Quasi-polynomial Time Approximation
of Output Probabilities of Low-depth,
Geometrically-local Quantum Circuits

Nolan Coble Matthew Coudron
UMD Math NIST/QuICS UMD

Problem Statement

Let C be a geometrically local, low-depth * Goal: Compute the quantity

(logarithmic depth) quantum circuit acting | (x| C |0%™) \2 T €.
on n qubits.

< ’ What is the classical complexity
X of approximating | (x|C[0%")|?

a a to additive error €?
(- D0 D O
Depth 1 -+ (IO} L0000 -
i q} | |][| |][| |]{| |} J— . 1-Dimensional Case.

Let C be a 2D geometrically local, low-depth

Problem Statement

(logarithmic depth) quantum circuit acting
on n qubits.

Depth {

@ﬁ

IM

AR ==t

) Aj § N
-

j.u‘ i

“‘éw:w e
o .1-0000
B emfrnis 1
T I -;7
iz

Goal: Compute the quantity
‘ (x\ C ‘0®n> ‘2 T €.

What is the time complexﬂ;/ of
approximating | (x| C|[0%")
to additive error €?

2-Dimensional Case.

Must solve worst-case over
such circuits.

Arbitrary 2-qubit gates allowed.

Problem Statement

. e Goal: Compute the quantity
Let C be a 3D geometrically local, low-depth

(logarithmic depth) quantum circuit acting | (x| C|0®") \2 4 €.
onh n qubits.

What is the time complexity of
approximating |(x|C|0®") > to
additive error €?

R 3-Dimensional Case.

Must solve worst-case over such
circuits.

Depth { Use your imagination. Arbitrary 2-qubit gates allowed.

Motivation
* Goal: Compute the quantity

Let C be a geometrically local, low-depth | (x| C|0%") |? Le.
(logarithmic depth) quantum circuit acting
onh n qubits.

* Why should we care about this
task?

« When € < 272 this task is #P-
Hard [Movassagh?20].

* So € parametrizes difficulty.

'''''

Q©n
‘) * So, can only hope to solve

efficiently when € » 2772,

Motivation
* Goal: Compute the quantity

Let C be a geometrically local, low-depth | (x| C ‘O®n> ‘2 Le

(logarithmic depth) quantum circuit acting

on n qubits. * Why should we care about this
task for € ~ pobl,(n)?

* Relevant for classically
simulating some hybrid
guantum algorithms.

* Quantum circuit C composed
with some classical post-
processing.

Motivation
* Goal: Compute the quantity

Let C be a geometrically local, low-depth | (x| C ‘O®n> ‘2 Le

(logarithmic depth) quantum circuit acting

on n qubits. * Why should we care about this
task for € ~ pol;(n)?

e Qur algorithm can estimate this
output bit when
* Prigssicar = AND
| <O®n’ X@nc ‘O®n> |2 + e
* Prigssicar = OR
1—|(0%" C|0%") |? +e.
* Prigssicar = XOR
| <0®”‘ Cz®nc+ |0®n> |2 + e

A

S

WLOG can focus on | (0%"| C [09") |2 L€, since | (x| C [09") |* = | (0%"|TT; X C |0%™) |2,

Motivation
* Goal: Compute the quantity

Let C be a geometrically local, low-depth | <O®n’ C |0®n> |2 1e
logarithmic depth) quantum circuit actin
f)ngn qubits. Pth) o 5 * Why should welcare about this
task for e ~ ?
poly(n)

e R

e Can also estimate:
| (0%"| C(TT; P;)CT 07 |? £ €.

* Techniques: Controlling global
correlations even though
lightcones overlap!

A

S

WLOG can focus on | (09| C [0%") |2 L€, since | (x| C [09") |2 = | (0®"|[T; X*C [0%") |2.

Background

Let C be a geometrically local, low-depth
(logarithmic depth) quantum circuit acting

on

Depth 7 -

n qubits.

(x|
i T
()| D0 D |
(0 | O | {00
Q} DI | 00

* Goal: Compute the quantity
‘ <O®n’ C |O®n> ‘2 T €.

 What is the classical complexity
of approximating | (x| C|0®") |?
to additive error €?

 Well known solutions to 1D case
in poly-time:

e.g. Matrix Product States.

Background

* Goal: Compute the quantit
Let C be a 2D geometrically local, low-depth P . Y

(logarithmic depth) quantum circuit acting | (09| C|0%") | €.
on n qubits.
 What is the time complexity o
(x| approximating | (x| C|0%") |?
, o A R to additive error €7
g e e e e s e — :
= 4_;3_: e 4-*&%1 Zz== | | * Polynomial time solution to
e Frrrrrrrrreas (5F the 2D problem is non-trivial:
Depth { s G L0000 G CI B« Elegant classical algorithm of
)L ’L" (L 41 o i.j+ .
B . S EXIEUE MENE S EL acucki [Bravyi, Gosset, Movassagh

* e-approximation in
poly(n, 1/ €) time.

Background

* Goal: Compute the quantity
Let C be a 3D geometrically local, low-depth (02| C |0%") |2 + €.
(logarithmic depth) quantum circuit acting
onh n qubits.

* What is the time complexity of
approximating |(x|C[0®*")|> to
additive error €?

e Techniques of [BGM20] may be limited
to sub-exponential time in the 3D case.

[0®™) < [Bravyi, Gosset, Movassagh ‘20], 3D
case:

e-approximation in pon(Z"l/s, 1/ €) time.

* Could 3D be drastically more complex
Depth { Use your imagination. than 2D?

Main Result

* Gives an inverse-polynomial additive
approximation for any polynomial
(asymptotically).

Let C be a 3D geometrically local, depth-d
guantum circuit acting on n qubits.

e Solves worst-case circuits.

* Allows arbitrary 2-qubit unitary
gates.

\O@’”) * We believe our result will generalize
to constant dimension D > 3, but we
only prove the 3D case.

Theorem. There exists a classical algorithm that approximates the quantity | (x| C [09") |?
to additive error 1/1n°8) for any x € {0,1}" in time nPolylos(m) 4

3D Circuits — A New Approach

* Unable to extend the [BGM?20] algorithm, we are forced to pursue a new
approach.

* |dea:
* Lightcones in low-depth geometrically local circuits are local.
* So, it is natural to consider a Divide-and-Conquer approach to estimating (0®"| C [0®").
* But, how should the division step work?

3D Circuits — Divide-and-Conquer

W) sur = (0lp Coumur |0) puaiur = Yoiz1 Ai [0i) g @ [wi) p

Imagine that this state has most of it’s mass in it’s top few Schmidt vectors across the division M.

p(n)
(0aLL| C |0aLL) = (OarL| Crur [0rur) ® |9Bur) & Y Ai (Oarn| Crur [0ur) ® [vi)p @ |wi)p
i=1
P(”)
Ai (010 CL10) @ [0i)p - (0p g Cr |0)g @ |wi)F
1

I:

The original quantity is close to a sum of a few 3D problems of about half the size!

This looks like the beginnings of Divide-and-Conquer.

3D Circuits — Divide-and-Conquer

M

‘][‘ |}[

1) sur = (0] p Coumur |0) puniur = Liz1 Ai [0i) g & |wi)

p(n)
(OaLL| C |0aLL) & Z Ai <O’LUB CL|0); ®vi)p - <0|FUR Cr|0)g ® |wi)p
i=1

Two Problems:
1) Why should the state have most of it’s mass on a few Schmidt coefficients?

2) We would need to construct the corresponding Schmidt vectors via low-
depth, geometrically local quantum circuits. Not clear how to do this.

3D Circuits — Divide-and-Conquer
M

R

1) sur = (0] p Coumur |0) puniur = Liz1 Ai [0i) g & |wi)

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local qguantum circuits?

Idea: Use Block-Encodings,

Lemma (Lemma 45 of [GSLW19]). The following is a 2D-local constant-depth
circuit which gives a block encoding for pr = trg(|¢) (|)

(CI-IB.’UMUF X Ip)(IBuM X SWAPI:FI)(CguMUp X Ip)

Traditionally used in quantum algorithms. Here we use them as a subroutine of a classical
alegorithm!

3D Circuits — Divide-and-Conquer
R

M

1) sur = (0] p Coumur |0) puniur = Liz1 Ai [0i) g & |wi)

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local quantum circuits?

Idea: Use Block-Encodings,

That 1s,

or = tre(|9) (¥|z0r) = Oarr/Fl (Chumur ® Ir) (Isum © SWAPEp) (Cpumur @ Ipr) [0aLr /)

3D Circuits — Divide-and-Conquer
R

M

1) sur = (0] p Coumur |0) puniur = Liz1 Ai [0i) g & |wi)

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local quantum circuits?

Idea: Use Block-Encodings,
Furthermore,

or = (tre([9) ($lpue)"

K

= Oarr/el [I(Chumur ®© In,...5) (Ium © SWAPEE) (Cpumur ® Iy, k) [0aLL/E)
1

3D Circuits — Divide-and-Conquer
R

M

W) sur = 0]y Coumur |0) puniur = Liz1 Ai |0i) g @ |wi) p

Problem #2: How to construct the corresponding Schmidt vectors via low-depth,
geometrically local quantum circuits?

or = (tra(|9) (¥lpop))"

K
= (0ar/rl T T(Chumur ® Ik, k) (Isum © SWAPEE) (Cpumur © Iy, 1) [0aLL/)
i=1

~ v |w1) (w1|p when |A; — Ay| is sufficiently large.

3D Circuits — Divide-and-Conquer
M

W) sur = 0]y Coumur |0) puniur = Liz1 Ai |0i) g @ |wi) p

or = (tra(|9) <lP|BUF))

= (OarL/F| H(C}EuMUF ® Ir,,.. 5) (IBum @ SWAPFE) (Cpumur @ Ir,,. k) |0aLL/F)
i=1

~ v |w1) (w1|p when |A; — Ay| is sufficiently large.

Problem #1: Why should the state have most of it’s mass on a few Schmidt
coefficients? In particular, why should |A; — A;| even be non-zero?

3D Circuits — Divide-and-Conquer

ﬁ L B M F R
: *ﬁ e 8 |
[¥BuR) = (0] p Coumur [0) pupur = izt Ai [01)p @ [wi) p

Problem #1: Why should the state have most of it’s mass on a few Schmidt
coefficients? In particular, why should |A; — A,| even be non-zero?

Assume that (02| C |0%") > 1/nlo8("),

Lemma. In every interval of length log® (1) there are at least log(n) cuts K; sat-
isfying Ay > 3/4.

37
So, Ay — As| > 4\/_:const

3D Circuits — Divide-and-Conquer
R

—— L M

L # s

[we,ur) = (0] Cpumur

Assume that (0%"| C |0%") > 1/n'8("),

Lemma. In every interval of length 10g5(n) there are at least log(n) cuts K; sat-

isfying: |AL —Ah| > =" = const.

4

~ |wr) (wi|p +O((3/4)%)

So, we can find many cuts for which we can construct the
largest Schmidt vector with a depth-K, 2D local quantum
circuit! {K;}

3D Circuits — D|V|de and-Conquer

Recall: 19)sur = (0]a Coumur |0) pupur = Liz1Ai [0i) g ® |wi)p
Imagine that this state has most of it’s mass in it’s top few Schmidt vectors

across the division M.

(OarL| C|0aLL) = (OarL|Crur |Orur) ® |UBUE)

p(n) P(”)
R ZA (OaLL| Crur OLur) ® |0i)g @ |wi) p Ai (0lrup CL10); ® [0i)g - (O] r Cr [0) g @ |wi)
i=1 i=1

Problem: We can only construct the top Schmidt vector with a geometrically
local constant depth quantum circuit!

3D Circuits — Divide-and-Conquer

M

Recall: [¥)sur = (0lpr Coumur [0) gunir = izt Ai [0i)p ® [wi)p

Imagine that this state has most of it’s mass in it’s top few Schmidt vectors
across the division M.

(0arL| C|0arL) = (Oarr|Crur [Orur) ® |¥BUE)

p(n)

~) Ai{0arL| CLur [0LuR) ® [0:)p ® [wi) p & Ax (0] CL |0}, @ [01) - (Op g Cr 10) g @ [wi)p £1/4
=1

Problem: We can only construct the top Schmidt vector with a geometrically
local constant depth quantum circuit!

But this results in a constant sized error term since A1 > 3/4.

3D Circuits — Divide-and-Conquer

B M F R

]) sur = (0] Coumur [0) gupur = Lie1 Ai [0i)p @ [wi)

<0ALL| C ‘OALL> =M (OILUB) |0>L ® ’711)3 ' <0‘FUR Cr ‘0>R ® |w1>F +1/4

Idea: Instead of cutting at only one slice, which results in %2 additive error, cut
at many slices, and do “Inclusion-Exclusion”.

{K} K;

3D Circuits — Divide-and-Conquer

L B M F R

_) sur = (0] Coumur [0) gupur = Lie1 Ai [0i)p @ [wi)

[|]{l
) J -
-1 - ©(OAL/C0n) = A1 Ol CL 10, ® o1}y Ol Cr[0) ® o)y % 1/4

Idea: Instead of cutting at only one slice, which results in % additive error, cut
at many slices, and do “Inclusion-Exclusion”.

~ Iz
T K Ky «--
K;
(Oarrl?r.il0acr) (Oarr|®inrl|0arr)
Pl
| [S
K, K;
(Oarr| ®i;10aLL) ./

{K:} K;

3D Circuits — Divide-and-Conquer

L B M I R

) sur = (0] Coumur [0) gupur = Lie1 Ai [0i)p @ [wi)

<0ALL| C ‘OALL> =M (OILUB) |0>L ® ’01>B ' <0‘FUR Cr ‘O>R ® |w1>F +1/4

Idea: Instead of cutting at only one slice, which results in % additive error, cut
at many slices, and do “Inclusion-Exclusion”. Theorem.

C ‘0®n> <O®n‘ ct— Z (_1)|or|—|—111j6r
ceP([A])

112

A
— u < i Where A = min A} > 3/4
A — 28 !

[
(DALL|(f’L,i0ALLI§i (Oarr|dir|0aLL) T{l} — 4)L/l ® ¢11R

‘ = 1) =PLi®dijQPir

K, K;

. Oazel dis 104z0) ‘Y{i,]',k} = ¢r; ® (Pi,j = (Pj,k ® ¢; r, etc.

3D Circuits — Divide-and-Conquer

L B M I R

]) sur = (0] Coumur [0) gupur = Lie1 Ai [0i)p @ [wi)

<0ALL| C ‘OALL> =M (OILUB) |0>L ® ’01>B ' <0‘FUR Cr ‘O>R ® |w1>F +1/4

Idea: Instead of cutting at only one slice, which results in % additive error, cut

at many slices, and do “Inclusion-Exclusion”.
¢ri = Cu, (100) (0] @ [or) (o],) CF,

iR = CRi (‘ORi> (ORi| ® |w1) (w1|1-}-) C;rii

¢ij = Cij (|w1> (wip, ® O[i,ﬂ> <0[i,j] ® [v1) <01‘Bj) of
e —
(DALLWL@OALLI)Q (Oarr|®ir|0aLL) T{l} — ¢L,l ® ¢1,R

i o 7 Tin =0Li®eiiQPir

K, K;

7 (Oarc| @iy (0aLL) T{l,],k} — ¢L,1 ® (Pl/] ® qb],k ® ¢i,R, etc.

112

3D Circuits — Divide-and-Conquer

B M F R

) sur = (0] Coumur [0) gupur = Lie1 Ai [0i)p @ [wi)

<0ALL| C ‘OALL> =M (OILUB) |0>L ® ’711)3 ' <0‘FUR Cr ‘0>R ® |w1>F +1/4

Idea: Instead of cutting at only one slice, which results in % additive error, cut

at many slices, and do “Inclusion-Exclusion”.
¢ = C, (|0Li> <0Lz‘| ® |o1) <01|Bi) CI:

— e 7 %Rr=Cx (\UR,-> (Or; | @ [wr) <w1|p,.) Ck
K Ky +«- +
¢ij = Cij (|w1> (Wi, ® 0[i,j}> <0[i,j] @ [v1) (Ul\B) Cij

¢1,i, $ir, and ¢; ; “synthesized” using:

OFYFARIR \OALL) (Oarr|®ir|0aLL)

112

(Oarr/rl H Chumur @ I,) (Teum © SWAPEE) (Caumur ® Tr,,.. k) 10ALL/F)
P V4 — i=1
| — D~ o) (waly + 0((3/9)%)
K; K;
(Oarr| ®i;10aLL)

3D Circuits — Divide-and-Conquer

L B M I R

) sur = (0] Coumur [0) gupur = Lie1 Ai [0i)p @ [wi)

<0ALL| C ‘OALL> =M (OILUB) |0>L ® ’01>B ' <0‘FUR Cr ‘O>R ® |w1>F +1/4

Idea: Instead of cutting at only one slice, which results in % additive error, cut
at many slices, and do “Inclusion-Exclusion”. Theorem.

C ‘0®n> <O®n‘ ct— Z (_1)|or|—|—111j6r
ceP([A])

112

A
— u < i Where A = min A} > 3/4
A — 28 !

[
(DALL|(f’L,i0ALLI§i (Oarr|dir|0aLL) T{l} — 4)L/l ® ¢11R

‘ = 1) =PLi®dijQPir

K, K;

. Oazel dis 104z0) ‘Y{i,]',k} = ¢r; ® (Pi,j = (Pj,k ® ¢; r, etc.

Theorem.

CloPy (0| ct - Y (-1,

ceP([A])

Recursive Algorithm:

A(C,11,A,B) + To compute the quantity
| (O®n| C ’0®n> |2 1 O(l/nlog(n)).

A
— * Find A~log(n) light-cone-

A
separated, ”heavy” cuts {K;:i €

& 71 I } within log®(n)of the center.

Oare] b1 0azs) Oare] donl0ass) * Foreachi € I, approximate
AL, and circuit diagrams for

¢ i 0 qu,l, biirdjr -

~ (Oarz| o AU4LL
Return: g (/\ ik A(pri,n—1)- Alpir, 1 —1)
A A 1
Ty =i QiR -3). 7 Aj)4K+1A((PL’i’17 —1)-B(¢ij€) - Alpjr 1 — 1)
i=1j=i+1
Yin =9 ®¢ijQPir R 11
+ — A(prin—1) - Al@jr 1 — 1)
Yiiny =i Qi Q@ Pjx D Pir, etc. ;]-:;z (A e IR

€

E (_1)‘U|+1B ((Piﬂl ®k€|a|—1 4)ka,(7k+1 ® (Pff\g\ﬂjf Z_A

ceP({j—1,i+1})

)

Theorem.

Recursive Algorithm:

CloPy (0| ct - Y (-1,

o€P((A)) A(C,1n,A,B) + To compute the quantity
A
_ (ﬂ) <1 [(02" C[0=7) [> £ O(1/n'8M),
LA) T2 ~ (e [. .
Kiky - * Find A~log(n) light-cone-
separated, ”heavy” cuts {K;:i €
s I } within log®(n)of the center.
(Oarr|?r |0ALLI§1 (0arz|?4,r10aLL) ¢ For eaCh 1 E I apprOX|mate
AL, and circuit diagrams for
| . —7 briv by i
(Oarr| i ‘UAJLL‘)
Z CR |
Return: i A(¢prin—1) - Algir, —1)
Here A(¢,n — 1) is shorthand for A(¢,n — 1, A, B), and represents the algo- =1 \ L \
rithm A making a recursive call to itself to approximate a smaller 3D circuit. 1
: v 2 Y o AL —1) - B(gije) - Al —1)
Here B(¢, €) represents a call to the 2D algorithm of [BGM20] to e-approximate i=1j=i+1 (/\1 Al) *
a circuit that is “almost” 2D. A A 1
+ - A irt] — 1)- A(¢; =1
¢1i = Cr, (10) (00| @ Jon) (21,) CF, I.;].:IZH (A AT sk (¢rin —1) - Algjr, 7 —1)
#ir = Cr, (108,) (Or,| @ [n) (w1l) CF, :
- (=D)B (910, Bkelel-1 P @ Poryicio a
(.bi,j = CI"]' (|ZU1> <ZU1|H & 0[1’]}> <0[1J] & |Ul) <01|B]_) CI] UE'P({]'E],,,,J'+1}) (L0 €|0'| T 041 Clo| /Y] ZA)

Theorem.

Recursive Algorithm:

CloPy (0| ct - Y (-1,

o€P((A)) A(C,1n,A,B) + To compute the quantity
_ (ﬂ)A <1 [{027 C|0=7) > £ O(1/n'o8™),
LA) T2 ~ (IR 7 . .
Kiky - * Find A~log(n) light-cone-
separated, ”heavy” cuts {K;:i €
s I } within log®(n)of the center.
(Oarr|?r |0ALLI§1 (0arz|?4,r10aLL) ¢ For eaCh 1 E I apprOX|mate
AL, and circuit diagrams for
| .-) ¢L,u i Pir -
(Oarr|®ij0aLL)
Z CR |
Retul’n. . (/\i)T-l—]A((PL’i’W — 1) . A(q)i,qu - 1)
Here A(¢, 17 — 1) is shorthand for A(¢, 7 — 1, A, B), and represents the algo- =131
rithm A making a recursive call to itself to approximate a smaller 3D circuit. A A 1
-) A(¢rin —1) - B(@ij,€) - Aldjr, 7 —1)

S5 (A}

Here B (q'), e) represents a call to the 2D algorithm of [BGM20] to e-approximate N
1

a circuit that is “almost” 2D.
1L e AL = 1) - Al — 1)
i—1 j=it+2 (AA)
Theorem. This algorithm approximates the quantity | (09" | C |0%") |? to additive
error 1/n1%8(") in time nPOylos(m)d, : E (_1)‘U|+1B ((Pz’a Dkelo|-1 Por011 @ ‘PU\ 0 %)]
1 - Ot o|/9
ceP({j—1,..i+1}) 2

Theorem.

Recursive Algorithm:

CloPy (0| ct - Y (-1,

o€P((A)) A(C,1n,A,B) + To compute the quantity
A
_ (ﬂ) <1 [(0" C[0%7) |* +O(1/nlogl).
LA — 24 = | [TTTT1] s . .
Kiky - * Find A~log(n) light-cone-
separated, ”heavy” cuts {K;:i €
= 0 I } within log®(n)of the center.
(OaLr| O |0ALLI§1 (0arr| ?i,r|0aLL) ¢ For eaCh 1 E I, apprOX|mate
', and circuit diagrams for
| 7T bLi%ip PR
(Oarr|®i; 0aLL)
’ Return: 3"
Runtime Analysis: e L (/\1-1)41<+1“4(4’LJ"7 — 1) Algir i —1)
e Logarithmically many recursive steps. A A 1
* Instance size ““halves” at each step. — Z Z Y 4K+1A((PL,1':77 —1)-B(¢ij€) - Alpjr, 1 —1)
« Quasipolynomial additive time cost at each step. 121]:;:1 (i)
e Standard recursive time analysis gives 1 Abrn—1) - Ald: w11 —1
Quasipolynomial runtime bound. +I.:ZU:§2 (MA{)ALKH (@rin =1) - Aljr 1 =1)
Theorem. This algorithm approximates the quantity | (0°"| C |0°") |? to additive . €
error 1/n'°8) in time ppolylog(n)pd® ' E (_1)\a|-|— B ((Pim ®ke|a|—1 (Pak,akH 03y (PU"U‘,(T]'I Z_A)

ceP({j—1,i+1})

Theorem.

Recursive Algorithm:

CloPy (0| ct - Y (-1,

eP(A]) A(C,1n,A,B) + To compute the quantity
) (%)A <y ~ (0P CIO°") £ O(1/mo8),
- kil * Find A~log(n) light-cone-

separated, ”heavy” cuts {K;:i €

s I } within log® (n)of the center.

Oaelbr410ass) (Onzelden(Oaze) * Foreachi € I, approximate
', and circuit diagrams for

¢ i 0 bLiPi i PR -

<fUALz,| Pi.j \U[j\jf,z,\?
.. YA A
Error Analysis: Return:) A(gLin 1) Algi 1~ 1)
. i (/\1)4K+1 ' ’
* Somewhat involved. =111
* Intuition follows from our two i f: 1 Al 1) B(¢i:,€) - Al 1)
_ ; irt] — ’ iir€) " Rt —
approximation theorems. i—1j=it1 (ALK Pra & Yin

A A
Theorem. (OALL/Fln Chumur @ Iry,.. k) (Isum @ SWAPEE) (Ceumur @ Iy, 5) [0aLL/E) + Z Z 1

i=1 - T
i=1 joit2 (ALA] 4K+

Alprin—1) - AlPjr, 11— 1)
~ |wr) (w1 +O((3/4)%)

Theorem. This algorithm approximates the quantity | (0°"| C |0°") |? to additive o1 €
o
' Z (_1) B ((Pz) ®ke|a| 1 (P(Tk Oi+1 ® (Pff\a\ 7; _)

error 1/n'°8) in time ppolylog(n)pd®, i A
ceP({j—1,.,i+1})

Theorem.
W) pur = (0la Ceumur [0) guniur = Liz1 Ai |0i) g @ |wi)

Questions?
L

C |O®n> <O®n’ C+ . Z (_1)|cr|—|—111;0

ceP([A])
1—A\% 1
— () <=
(77) <z

B M F R

= N
¢ = Cu, (100) (05| @ [o1) {ou,) CF,
S — i = Cr, ([08) (O] @ [w) (il) C
K; . +
(Oazr|¢ril0arr) {Oarc|dir|0aLr) Pij = CIJ (|w1) (w1|Fi ® O[fff]> <0[f,ﬂ ® [v1) <01|B;’) Cirf

A1
Return:) et AL —1) - Algir 1 — 1)
I E— =1 (M)

K, K,

(Oarr| ®ij0aLL)

A A
Z —ZE : A(prin—1)-B(¢ij€) AlPjr, 1 —1)

A
i= 1
~ fw) {wl +O((3/4)%) +2 L A(griin —1) - Ay = 1)

Theorem. This algorithm approximates the quantity | (09"| C |0%") |* ro additive

. 3 1 €
error 1/n'°8(") in time nPoYlog(n)2d” : E (_1) oI+ B ((Pi,ffl ®k€|g’|—1 (Pcrk,akH & (Pa‘(,‘,o'j; Z_A)]

|2

