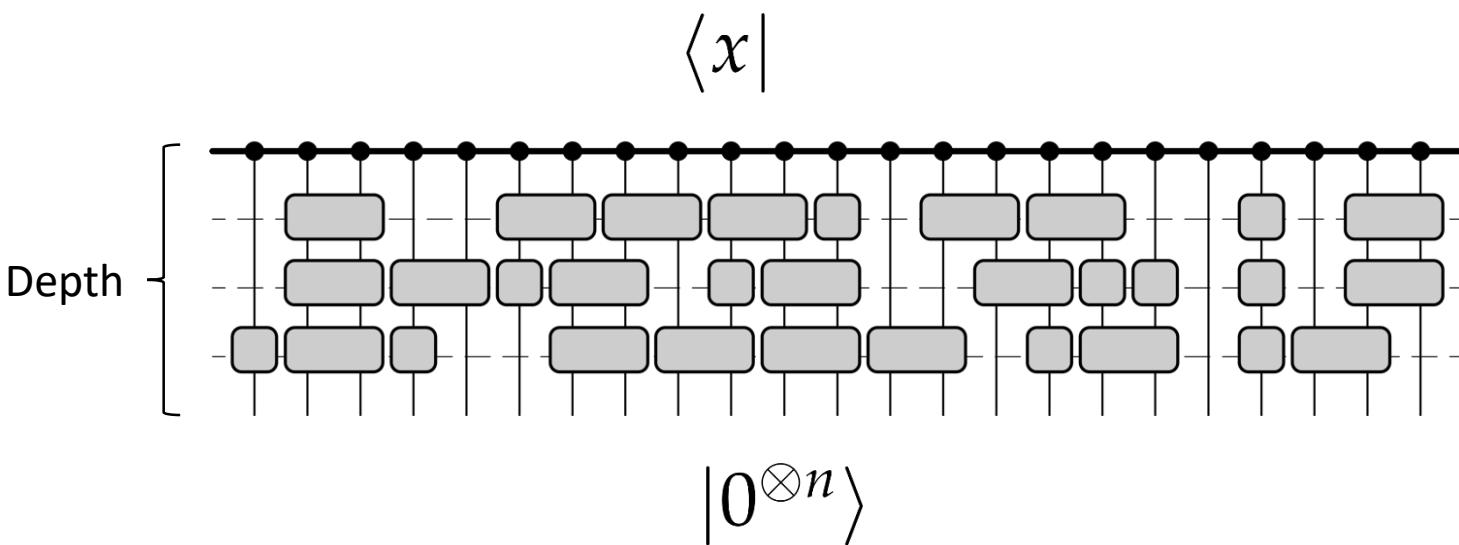
# Quasi-polynomial Time Approximation of Output Probabilities of Low-depth, Geometrically-local Quantum Circuits

Nolan Coble  
UMD Math

Matthew Coudron  
NIST/QuICS UMD

# Problem Statement

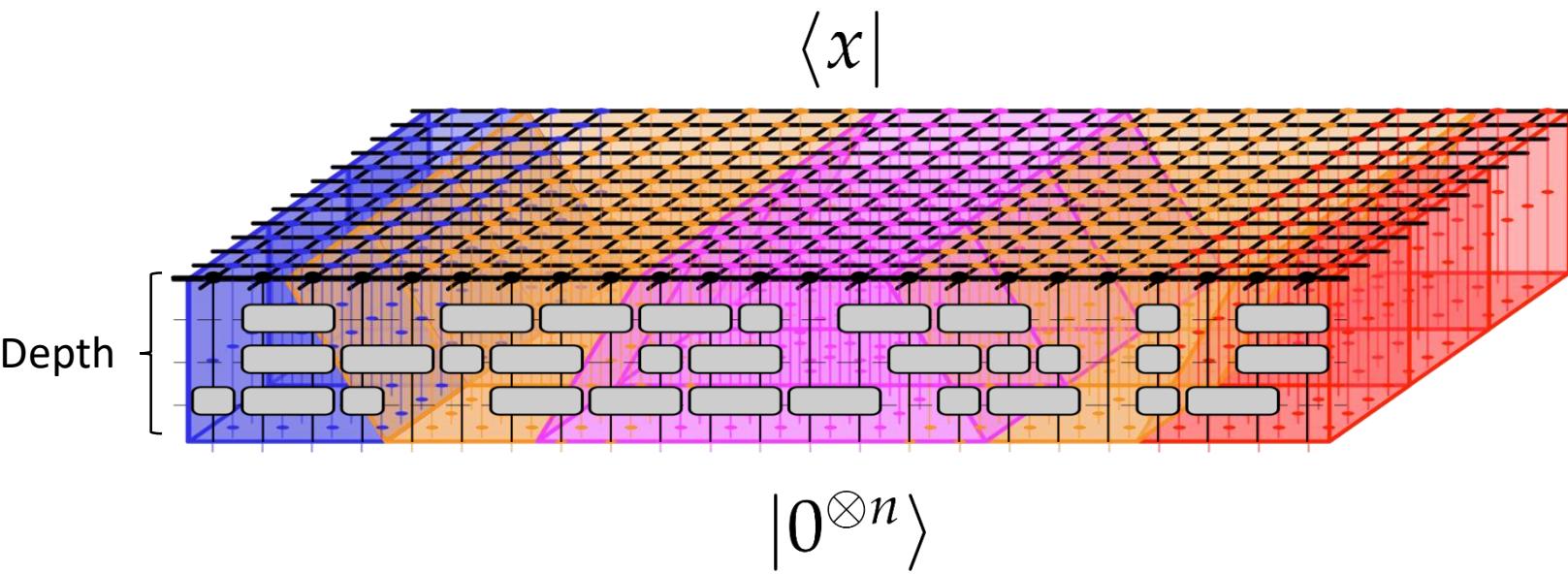
Let  $C$  be a geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



- Goal: Compute the quantity  $|\langle x | C |0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- What is the classical complexity of approximating  $|\langle x | C |0^{\otimes n} \rangle|^2$  to *additive* error  $\epsilon$ ?
- 1-Dimensional Case.

# Problem Statement

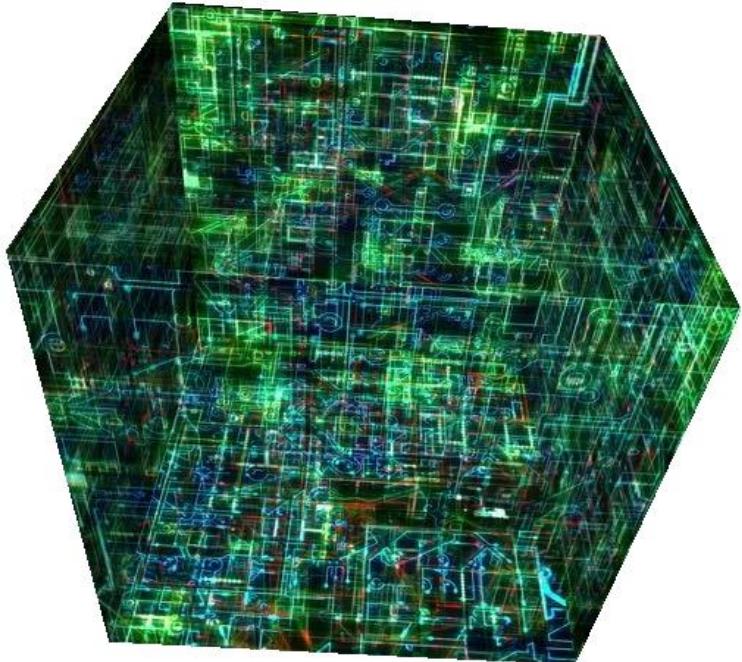
Let  $C$  be a 2D geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



- Goal: Compute the quantity  $|\langle x | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- What is the time complexity of approximating  $|\langle x | C | 0^{\otimes n} \rangle|^2$  to *additive* error  $\epsilon$ ?
- 2-Dimensional Case.
- Must solve *worst-case* over such circuits.
- Arbitrary 2-qubit gates allowed.

# Problem Statement

Let  $C$  be a 3D geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



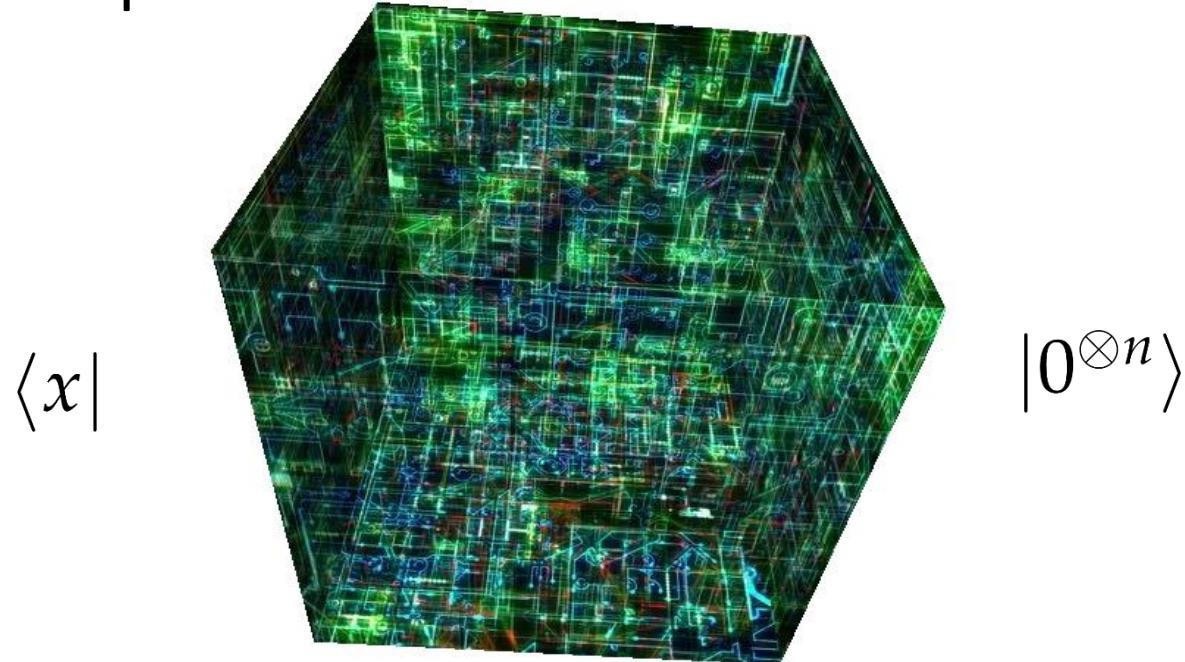
$|0^{\otimes n}\rangle$

- Goal: Compute the quantity  $|\langle x| C |0^{\otimes n}\rangle|^2 \pm \epsilon$ .
- What is the time complexity of approximating  $|\langle x| C |0^{\otimes n}\rangle|^2$  to *additive* error  $\epsilon$ ?
- 3-Dimensional Case.
- Must solve *worst-case* over such circuits.
- Arbitrary 2-qubit gates allowed.

Depth  $\left\{ \begin{array}{l} \text{Use your imagination.} \end{array} \right.$

# Motivation

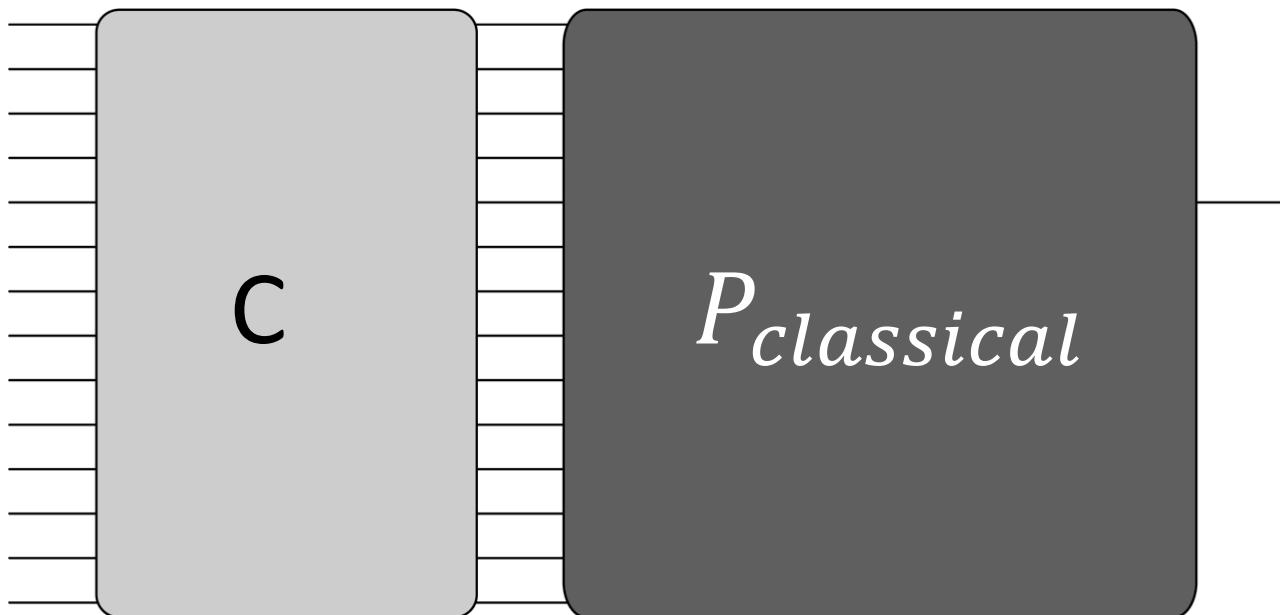
Let  $C$  be a geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



- Goal: Compute the quantity  $|\langle x | C |0^{\otimes n}\rangle|^2 \pm \epsilon$ .
- Why should we care about this task?
- When  $\epsilon \leq 2^{-n^2}$  this task is #P-Hard [Movassagh20].
- So  $\epsilon$  parametrizes difficulty.
- So, can only hope to solve efficiently when  $\epsilon \gg 2^{-n^2}$ .

# Motivation

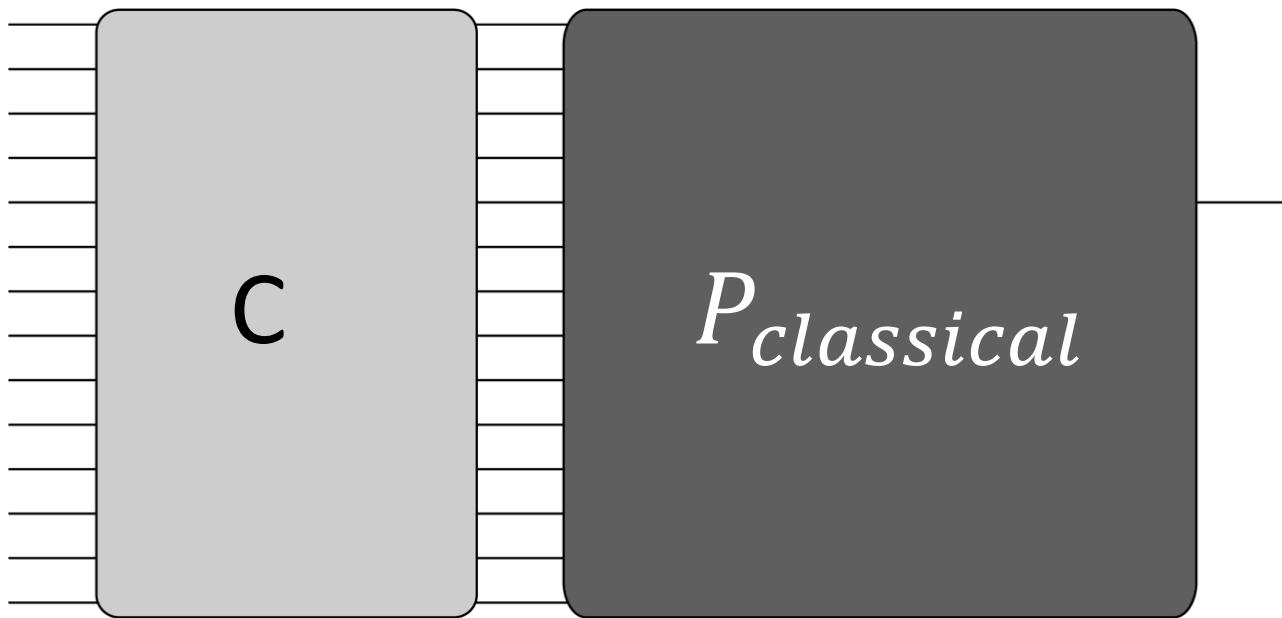
Let  $C$  be a geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



- Goal: Compute the quantity  $|\langle x | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- Why should we care about this task for  $\epsilon \sim \frac{1}{\text{poly}(n)}$ ?
- Relevant for classically simulating some hybrid quantum algorithms.
- Quantum circuit  $C$  composed with some classical post-processing.

# Motivation

Let  $C$  be a geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.

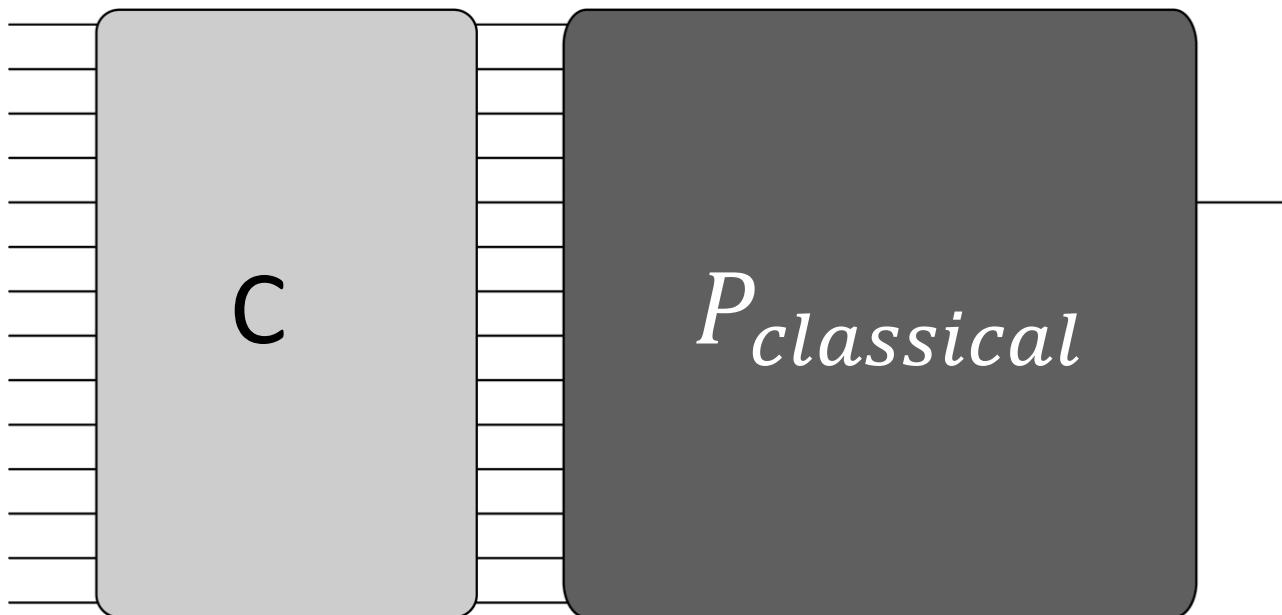


WLOG can focus on  $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ , since  $|\langle x | C | 0^{\otimes n} \rangle|^2 = |\langle 0^{\otimes n} | \prod_i X^{x_i} C | 0^{\otimes n} \rangle|^2$ .

- Goal: Compute the quantity  $|\langle x | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- Why should we care about this task for  $\epsilon \sim \frac{1}{\text{poly}(n)}$ ?
- Our algorithm can estimate this output bit when
  - $P_{classical} = \text{AND}$   
 $|\langle 0^{\otimes n} | X^{\otimes n} C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
  - $P_{classical} = \text{OR}$   
 $1 - |\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
  - $P_{classical} = \text{XOR}$   
 $|\langle 0^{\otimes n} | CZ^{\otimes n} C^\dagger | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .

# Motivation

Let  $C$  be a geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.

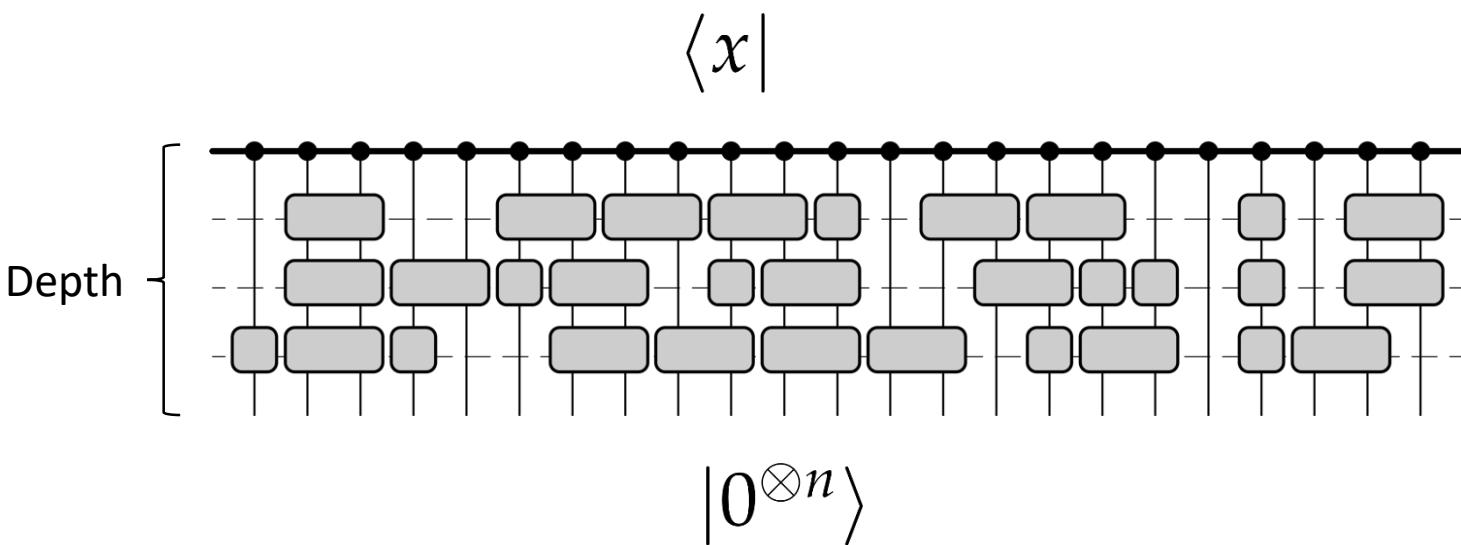


WLOG can focus on  $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ , since  $|\langle x | C | 0^{\otimes n} \rangle|^2 = |\langle 0^{\otimes n} | \prod_i X^{x_i} C | 0^{\otimes n} \rangle|^2$ .

- Goal: Compute the quantity  $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- Why should we care about this task for  $\epsilon \sim \frac{1}{\text{poly}(n)}$ ?
- Can also estimate:  $|\langle 0^{\otimes n} | C(\prod_i P_i) C^\dagger | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- Techniques: Controlling global correlations even though lightcones overlap!

# Background

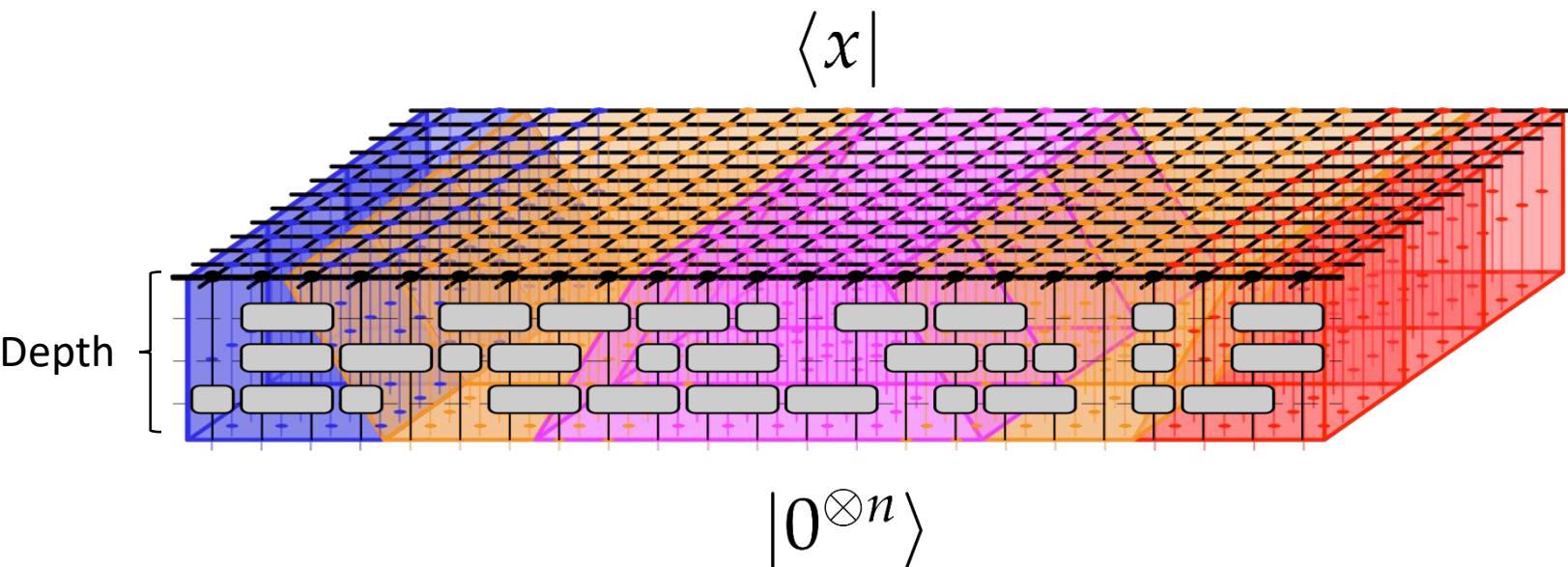
Let  $C$  be a geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



- Goal: Compute the quantity  $|\langle 0^{\otimes n} | C |0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- What is the classical complexity of approximating  $|\langle x | C |0^{\otimes n} \rangle|^2$  to *additive* error  $\epsilon$ ?
- Well known solutions to 1D case in poly-time:  
e.g. Matrix Product States.

# Background

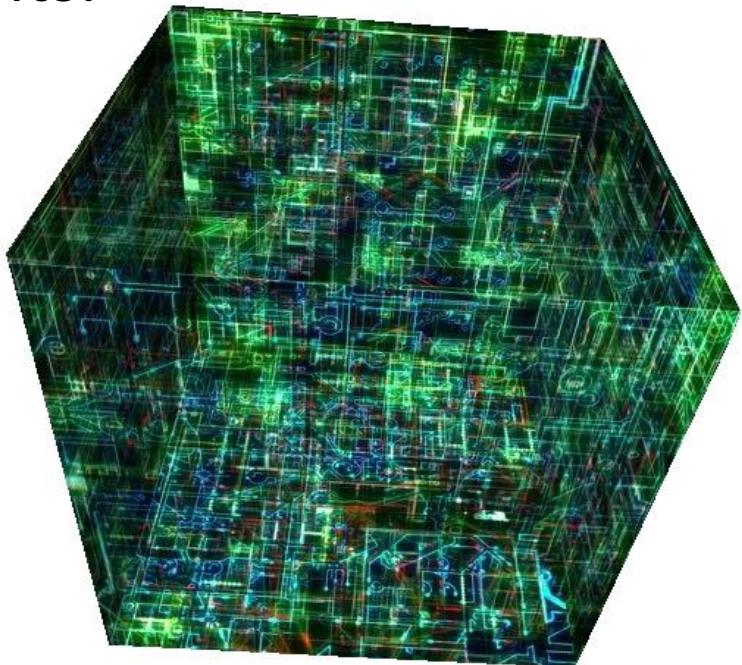
Let  $C$  be a 2D geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



- Goal: Compute the quantity  $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- What is the time complexity of approximating  $|\langle x | C | 0^{\otimes n} \rangle|^2$  to *additive* error  $\epsilon$ ?
- Polynomial time solution to the 2D problem is non-trivial:
- Elegant classical algorithm of [Bravyi, Gosset, Movassagh '20].
- $\epsilon$ -approximation in  $\text{poly}(n, 1/\epsilon)$  time.

# Background

Let  $C$  be a 3D geometrically local, low-depth (logarithmic depth) quantum circuit acting on  $n$  qubits.



$\langle x |$

$|0^{\otimes n}\rangle$

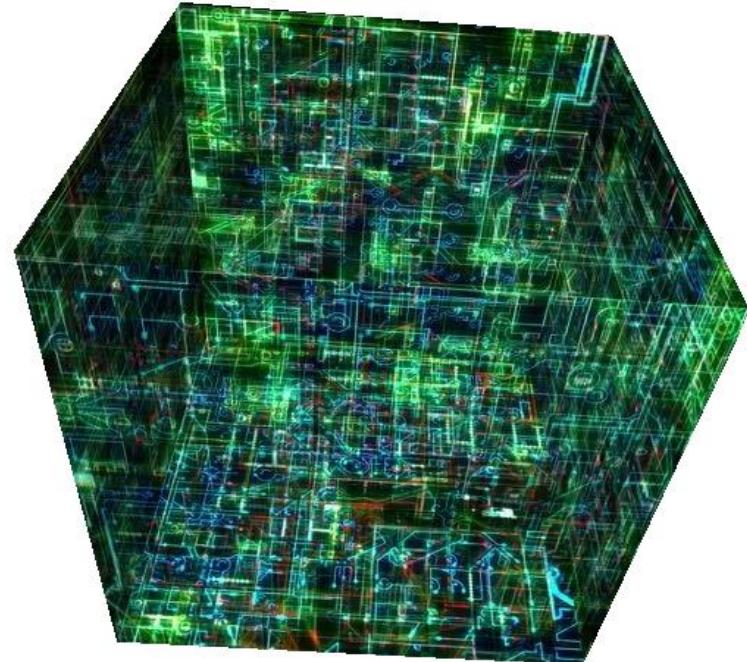
- Goal: Compute the quantity  $|\langle 0^{\otimes n} | C |0^{\otimes n} \rangle|^2 \pm \epsilon$ .
- What is the time complexity of approximating  $|\langle x | C |0^{\otimes n} \rangle|^2$  to additive error  $\epsilon$ ?
- Techniques of [BGM20] may be limited to sub-exponential time in the 3D case.
- [Bravyi, Gosset, Movassagh '20], 3D case:  
 $\epsilon$ -approximation in  $\text{poly}(2^{n^{1/3}}, 1/\epsilon)$  time.
- Could 3D be drastically more complex than 2D?

Depth  Use your imagination.

# Main Result

Let  $C$  be a 3D geometrically local, depth- $d$  quantum circuit acting on  $n$  qubits.

$\langle x |$



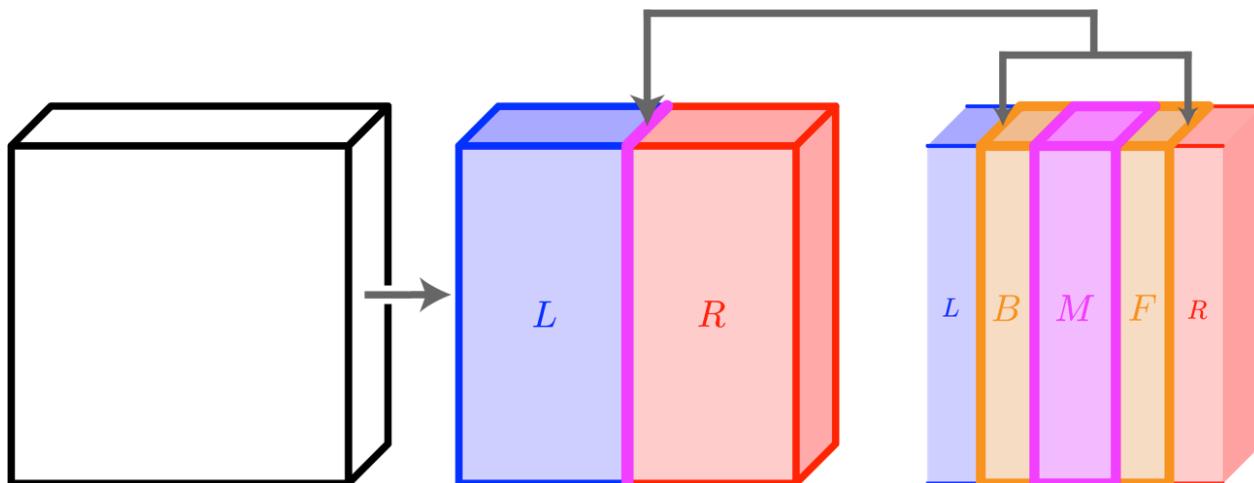
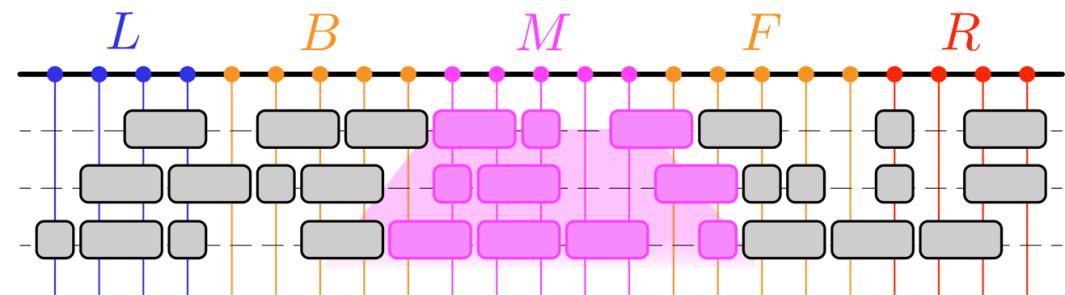
$|0^{\otimes n}\rangle$

- Gives an inverse-polynomial additive approximation for any polynomial (asymptotically).
- Solves worst-case circuits.
- Allows arbitrary 2-qubit unitary gates.
- We believe our result will generalize to constant dimension  $D > 3$ , but we only prove the 3D case.

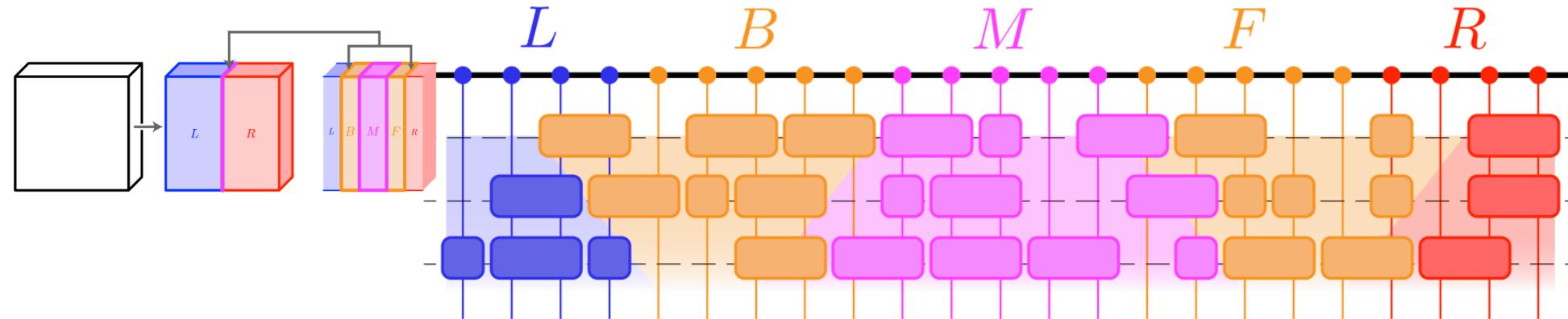
**Theorem.** *There exists a classical algorithm that approximates the quantity  $|\langle x | C |0^{\otimes n}\rangle|^2$  to additive error  $1/n^{\log(n)}$  for any  $x \in \{0, 1\}^n$  in time  $n^{\text{polylog}(n)} 2^{d^3}$ .*

# 3D Circuits – A New Approach

- Unable to extend the [BGM20] algorithm, we are forced to pursue a new approach.
- Idea:
  - Lightcones in low-depth geometrically local circuits are local.
  - So, it is natural to consider a Divide-and-Conquer approach to estimating  $\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle$ .
  - But, how should the division step work?



# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

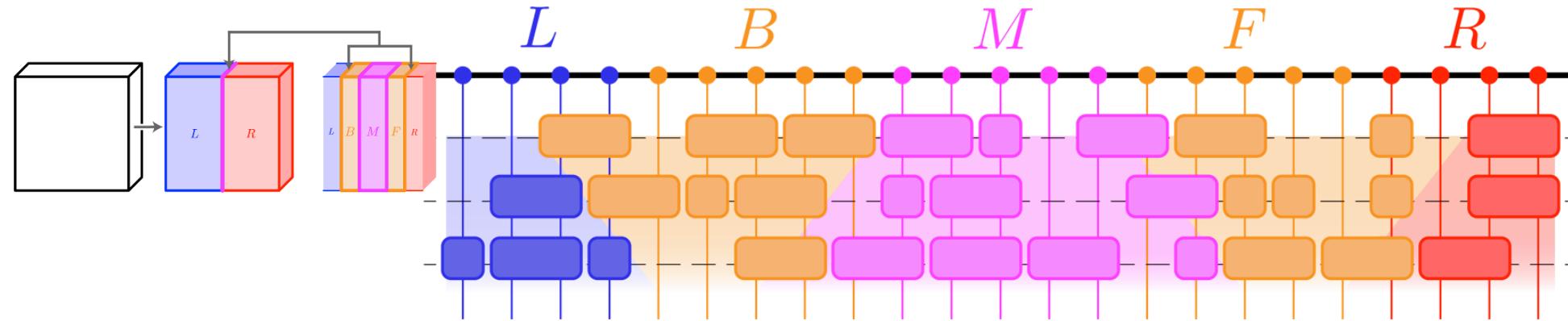
Imagine that this state has most of its mass in its top few Schmidt vectors across the division M.

$$\begin{aligned} \langle 0_{\text{ALL}} | C | 0_{\text{ALL}} \rangle &= \langle 0_{\text{ALL}} | C_{L \cup R} | 0_{L \cup R} \rangle \otimes |\psi_{B \cup F}\rangle \approx \sum_{i=1}^{p(n)} \lambda_i \langle 0_{\text{ALL}} | C_{L \cup R} | 0_{L \cup R} \rangle \otimes |v_i\rangle_B \otimes |w_i\rangle_F \\ &= \sum_{i=1}^{p(n)} \lambda_i \langle 0|_{L \cup B} C_L |0\rangle_L \otimes |v_i\rangle_B \cdot \langle 0|_{F \cup R} C_R |0\rangle_R \otimes |w_i\rangle_F \end{aligned}$$

The original quantity is close to a sum of a few 3D problems of about half the size!

This looks like the beginnings of Divide-and-Conquer.

# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

$$\langle 0_{\text{ALL}} | C | 0_{\text{ALL}} \rangle \approx \sum_{i=1}^{p(n)} \lambda_i \langle 0|_{L \cup B} C_L |0\rangle_L \otimes |v_i\rangle_B \cdot \langle 0|_{F \cup R} C_R |0\rangle_R \otimes |w_i\rangle_F$$

Two Problems:

- 1) Why should the state have most of its mass on a few Schmidt coefficients?
- 2) We would need to construct the corresponding Schmidt vectors via low-depth, geometrically local quantum circuits. Not clear how to do this.

# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

Problem #2: How to construct the corresponding Schmidt vectors via low-depth, geometrically local quantum circuits?

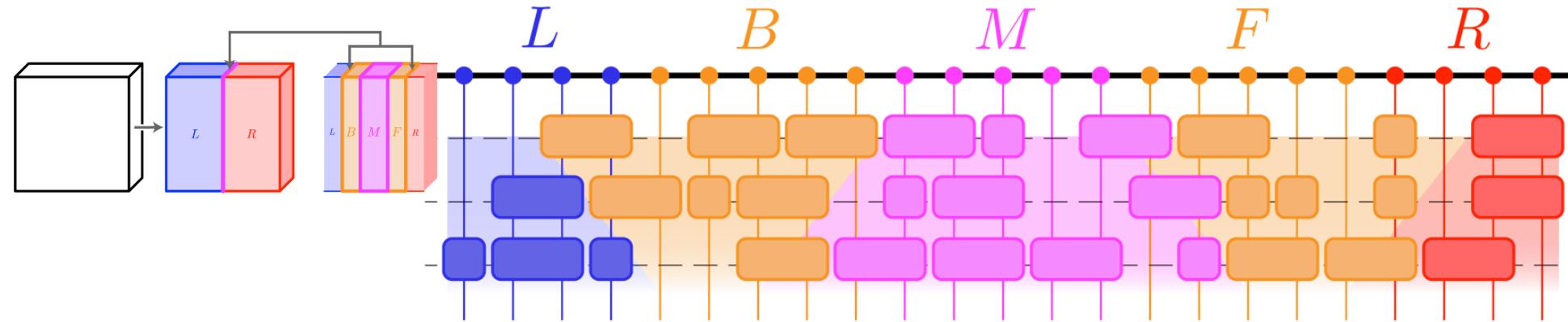
Idea: Use Block-Encodings,

**Lemma** (Lemma 45 of [GSLW19]). *The following is a 2D-local constant-depth circuit which gives a block encoding for  $\rho_F \equiv \text{tr}_B(|\psi\rangle \langle \psi|_{B \cup F})$  :*

$$(C_{B \cup M \cup F}^\dagger \otimes I_{F'}) (I_{B \cup M} \otimes \text{SWAP}_{FF'}) (C_{B \cup M \cup F} \otimes I_{F'})$$

Traditionally used in quantum algorithms. Here we use them as a subroutine of a classical algorithm!

# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

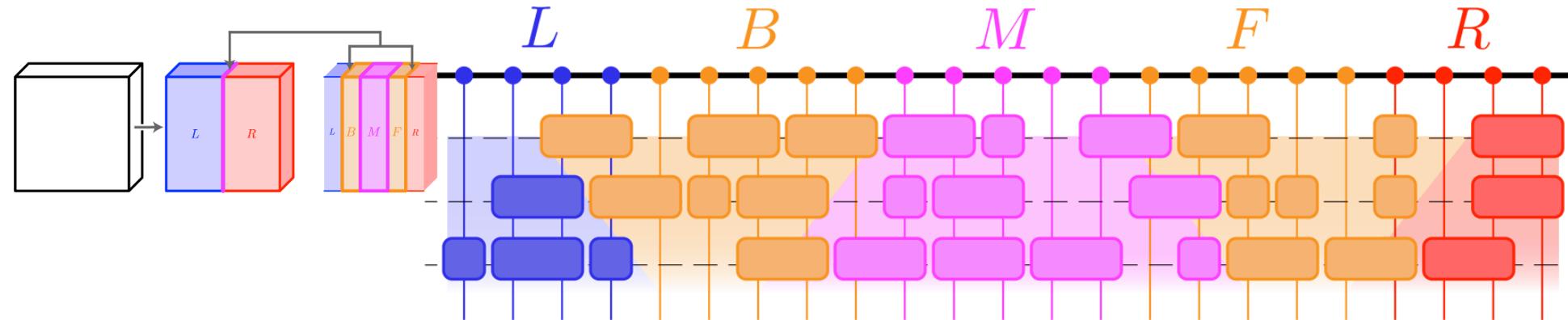
Problem #2: How to construct the corresponding Schmidt vectors via low-depth, geometrically local quantum circuits?

Idea: Use Block-Encodings,

That is,

$$\rho_F \equiv \text{tr}_B(|\psi\rangle \langle \psi|_{B \cup F}) = \langle 0_{ALL/F} | (C_{B \cup M \cup F}^\dagger \otimes I_{F'}) (I_{B \cup M} \otimes \text{SWAP}_{FF'}) (C_{B \cup M \cup F} \otimes I_{F'}) |0_{ALL/F}\rangle$$

# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

Problem #2: How to construct the corresponding Schmidt vectors via low-depth, geometrically local quantum circuits?

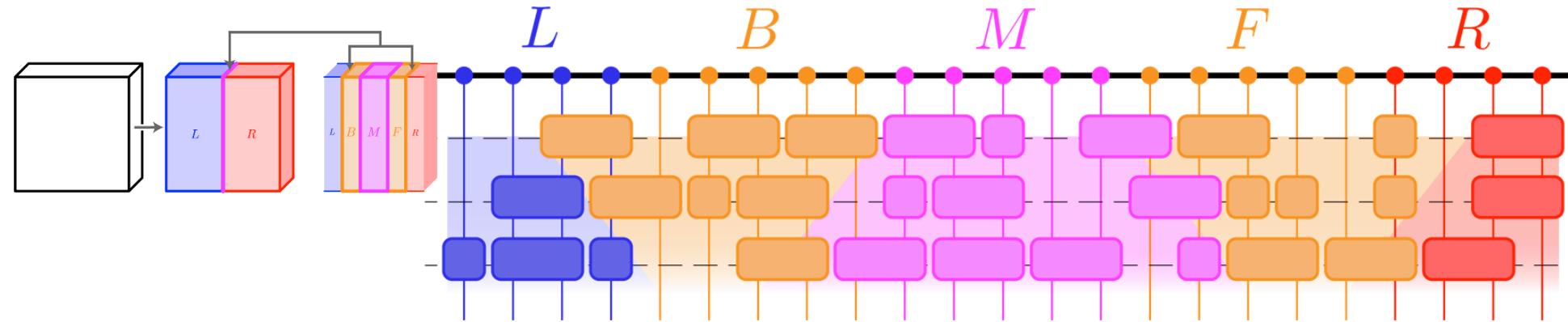
Idea: Use Block-Encodings,

Furthermore,

$$\rho_F^K \equiv (\text{tr}_B(|\psi\rangle \langle \psi|_{B \cup F}))^K$$

$$= \langle 0_{ALL/F} | \prod_{i=1}^K (C_{B \cup M \cup F}^\dagger \otimes I_{F_1, \dots, F_K}) (I_{B \cup M} \otimes \text{SWAP}_{FF_i}) (C_{B \cup M \cup F} \otimes I_{F_1, \dots, F_K}) | 0_{ALL/F} \rangle$$

# 3D Circuits – Divide-and-Conquer

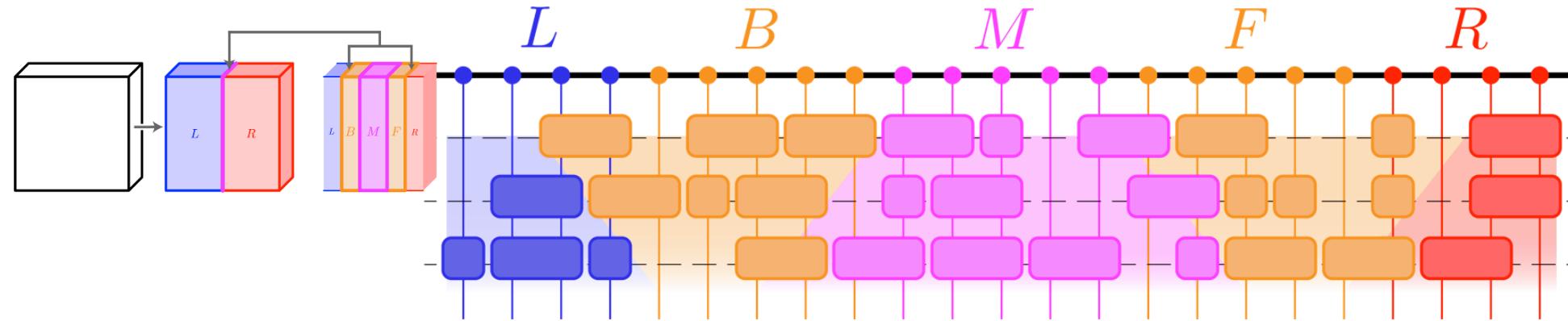


$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

Problem #2: How to construct the corresponding Schmidt vectors via low-depth, geometrically local quantum circuits?

$$\begin{aligned}
 \rho_F^K &\equiv (\text{tr}_B(|\psi\rangle \langle \psi|_{B \cup F}))^K \\
 &= \langle 0_{ALL/F} | \prod_{i=1}^K (C_{B \cup M \cup F}^\dagger \otimes I_{F_1, \dots, F_K}) (I_{B \cup M} \otimes \text{SWAP}_{FF_i}) (C_{B \cup M \cup F} \otimes I_{F_1, \dots, F_K}) | 0_{ALL/F} \rangle \\
 &\approx \gamma |w_1\rangle \langle w_1|_F \text{ when } |\lambda_1 - \lambda_2| \text{ is sufficiently large.}
 \end{aligned}$$

# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

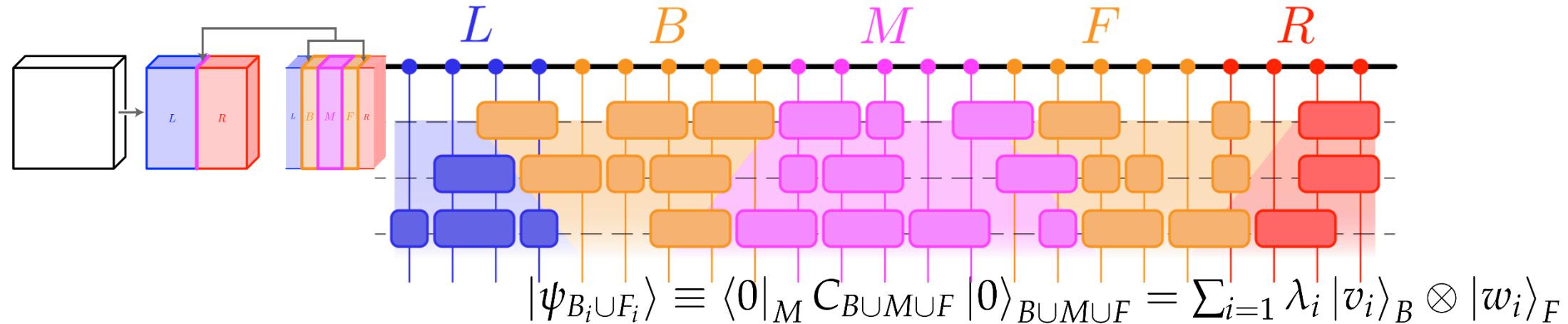
$$\rho_F^K \equiv (\text{tr}_B(|\psi\rangle \langle \psi|_{B \cup F}))^K$$

$$= \langle 0_{ALL/F} | \prod_{i=1}^K (C_{B \cup M \cup F}^\dagger \otimes I_{F_1, \dots, F_K}) (I_{B \cup M} \otimes \text{SWAP}_{FF_i}) (C_{B \cup M \cup F} \otimes I_{F_1, \dots, F_K}) | 0_{ALL/F} \rangle$$

$$\approx \gamma |w_1\rangle \langle w_1|_F \text{ when } |\lambda_1 - \lambda_2| \text{ is sufficiently large.}$$

Problem #1: Why should the state have most of its mass on a few Schmidt coefficients? In particular, why should  $|\lambda_1 - \lambda_2|$  even be non-zero?

# 3D Circuits – Divide-and-Conquer

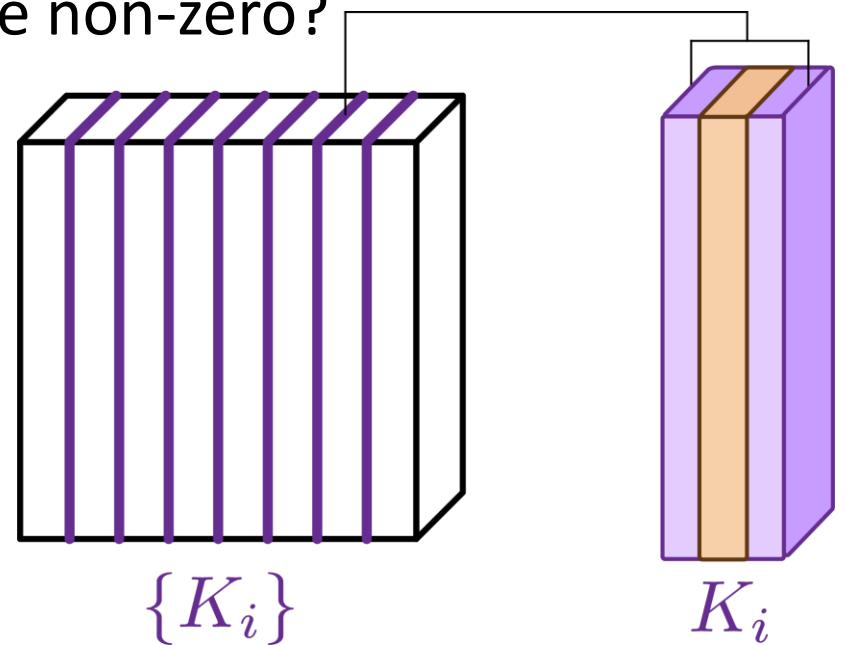


Problem #1: Why should the state have most of its mass on a few Schmidt coefficients? In particular, why should  $|\lambda_1 - \lambda_2|$  even be non-zero?

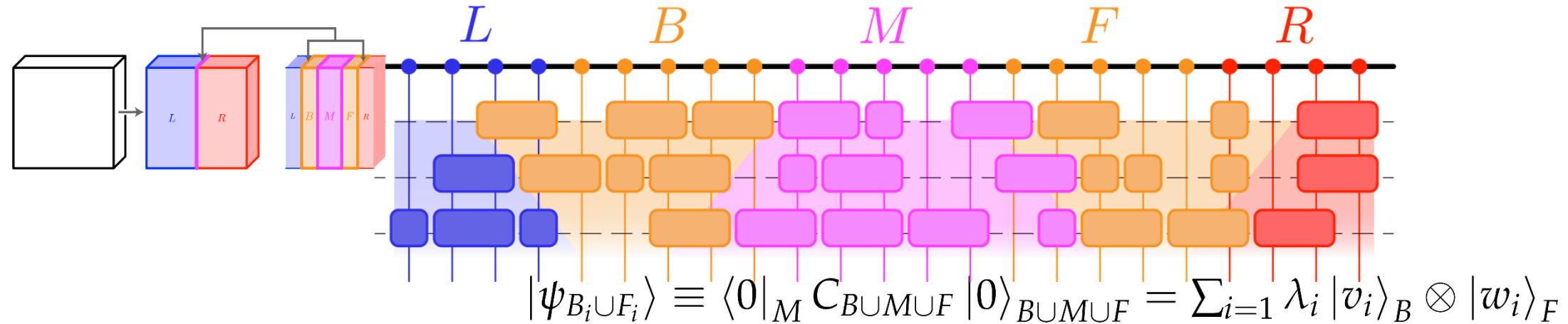
Assume that  $\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle \geq 1/n^{\log(n)}$ .

**Lemma.** *In every interval of length  $\log^5(n)$  there are at least  $\log(n)$  cuts  $K_i$  satisfying  $\lambda_1^i \geq 3/4$ .*

$$So, |\lambda_1^i - \lambda_2^i| \geq \frac{3 - \sqrt{7}}{4} = const$$



# 3D Circuits – Divide-and-Conquer

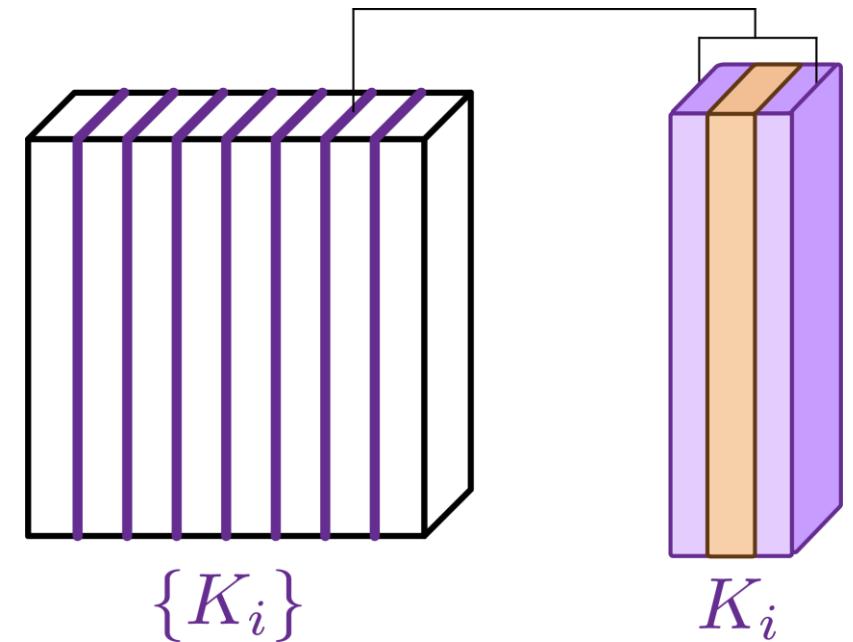


Assume that  $\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle \geq 1/n^{\log(n)}$ .

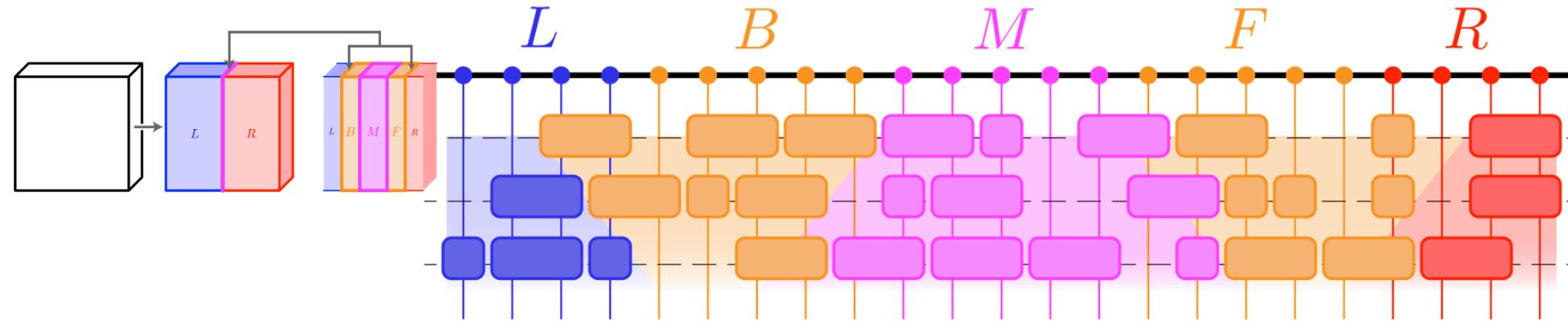
**Lemma.** *In every interval of length  $\log^5(n)$  there are at least  $\log(n)$  cuts  $K_i$  satisfying:  $|\lambda_1^i - \lambda_2^i| \geq \frac{3 - \sqrt{7}}{4} = \text{const.}$*

$$\begin{aligned} \rho_F^K &= \langle 0_{ALL/F} | \prod_{i=1}^K (C_{B \cup M \cup F}^\dagger \otimes I_{F_1, \dots, F_K}) (I_{B \cup M} \otimes \text{SWAP}_{FF_i}) (C_{B \cup M \cup F} \otimes I_{F_1, \dots, F_K}) | 0_{ALL/F} \rangle \\ &\approx |w_1\rangle \langle w_1|_F + O((3/4)^K) \end{aligned}$$

So, we can find many cuts for which we can construct the largest Schmidt vector with a depth- $K$ , 2D local quantum circuit!



# 3D Circuits – Divide-and-Conquer



Recall:

$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

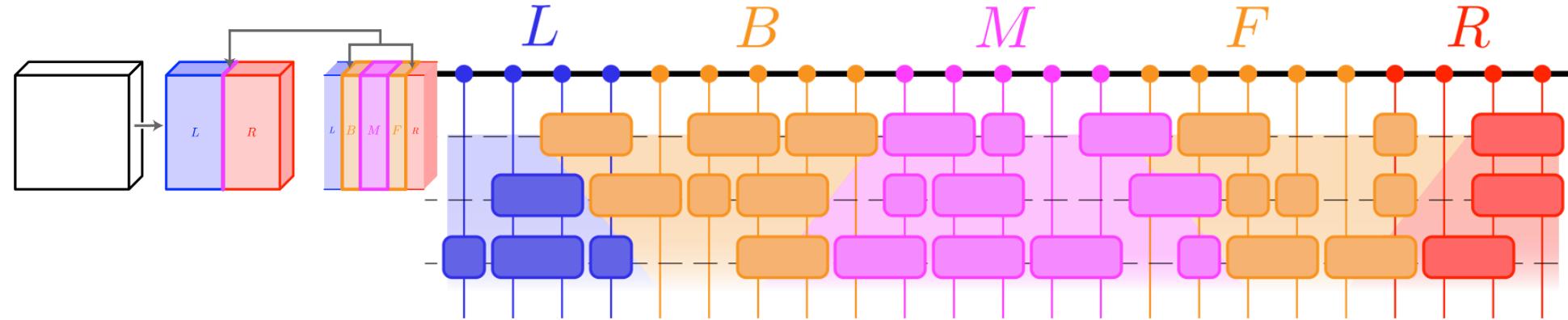
Imagine that this state has most of its mass in its top few Schmidt vectors across the division M.

$$\langle 0_{\text{ALL}} | C | 0_{\text{ALL}} \rangle = \langle 0_{\text{ALL}} | C_{L \cup R} | 0_{L \cup R} \rangle \otimes |\psi_{B \cup F}\rangle$$

$$\approx \sum_{i=1}^{p(n)} \lambda_i \langle 0_{\text{ALL}} | C_{L \cup R} | 0_{L \cup R} \rangle \otimes |v_i\rangle_B \otimes |w_i\rangle_F = \sum_{i=1}^{p(n)} \lambda_i \langle 0|_{L \cup B} C_L |0\rangle_L \otimes |v_i\rangle_B \cdot \langle 0|_{F \cup R} C_R |0\rangle_R \otimes |w_i\rangle_F$$

Problem: We can only construct the top Schmidt vector with a geometrically local constant depth quantum circuit!

# 3D Circuits – Divide-and-Conquer



Recall:

$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

Imagine that this state has most of its mass in its top few Schmidt vectors across the division M.

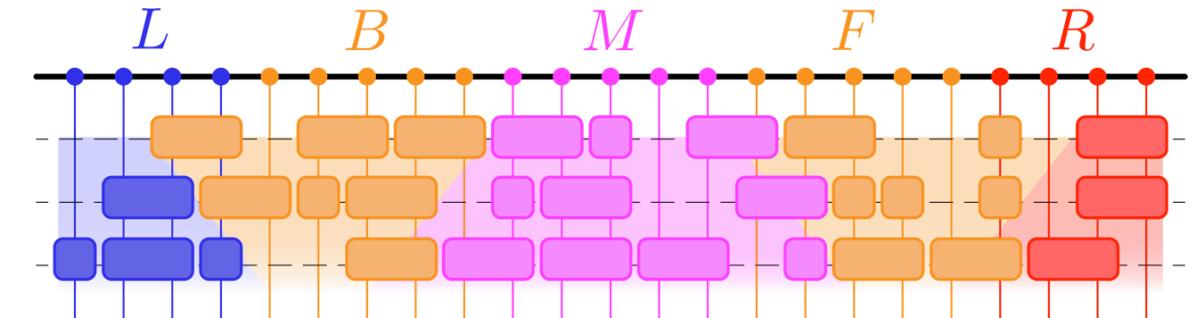
$$\langle 0_{\text{ALL}} | C | 0_{\text{ALL}} \rangle = \langle 0_{\text{ALL}} | C_{L \cup R} | 0_{L \cup R} \rangle \otimes |\psi_{B \cup F}\rangle$$

$$\approx \sum_{i=1}^{p(n)} \lambda_i \langle 0_{\text{ALL}} | C_{L \cup R} | 0_{L \cup R} \rangle \otimes |v_i\rangle_B \otimes |w_i\rangle_F \approx \lambda_1 \langle 0 |_{L \cup B} C_L | 0 \rangle_L \otimes |v_1\rangle_B \cdot \langle 0 |_{F \cup R} C_R | 0 \rangle_R \otimes |w_1\rangle_F \pm 1/4$$

Problem: We can only construct the top Schmidt vector with a geometrically local constant depth quantum circuit!

But this results in a constant sized error term since  $\lambda_1 \geq 3/4$ .

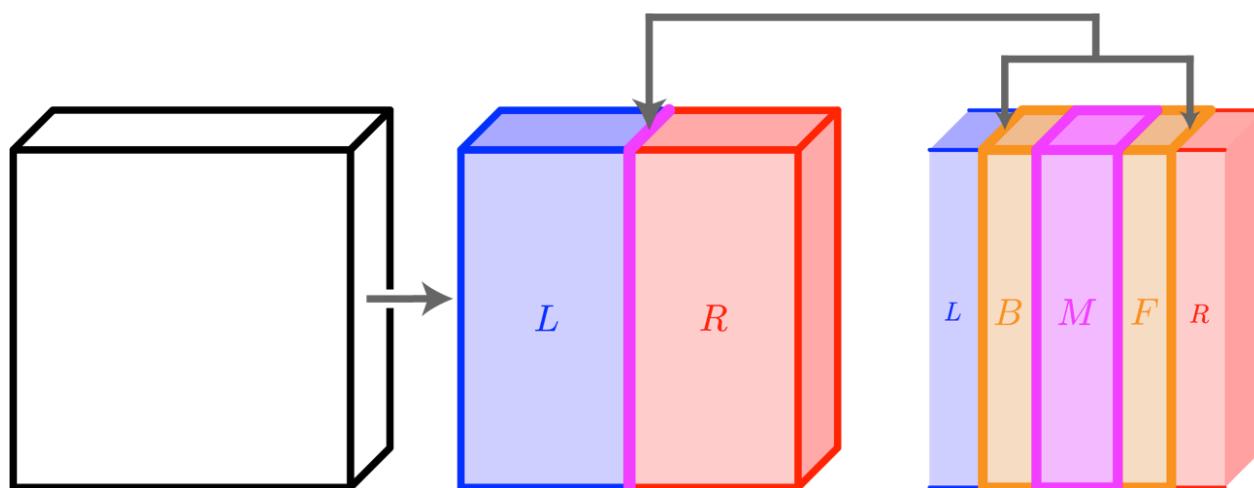
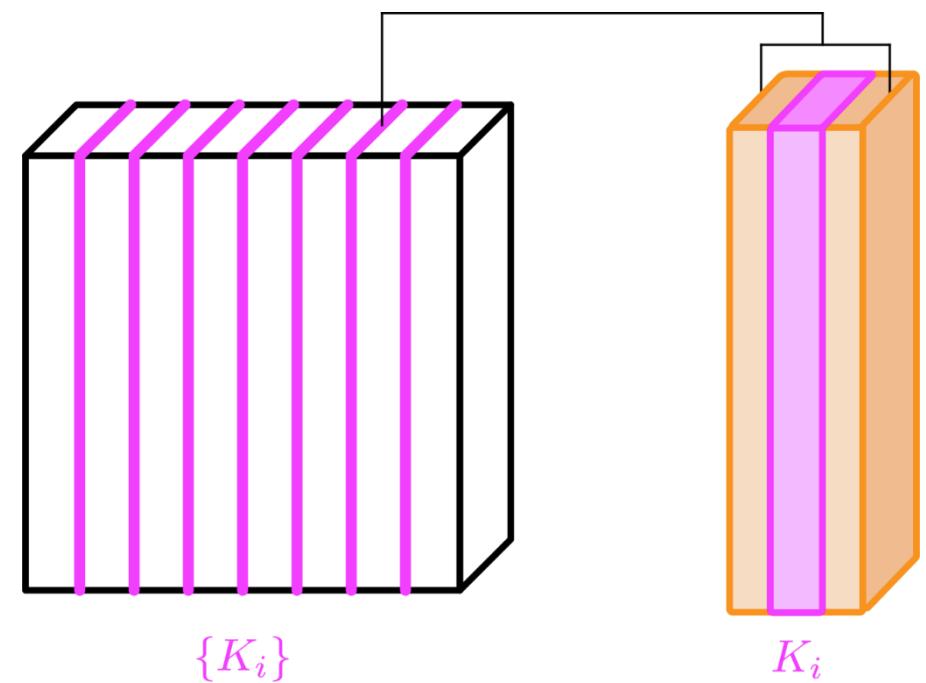
# 3D Circuits – Divide-and-Conquer



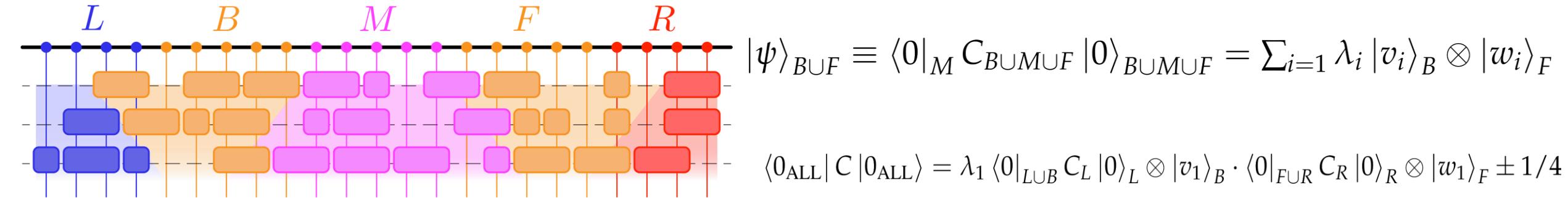
$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

$$\langle 0_{\text{ALL}} | C | 0_{\text{ALL}} \rangle = \lambda_1 \langle 0 |_{I \cup B} C_L | 0 \rangle_I \otimes |v_1\rangle_B \cdot \langle 0 |_{E \cup R} C_R | 0 \rangle_R \otimes |w_1\rangle_E \pm 1/4$$

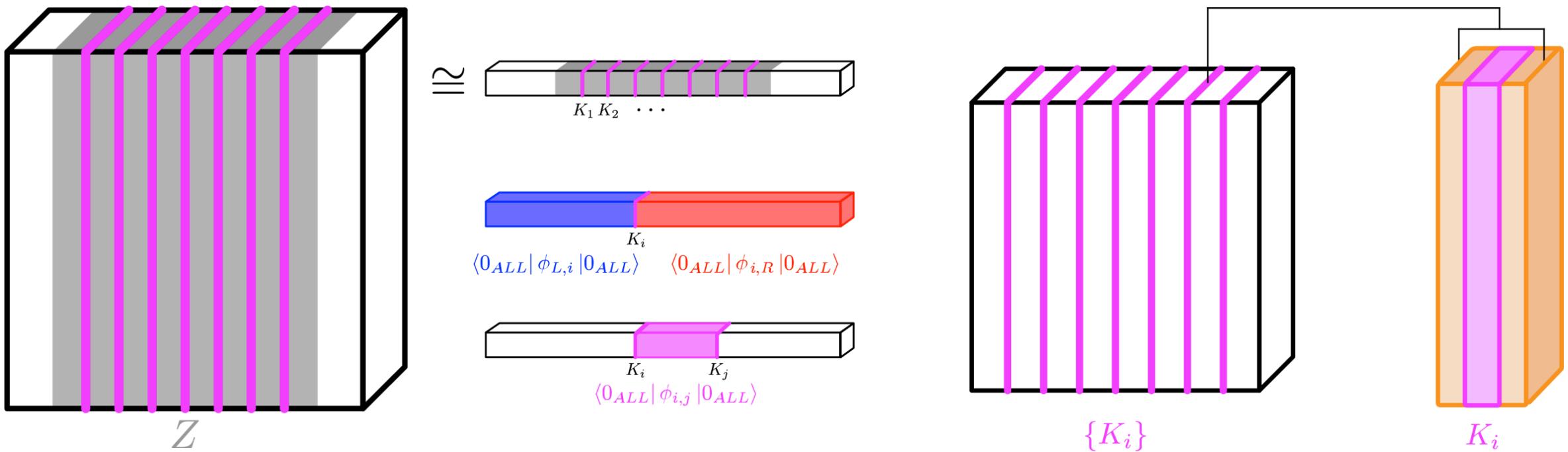
**Idea:** Instead of cutting at only one slice, which results in  $\frac{1}{4}$  additive error, cut at many slices, and do “Inclusion-Exclusion”.



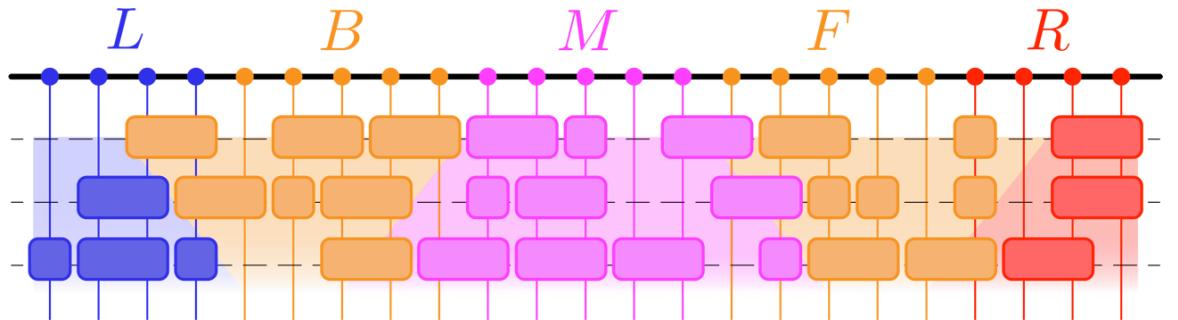
# 3D Circuits – Divide-and-Conquer



**Idea:** Instead of cutting at only one slice, which results in  $\frac{1}{4}$  additive error, cut at many slices, and do “Inclusion-Exclusion”.



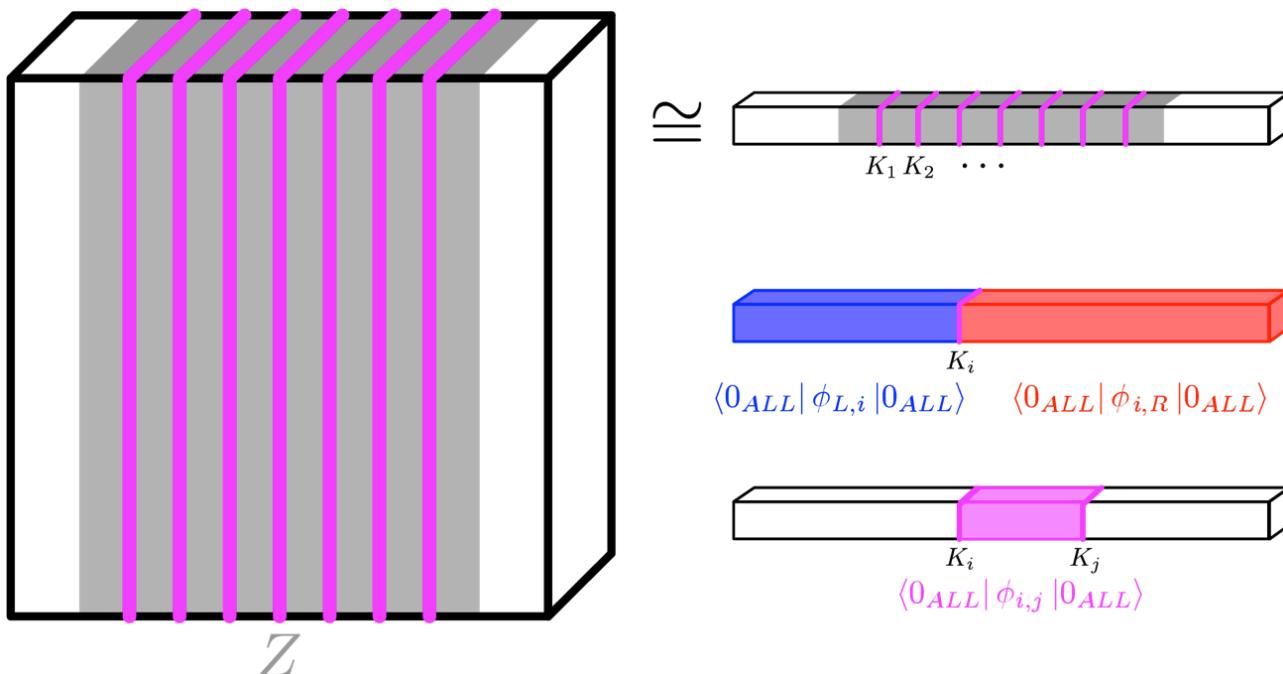
# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

$$\langle 0_{\text{ALL}} | C | 0_{\text{ALL}} \rangle = \lambda_1 \langle 0|_{L \cup B} C_L |0\rangle_L \otimes |v_1\rangle_B \cdot \langle 0|_{F \cup R} C_R |0\rangle_R \otimes |w_1\rangle_F \pm 1/4$$

**Idea:** Instead of cutting at only one slice, which results in  $\frac{1}{4}$  additive error, cut at many slices, and do “Inclusion-Exclusion”. **Theorem.**



$$\left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\|$$

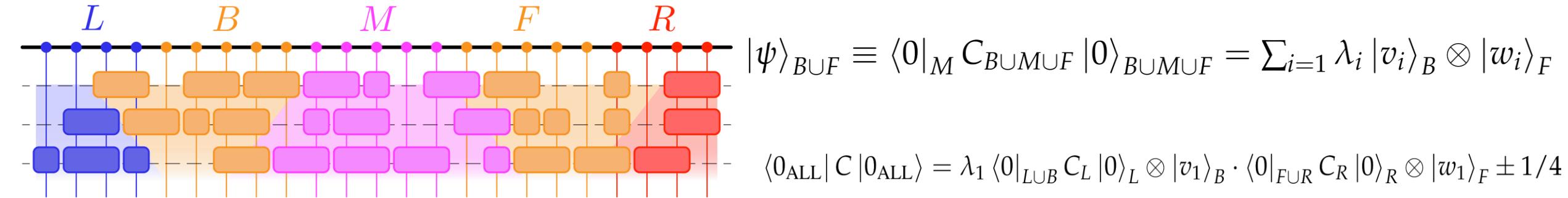
$$= \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta} \quad \text{Where } \lambda = \min_i \lambda_1^i \geq 3/4$$

$$\Psi_{\{i\}} = \phi_{L,i} \otimes \phi_{i,R}$$

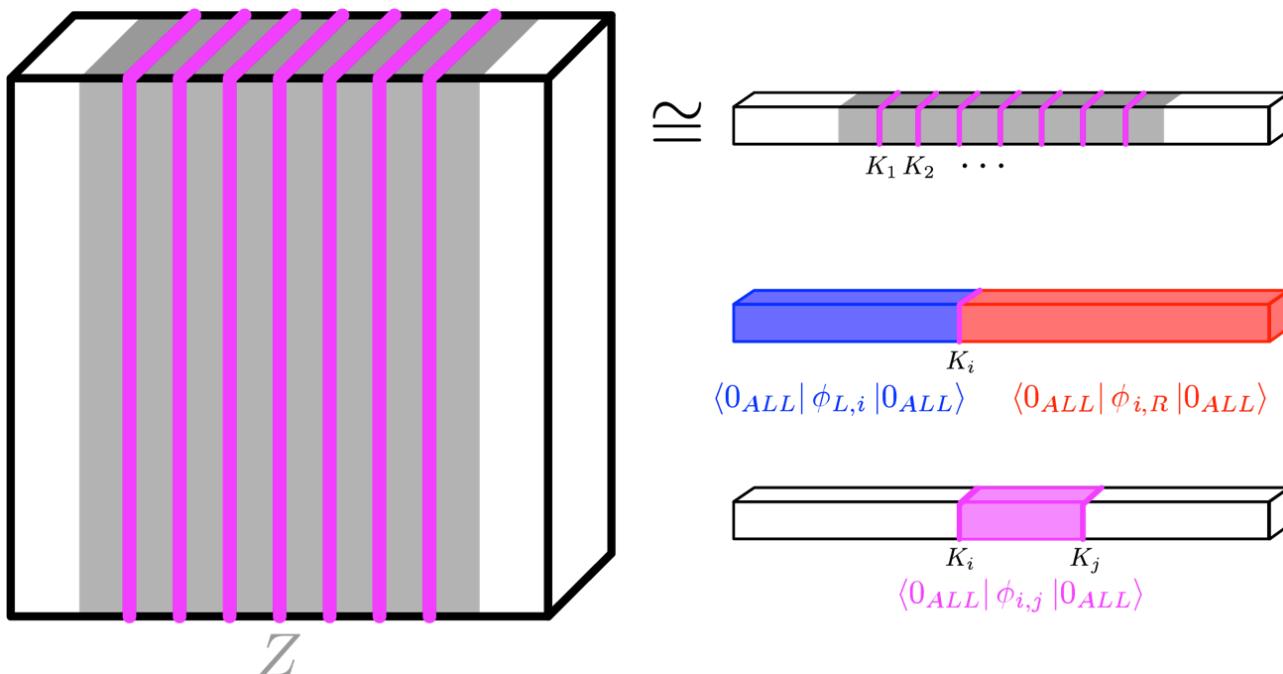
$$\Psi_{\{i,j\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{i,R}$$

$$\Psi_{\{i,j,k\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{j,k} \otimes \phi_{i,R}, \text{ etc.}$$

# 3D Circuits – Divide-and-Conquer



**Idea:** Instead of cutting at only one slice, which results in  $\frac{1}{4}$  additive error, cut at many slices, and do “Inclusion-Exclusion”.



$$\phi_{L,i} = C_{L_i} \left( |0_{L_i}\rangle \langle 0_{L_i}| \otimes |v_1\rangle \langle v_1|_{B_i} \right) C_{L_i}^\dagger$$

$$\phi_{i,R} = C_{R_i} \left( |0_{R_i}\rangle \langle 0_{R_i}| \otimes |w_1\rangle \langle w_1|_{F_i} \right) C_{R_i}^\dagger$$

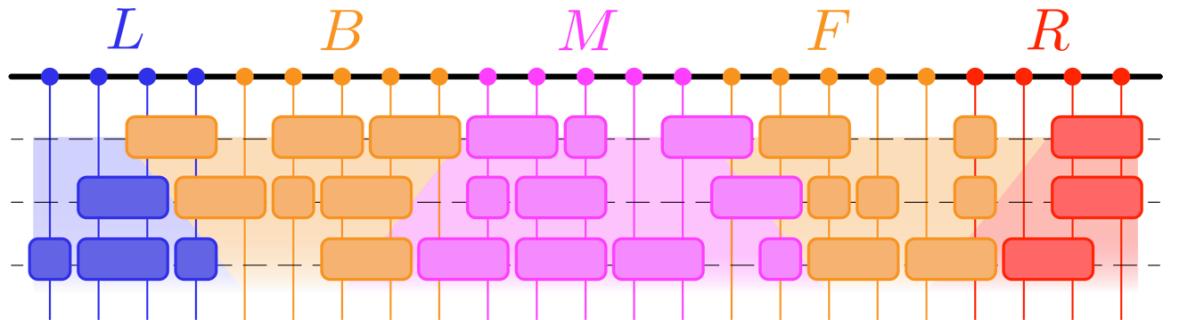
$$\phi_{i,j} = C_{i,j} \left( |w_1\rangle \langle w_1|_{F_i} \otimes |0_{[i,j]}\rangle \langle 0_{[i,j]}| \otimes |v_1\rangle \langle v_1|_{B_j} \right) C_{i,j}^\dagger$$

$$\Psi_{\{i\}} = \phi_{L,i} \otimes \phi_{i,R}$$

$$\Psi_{\{i,j\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{i,R}$$

$$\Psi_{\{i,j,k\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{j,k} \otimes \phi_{i,R}, \text{ etc.}$$

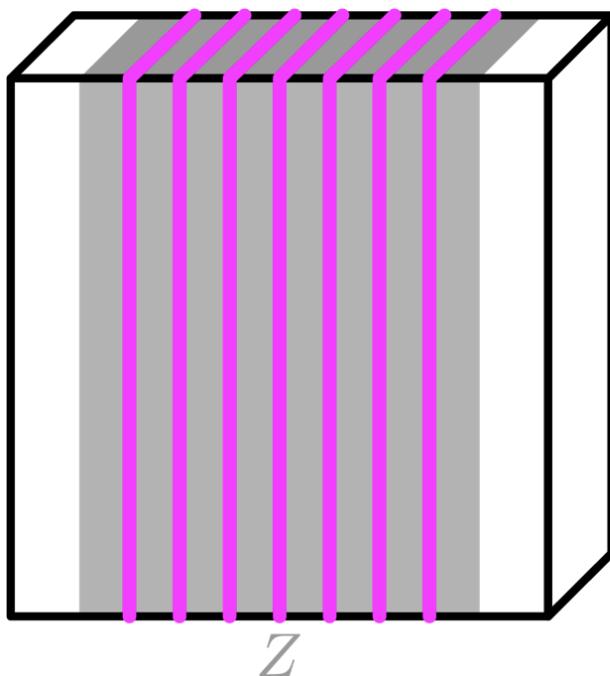
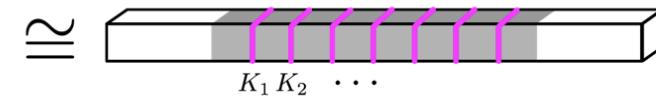
# 3D Circuits – Divide-and-Conquer



$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

$$\langle 0_{\text{ALL}} | C | 0_{\text{ALL}} \rangle = \lambda_1 \langle 0|_{L \cup B} C_L |0\rangle_L \otimes |v_1\rangle_B \cdot \langle 0|_{F \cup R} C_R |0\rangle_R \otimes |w_1\rangle_F \pm 1/4$$

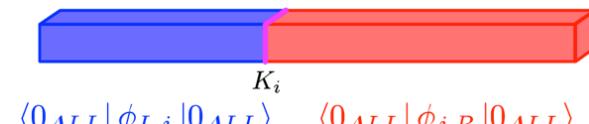
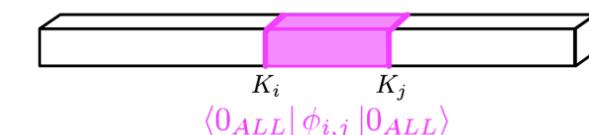
**Idea:** Instead of cutting at only one slice, which results in  $\frac{1}{4}$  additive error, cut at many slices, and do “Inclusion-Exclusion”.



$$\phi_{L,i} = C_{L_i} \left( |0_{L_i}\rangle \langle 0_{L_i}| \otimes |v_1\rangle \langle v_1|_{B_i} \right) C_{L_i}^\dagger$$

$$\phi_{i,R} = C_{R_i} \left( |0_{R_i}\rangle \langle 0_{R_i}| \otimes |w_1\rangle \langle w_1|_{F_i} \right) C_{R_i}^\dagger$$

$$\phi_{i,j} = C_{i,j} \left( |w_1\rangle \langle w_1|_{F_i} \otimes |0_{[i,j]}\rangle \langle 0_{[i,j]}| \otimes |v_1\rangle \langle v_1|_{B_j} \right) C_{i,j}^\dagger$$

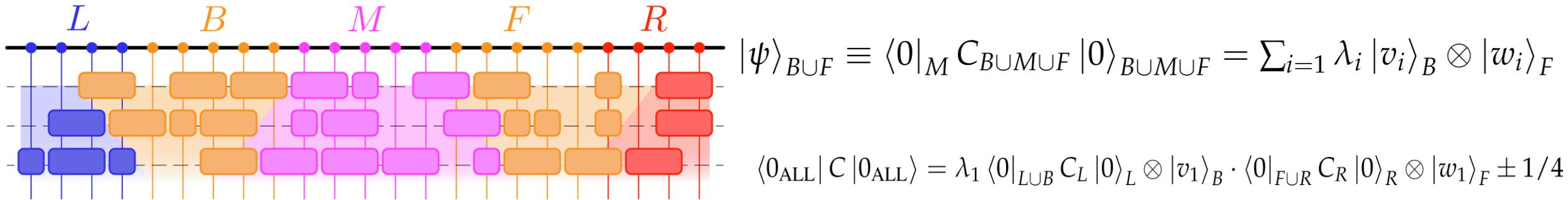


$\phi_{L,i}$ ,  $\phi_{i,R}$ , and  $\phi_{i,j}$  “synthesized” using:

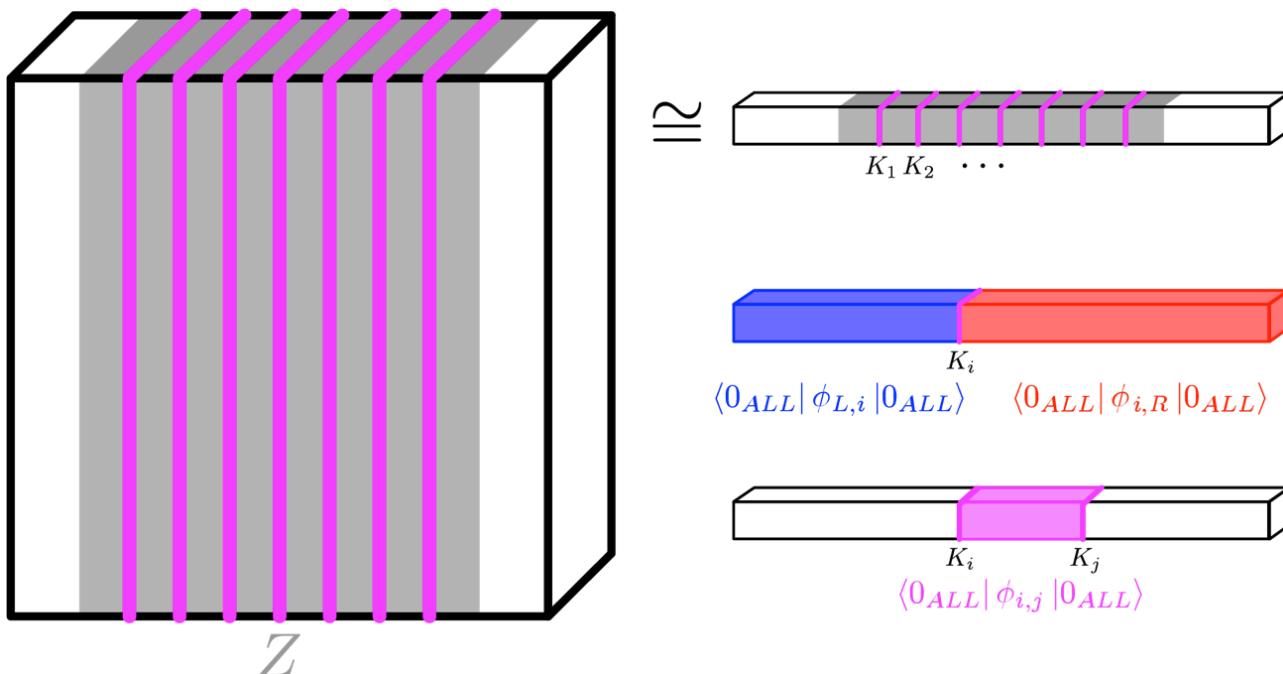
$$\langle 0_{\text{ALL}/F} | \prod_{i=1}^K (C_{B \cup M \cup F}^\dagger \otimes I_{F_1, \dots, F_K}) (I_{B \cup M} \otimes \text{SWAP}_{FF_i}) (C_{B \cup M \cup F} \otimes I_{F_1, \dots, F_K}) | 0_{\text{ALL}/F} \rangle$$

$$\approx |w_1\rangle \langle w_1|_F + O((3/4)^K)$$

# 3D Circuits – Divide-and-Conquer



**Idea:** Instead of cutting at only one slice, which results in  $\frac{1}{4}$  additive error, cut at many slices, and do “Inclusion-Exclusion”. **Theorem.**



$$\begin{aligned}
 & \left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\| \\
 &= \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta} \quad \text{Where } \lambda = \min_i \lambda_1^i \geq 3/4
 \end{aligned}$$

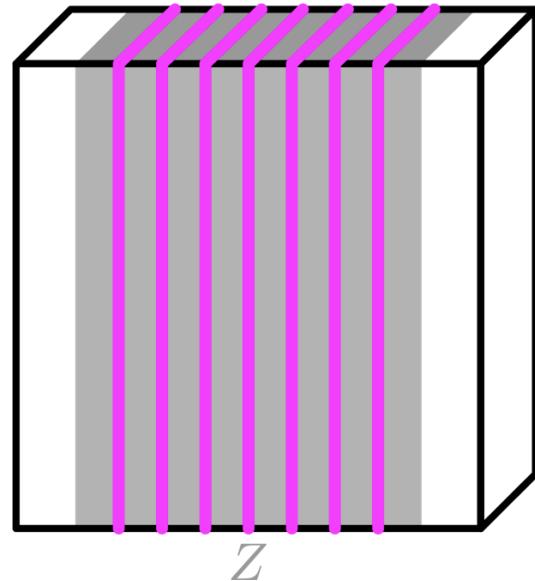
$\Psi_{\{i\}} = \phi_{L,i} \otimes \phi_{i,R}$

$\Psi_{\{i,j\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{i,R}$

$\Psi_{\{i,j,k\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{j,k} \otimes \phi_{i,R}, \text{ etc.}$

Theorem.

$$\left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\| \\ = \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta}$$

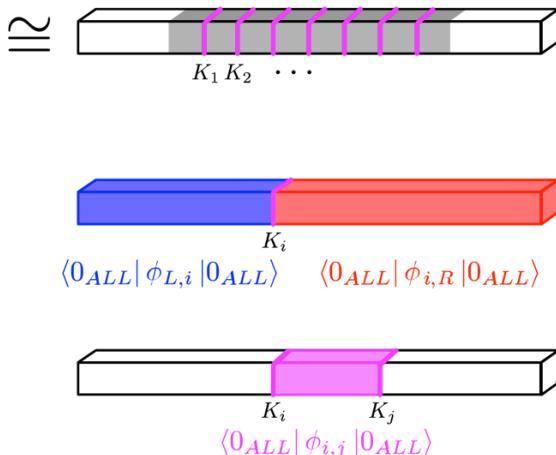


## Recursive Algorithm:

$$\mathcal{A}(C, \eta, \Delta, \mathcal{B})$$

- To compute the quantity

$$|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm O(1/n^{\log(n)}).$$



- Find  $\Delta \sim \log(n)$  light-cone-separated, “heavy” cuts  $\{K_i : i \in I\}$  within  $\log^5(n)$  of the center.
- For each  $i \in I$ , approximate  $\lambda_1^i$ , and circuit diagrams for  $\phi_{L,i}, \phi_{i,j}, \phi_{j,R}$ .

**Return:**  $\sum_{i=1}^{\Delta} \frac{1}{(\lambda_1^i)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{i,R}, \eta - 1)$

$$- \sum_{i=1}^{\Delta} \sum_{j=i+1}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{B}(\phi_{i,j}, \epsilon) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$+ \sum_{i=1}^{\Delta} \sum_{j=i+2}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

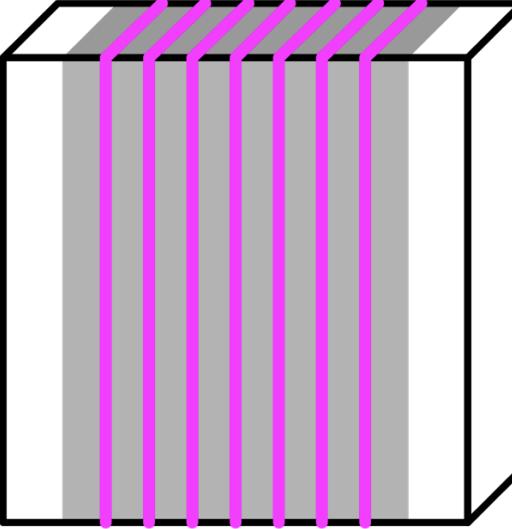
$$\cdot \left[ \sum_{\sigma \in \mathcal{P}(\{j-1, \dots, i+1\})} (-1)^{|\sigma|+1} \mathcal{B} \left( \phi_{i,\sigma_1} \otimes_{k \in |\sigma|-1} \phi_{\sigma_k, \sigma_{k+1}} \otimes \phi_{\sigma_{|\sigma|}, \sigma_j}, \frac{\epsilon}{2^\Delta} \right) \right]$$

$$\Psi_{\{i\}} = \phi_{L,i} \otimes \phi_{i,R}$$

$$\Psi_{\{i,j\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{i,R}$$

$$\Psi_{\{i,j,k\}} = \phi_{L,i} \otimes \phi_{i,j} \otimes \phi_{j,k} \otimes \phi_{i,R}, \text{ etc.}$$

**Theorem.**

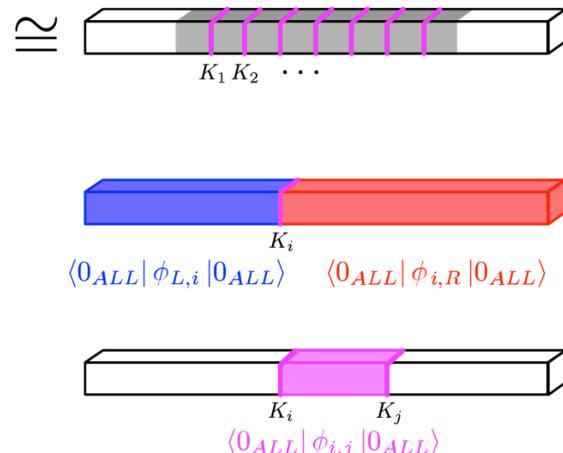
$$\left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\| \\ = \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta}$$


# Recursive Algorithm:

$\mathcal{A}(C, \eta, \Delta, \mathcal{B})$

- To compute the quantity

$$|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm O(1/n^{\log(n)}).$$



**Return:**  $\sum_{i=1}^{\Delta} \frac{1}{(\lambda_1^i)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{i,R}, \eta - 1)$

$$- \sum_{i=1}^{\Delta} \sum_{j=i+1}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{B}(\phi_{i,j}, \epsilon) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$+ \sum_{i=1}^{\Delta} \sum_{j=i+2}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$\cdot \left[ \sum_{\sigma \in \mathcal{P}(\{j-1, \dots, i+1\})} (-1)^{|\sigma|+1} \mathcal{B} \left( \phi_{i,\sigma_1} \otimes_{k \in |\sigma|-1} \phi_{\sigma_k, \sigma_{k+1}} \otimes \phi_{\sigma_{|\sigma|}, \sigma_j}, \frac{\epsilon}{2^\Delta} \right) \right]$$

Here  $\mathcal{A}(\phi, \eta - 1)$  is shorthand for  $\mathcal{A}(\phi, \eta - 1, \Delta, \mathcal{B})$ , and represents the algorithm  $\mathcal{A}$  making a recursive call to itself to approximate a smaller 3D circuit.

Here  $\mathcal{B}(\phi, \epsilon)$  represents a call to the 2D algorithm of [BGM20] to  $\epsilon$ -approximate a circuit that is “almost” 2D.

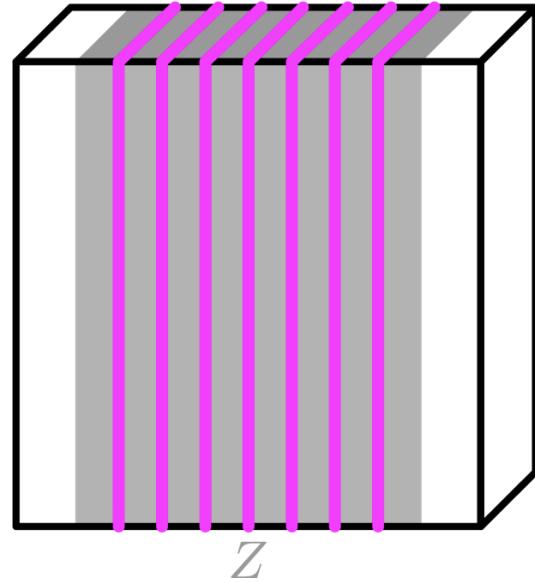
$$\phi_{L,i} = C_{L_i} \left( |0_{L_i}\rangle \langle 0_{L_i}| \otimes |v_1\rangle \langle v_1|_{B_i} \right) C_{L_i}^\dagger$$

$$\phi_{i,R} = C_{R_i} \left( |0_{R_i}\rangle \langle 0_{R_i}| \otimes |w_1\rangle \langle w_1|_{F_i} \right) C_{R_i}^\dagger$$

$$\phi_{i,j} = C_{i,j} \left( |w_1\rangle \langle w_1|_{F_i} \otimes |0_{[i,j]}\rangle \langle 0_{[i,j]}| \otimes |v_1\rangle \langle v_1|_{B_j} \right) C_{i,j}^\dagger$$

**Theorem.**

$$\left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\| = \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta}$$



Here  $\mathcal{A}(\phi, \eta - 1)$  is shorthand for  $\mathcal{A}(\phi, \eta - 1, \Delta, \mathcal{B})$ , and represents the algorithm  $\mathcal{A}$  making a recursive call to itself to approximate a smaller 3D circuit.

Here  $\mathcal{B}(\phi, \epsilon)$  represents a call to the 2D algorithm of [BGM20] to  $\epsilon$ -approximate a circuit that is “almost” 2D.

**Theorem.** This algorithm approximates the quantity  $|\langle 0^{\otimes n}| C |0^{\otimes n}\rangle|^2$  to additive error  $1/n^{\log(n)}$  in time  $n^{\text{polylog}(n)} 2^{d^3}$ .

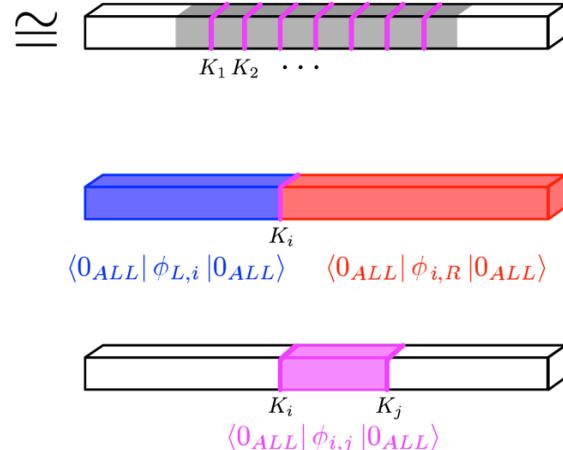
## Recursive Algorithm:

$\mathcal{A}(C, \eta, \Delta, \mathcal{B})$

- To compute the quantity

$$|\langle 0^{\otimes n}| C |0^{\otimes n}\rangle|^2 \pm O(1/n^{\log(n)}).$$

- Find  $\Delta \sim \log(n)$  light-cone-separated, “heavy” cuts  $\{K_i : i \in I\}$  within  $\log^5(n)$  of the center.
- For each  $i \in I$ , approximate  $\lambda_1^i$ , and circuit diagrams for  $\phi_{L,i}, \phi_{i,R}, \phi_{i,j}$ .



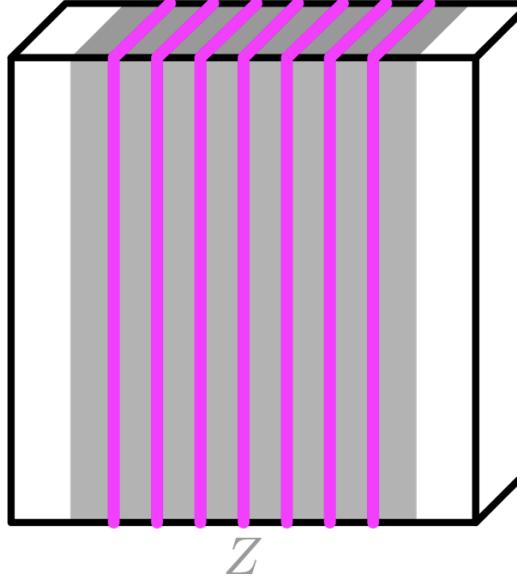
**Return:**  $\sum_{i=1}^{\Delta} \frac{1}{(\lambda_1^i)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{i,R}, \eta - 1)$

$$- \sum_{i=1}^{\Delta} \sum_{j=i+1}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{B}(\phi_{i,j}, \epsilon) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$+ \sum_{i=1}^{\Delta} \sum_{j=i+2}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$\cdot \left[ \sum_{\sigma \in \mathcal{P}(\{j-1, \dots, i+1\})} (-1)^{|\sigma|+1} \mathcal{B} \left( \phi_{i,\sigma_1} \otimes_{k \in |\sigma|-1} \phi_{\sigma_k, \sigma_{k+1}} \otimes \phi_{\sigma_{|\sigma|}, \sigma_j}, \frac{\epsilon}{2^\Delta} \right) \right]$$

**Theorem.**

$$\left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\| \\ = \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta}$$


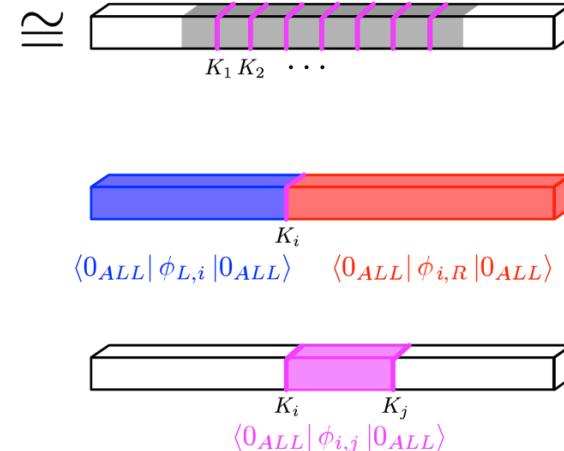
**Runtime Analysis:**

- Logarithmically many recursive steps.
- Instance size ``halves'' at each step.
- Quasipolynomial additive time cost at each step.
- Standard recursive time analysis gives Quasipolynomial runtime bound.

**Theorem.** This algorithm approximates the quantity  $|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2$  to additive error  $1/n^{\log(n)}$  in time  $n^{\text{polylog}(n)} 2^{d^3}$ .

## Recursive Algorithm:

$$\mathcal{A}(C, \eta, \Delta, \mathcal{B})$$



$$\text{Return: } \sum_{i=1}^{\Delta} \frac{1}{(\lambda_1^i)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{i,R}, \eta - 1)$$

$$- \sum_{i=1}^{\Delta} \sum_{j=i+1}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{B}(\phi_{i,j}, \epsilon) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$+ \sum_{i=1}^{\Delta} \sum_{j=i+2}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$\cdot \left[ \sum_{\sigma \in \mathcal{P}(\{j-1, \dots, i+1\})} (-1)^{|\sigma|+1} \mathcal{B} \left( \phi_{i,\sigma_1} \otimes_{k \in |\sigma|-1} \phi_{\sigma_k, \sigma_{k+1}} \otimes \phi_{\sigma_{|\sigma|}, \sigma_j}, \frac{\epsilon}{2^\Delta} \right) \right]$$

- To compute the quantity

$$|\langle 0^{\otimes n} | C | 0^{\otimes n} \rangle|^2 \pm O(1/n^{\log(n)}).$$

- Find  $\Delta \sim \log(n)$  light-cone-separated, ``heavy'' cuts  $\{K_i : i \in I\}$  within  $\log^5(n)$  of the center.
- For each  $i \in I$ , approximate  $\lambda_1^i$ , and circuit diagrams for  $\phi_{L,i}, \phi_{i,j}, \phi_{j,R}$ .

**Theorem.**

$$\left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\| \\ = \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta}$$

**Error Analysis:**

- Somewhat involved.
- Intuition follows from our two approximation theorems.

**Theorem.**  $\langle 0_{ALL/F} | \prod_{i=1}^K (C_{B \cup M \cup F}^\dagger \otimes I_{F_1, \dots, F_K}) (I_{B \cup M} \otimes \text{SWAP}_{FF_i}) (C_{B \cup M \cup F} \otimes I_{F_1, \dots, F_K}) | 0_{ALL/F} \rangle \\ \approx |w_1\rangle \langle w_1|_F + O((3/4)^K)$

**Theorem.** This algorithm approximates the quantity  $|\langle 0^{\otimes n}| C |0^{\otimes n}\rangle|^2$  to additive error  $1/n^{\log(n)}$  in time  $n^{\text{polylog}(n)} 2^{d^3}$ .

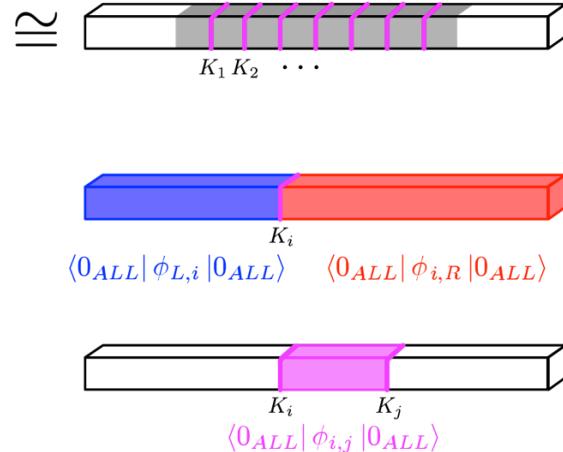
# Recursive Algorithm:

$\mathcal{A}(C, \eta, \Delta, \mathcal{B})$

- To compute the quantity

$$|\langle 0^{\otimes n}| C |0^{\otimes n}\rangle|^2 \pm O(1/n^{\log(n)}).$$

- Find  $\Delta \sim \log(n)$  light-cone-separated, “heavy” cuts  $\{K_i : i \in I\}$  within  $\log^5(n)$  of the center.
- For each  $i \in I$ , approximate  $\lambda_1^i$ , and circuit diagrams for  $\phi_{L,i}, \phi_{i,R}, \phi_{j,R}$ .



**Return:**  $\sum_{i=1}^{\Delta} \frac{1}{(\lambda_1^i)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{i,R}, \eta - 1)$

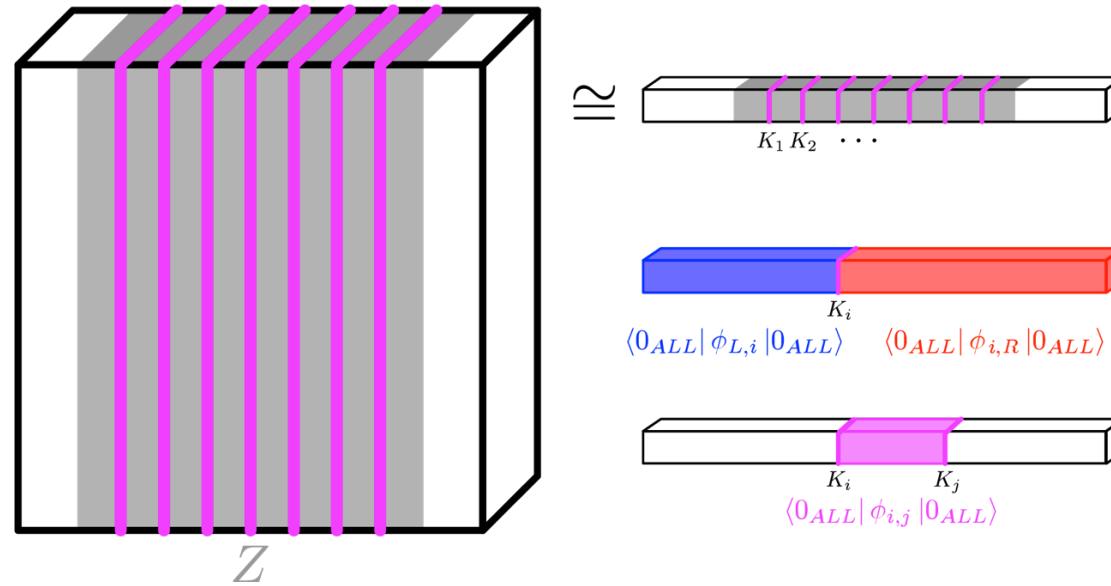
$$- \sum_{i=1}^{\Delta} \sum_{j=i+1}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{B}(\phi_{i,j}, \epsilon) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$+ \sum_{i=1}^{\Delta} \sum_{j=i+2}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta - 1) \cdot \mathcal{A}(\phi_{j,R}, \eta - 1)$$

$$\cdot \left[ \sum_{\sigma \in \mathcal{P}(\{j-1, \dots, i+1\})} (-1)^{|\sigma|+1} \mathcal{B} \left( \phi_{i,\sigma_1} \otimes_{k \in |\sigma|-1} \phi_{\sigma_k, \sigma_{k+1}} \otimes \phi_{\sigma_{|\sigma|}, \sigma_j}, \frac{\epsilon}{2^\Delta} \right) \right]$$

**Theorem.**

$$\left\| C |0^{\otimes n}\rangle \langle 0^{\otimes n}| C^\dagger - \sum_{\sigma \in \mathcal{P}([\Delta])} (-1)^{|\sigma|+1} \Psi_\sigma \right\| \\ = \left( \frac{1-\lambda}{\lambda} \right)^\Delta \leq \frac{1}{2^\Delta}$$

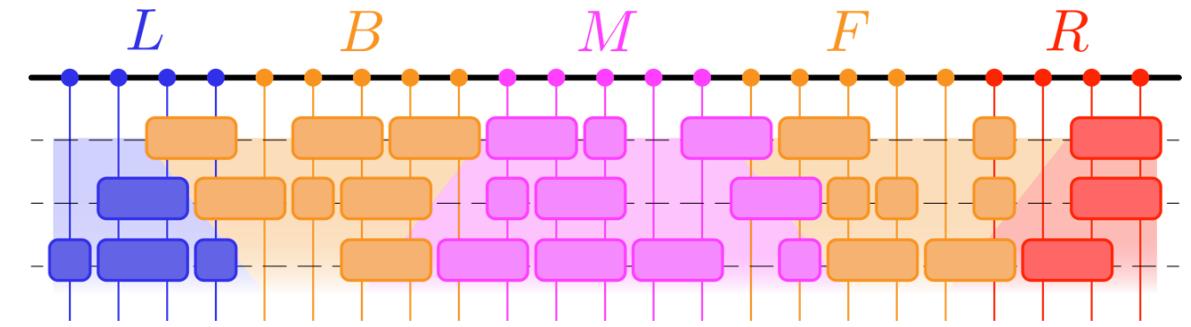


$$\langle 0_{ALL/F} | \prod_{i=1}^K (C_{B \cup M \cup F}^\dagger \otimes I_{F_1, \dots, F_K}) (I_{B \cup M} \otimes \text{SWAP}_{FF_i}) (C_{B \cup M \cup F} \otimes I_{F_1, \dots, F_K}) | 0_{ALL/F} \rangle \\ \approx |w_1\rangle \langle w_1|_F + O((3/4)^K)$$

**Theorem.** This algorithm approximates the quantity  $|\langle 0^{\otimes n}| C |0^{\otimes n}\rangle|^2$  to additive error  $1/n^{\log(n)}$  in time  $n^{\text{polylog}(n)} 2^{d^3}$ .

$$|\psi\rangle_{B \cup F} \equiv \langle 0|_M C_{B \cup M \cup F} |0\rangle_{B \cup M \cup F} = \sum_{i=1} \lambda_i |v_i\rangle_B \otimes |w_i\rangle_F$$

Questions?



$$\phi_{L,i} = C_{L_i} \left( |0_{L_i}\rangle \langle 0_{L_i}| \otimes |v_1\rangle \langle v_1|_{B_i} \right) C_{L_i}^\dagger$$

$$\phi_{i,R} = C_{R_i} \left( |0_{R_i}\rangle \langle 0_{R_i}| \otimes |w_1\rangle \langle w_1|_{F_i} \right) C_{R_i}^\dagger$$

$$\phi_{i,j} = C_{i,j} \left( |w_1\rangle \langle w_1|_{F_i} \otimes |0_{[i,j]}\rangle \langle 0_{[i,j]}| \otimes |v_1\rangle \langle v_1|_{B_j} \right) C_{i,j}^\dagger$$

**Return:**

$$\sum_{i=1}^{\Delta} \frac{1}{(\lambda_1^i)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta-1) \cdot \mathcal{A}(\phi_{i,R}, \eta-1) \\ - \sum_{i=1}^{\Delta} \sum_{j=i+1}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta-1) \cdot \mathcal{B}(\phi_{i,j}, \epsilon) \cdot \mathcal{A}(\phi_{j,R}, \eta-1) \\ + \sum_{i=1}^{\Delta} \sum_{j=i+2}^{\Delta} \frac{1}{(\lambda_1^i \lambda_1^j)^{4K+1}} \mathcal{A}(\phi_{L,i}, \eta-1) \cdot \mathcal{A}(\phi_{j,R}, \eta-1)$$

$$\cdot \left[ \sum_{\sigma \in \mathcal{P}(\{j-1, \dots, i+1\})} (-1)^{|\sigma|+1} \mathcal{B} \left( \phi_{i,\sigma_1} \otimes_{k \in |\sigma|-1} \phi_{\sigma_k, \sigma_{k+1}} \otimes \phi_{\sigma_{|\sigma|}, \sigma_j}, \frac{\epsilon}{2^\Delta} \right) \right]$$