
Fast estimation of outcome probabilities for quantum circuits

Hakop Pashayan,1, 2 Oliver Reardon-Smith,3 Kamil Korzekwa,3 and Stephen D. Bartlett4

1Institute for Quantum Computing and Department of Combinatorics
and Optimization, University of Waterloo, ON, N2L 3G1 Canada

2Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5 Canada
3Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland

4Centre for Engineered Quantum Systems, School of Physics,
The University of Sydney, Sydney, NSW 2006, Australia

(Dated: February 1, 2021)

We present two classical algorithms for the simulation of universal quantum circuits on n qubits
constructed from c instances of Clifford gates and t arbitrary-angle Z-rotation gates such as T
gates. Our algorithms complement each other by performing best in different parameter regimes.
The Estimate algorithm produces an additive precision estimate of the Born rule probability of a
chosen measurement outcome with the only source of run-time inefficiency being a linear dependence
on the stabilizer extent (which scales like ≈ 1.17t for T gates). Our algorithm is state-of-the-art
for this task: as an example, in approximately 25 hours (on a standard desktop computer), we
estimated the Born rule probability to within an additive error of 0.03, for a 50-qubit, 60 non-Clifford
gate quantum circuit with more than 2000 Clifford gates. The Compute algorithm calculates the
probability of a chosen measurement outcome to machine precision with run-time O

(
2t−r(t− r)t

)
where r is an efficiently computable, circuit-specific quantity. With high probability, r is very
close to min {t, n− w} for random circuits with many Clifford gates, where w is the number of
measured qubits. Compute can be effective in surprisingly challenging parameter regimes, e.g., we
can randomly sample Clifford+T circuits with n = 55, w = 5, c = 105 and t = 80 T -gates, and then
compute the Born rule probability with a run-time consistently less than 104 seconds using a single
core of a standard desktop computer. We provide a C+Python implementation of our algorithms.

I. INTRODUCTION

With the rapid advancement in experimental control over noisy intermediate-scale quantum (NISQ) systems [1],
claims of quantum advantage [2] have recently been made using several different platforms [3, 4]. Along with the
enormous challenges in building complex quantum devices that can exhibit quantum advantage, a complementary
but equally challenging problem is how to test if these devices are operating as intended. From the current NISQ
era until we achieve universal fault-tolerant quantum computers, we will need tools to compare classically-computed
theoretical predictions with the observed frequency of particular events generated by a quantum device. Techniques
such as direct fidelity estimation [5] already rely on such comparisons. Google’s recent demonstration [3] also used
classical algorithms for predicting features of the expected distribution of outcomes.

As the exact calculation of Born rule probabilities becomes increasingly difficult for larger and larger quantum
circuits, Born rule probability estimation techniques are becoming increasingly important. Innovations in techniques
for Born rule probability estimation will impact on the broader field of quantum characterization, verification and
validation [6]. Classical techniques for Born rule probability estimation also have an increasingly important role in
evaluating and developing proposals for NISQ device applications. For example, proposals for new kernel-method-
based quantum machine learning algorithms can be better evaluated using classical algorithms for additive polynomial
precision estimation of Born rule probabilities [7].

Brute force simulation algorithms such as Schrödinger-style [8], Feynman-style [9–11] or hybrid simulators [12]
offer high precision general purpose classical simulation capabilities for universal quantum circuits. However, such
simulations can be extremely resource intensive for moderate circuit width (number of qubits n ≈ 40) and/or depth.
Alternatively, there exist efficiently classically simulable families of (non-universal) quantum circuits [13–17]. In
particular, the Gottesman-Knill theorem makes it possible to classically simulate thousands of qubits with hundreds
of thousands of gates provided that we restrict to so-called stabilizer circuits [13].

In contrast to these two extremes, Aaronson and Gottesman [16] were the first to present a classical simulation
algorithm that is efficient for stabilizer circuits but can also simulate non-stabilizer circuits with a run-time cost that
is exponential in the number of non-stabilizer gates (non-Clifford gates). A limitation of this work is that the run-time
does not depend on the specifics of the additional non-stabilizer gates. Thus, their simulator pays a heavy run-time
penalty for introducing a small number of non-stabilizer gates even if these are only marginally far from stabilizer
gates. Research to overcome this limitation falls into two broad categories: Born rule probability estimators based
on using a quasi-probabilistic representation of the density matrix [18–25], and pure-state sampling simulators [26–
29]. While quasi-probabilistic simulators produce additive polynomial precision estimates of Born rule probabilities,

ar
X

iv
:2

10
1.

12
22

3v
1 

 [
qu

an
t-

ph
] 

 2
8 

Ja
n 

20
21



2

pure state sampling simulators have better run-time scaling in the exponential component. (Specifically, the latter’s
performance scales linearly rather than quadratically in a quantity known as the stabilizer extent [30], which is a
measure of how far a pure state is from the nearest stabilizer state.) However, pure state sampling simulators such as
that of Refs. [22, 29, 30] output samples from the approximate quantum outcome distribution rather than estimates
of Born probabilities. Used as a black-box, O

(
ε−2
)

samples from such a sampling algorithm can be used to produce

an additive ε-error Born probability estimator, but this contributes a further factor of O
(
ε−2
)

to the run-time that
in many practical regimes is already heavily dominated by the polynomial scaling components.

In this paper, we present an additive polynomial precision estimator of Born rule probabilities. Our estimator is
actually a pair of distinct algorithms that work as part of a larger procedure, utilizing their respective performance
advantages in complementary regimes, and is state-of-the-art for the task. The first of our pair of algorithms —
the Estimate algorithm — uses the pure state formalism, ensuring that our simulator scales linearly in the stabi-
lizer extent, quickly outperforming quasi-probabilistic simulators as the number of non-stabilizer elements increases.
Additionally, by extending existing methods and developing a number of new techniques, our estimation algorithm
performs many orders of magnitude faster than those of Refs. [29, 30] in certain practically relevant parameter regimes.

The second algorithm of our pair is Compute, a classical algorithm that computes exact Born rule probabilities
(up to machine precision). The run-time of this algorithm depends exponentially on the effective number (t − r) of
non-Clifford gates, where t is the original number of non-Clifford gates and r is a circuit-specific parameter which
can be efficiently pre-computed. This parameter r can generally be as large as the minimum of t and the number of
unmeasured qubits (n − w). Our Compute algorithm is complementary to Estimate, performing particularly well
for large circuits consisting of many Clifford elements, as observed through testing on random circuits. In this setting,
we observe that r is generically large (r ≈ min {t, n− w}). Alternatively, when r is small, our Estimate algorithm
outperforms Compute due to its run-time dependence on r3. This should be contrasted with the corresponding
factor of t3 in the run-time of the sampling algorithm of Ref. [29] and the factor of n3 in the run-time of the ‘sum
over Cliffords’ algorithm of Ref. [30].

The paper is structured as follows. In Section II, we provide a brief review of Born rule probability estimation
and previous results, and a high-level overview of our estimator, including how it works, the run-time of its various
components, and its performance for various parameter regimes of quantum circuits. In Sec. III we give details of the
ancillary Compress algorithm that directly leads to our Compute algorithm, and is used as a pre-processing to the
Estimate algorithm. The primary contribution of this paper, the Estimate algorithm, is presented and analyzed
in Secs. IV and V, with Sec. IV devoted to the crucial RawEstim subroutine of Estimate. We conclude with an
outlook in Sec. VI. We also provide several appendices containing further details on aspects of the new algorithms
and methods we present.

II. OVERVIEW

In this section, we present a high-level summary of the key results of our paper, including a statement of the problem
of Born rule probability estimation and related research on this topic, as well as our main contributions of a suite of
algorithms to perform Born rule probability estimation of universal quantum circuit families.

A. Statement of problem

Quantum circuits that initiate in a computational basis state, evolve under Clifford unitary transformations and
are measured in the computational basis are classically simulable by the Gottesman-Knill theorem [13, 16]. The group
of Clifford unitary transformations is generated by the gate-set {S,H,CX} (and contains CZ):

S ≡
[
1 0
0 i

]
, H ≡ 1√

2

[
1 1
1 −1

]
, CX ≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ ≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (1)

This gateset is promoted to universality by the inclusion of a non-Clifford gate, which is a diagonal gate

Tφ ≡
[
1 0
0 eiφ

]
, (2)

where φ ∈ (0, π/2) can be arbitrary. A standard choice is the T gate [31], defined with φ = π/4.



3

We consider a system composed of n qubits initially prepared in the state |0〉⊗n. The system then evolves according

to a unitary transformation U to the final state U |0〉⊗n. We consider circuits where U is constructed via a sequence
of elementary gates from the gate-set consisting of S,H,CX,CZ and Tφj gates, where each φj ∈ (0, π/2) can be
arbitrary. We will call such a description of the circuit an elementary description of U and reserve the variables c, h
and t to respectively denote the number of all Clifford gates, Hadamard gates and non-Clifford gates occurring in this

description. Associated with the non-Clifford gates Tφj , for j ∈ [t], are the non-stabilizer single qubit states |T †φj 〉 and

the product state |T †φ〉 defined by:

|T †φ〉 := |T †φ1
〉 ⊗ . . .⊗ |T †φt〉, |T †φj 〉 := T †φjH |0〉 . (3)

We use ξ∗ to denote the quantity known as the stablizer extent [30] of the state |T †φ〉, and we will formally define it

later (see Eq. (41) in Sec. IV). For the moment, we simply note that for single qubit product states the stabilizer

extent is multiplicative [30], i.e., ξ∗ is a product of stabiliser extents ξ(|T †φj 〉) (so that ξ∗ is a mild exponential in t),

and that the extent of the single qubit state ξ(|T †φ〉) is a simple function of φ that is upper bounded by ≈ 1.17.

Given some ordered subset J ⊆ [n] of w qubits to be measured in the computational basis and some outcome
x = (x1, . . . , xw) ∈ {0, 1}w, our aim is to compute or estimate the probability p(J , x) of observing the outcome x

when measuring the final state U |0〉⊗n. Without loss of generality, we will assume that the first w qubits are measured
and hence J = {1, . . . , w}. We refer to the first w qubits as the measured register ‘a’ and the remaining (n−w) qubits
as the marginalized register ‘b’. Our central goal is to exactly or approximately compute the Born rule probability:

p :=
∥∥∥〈x|a U |0〉⊗nab

∥∥∥2
2
. (4)

The Born rule probability in the above equation can be described by specifying n ∈ N, w ∈ [n], x ∈ {0, 1}w and an
elementary description of an n-qubit unitary U . We will refer to this information as an elementary description of p.

B. Related research

As described in the Introduction, methods for Born rule probability estimation generally fall into two categories:
one operating within the density state formalism, and the other focused on the setting of pure states.

In the density state formalism, algorithms known as quasi-probabilistic simulators [20–23] produce additive precision
estimates of Born rule probabilities. These algorithms represent the quantum density state as a linear combination
of a preferred set of operators known as a frame [23, 32]. Many frame choices have been considered including
Weyl-Heisenberg displacement operators [18–20], frames constructed from stabilizer states [21, 22] and phase-point
operators [23–25] used in the construction of the discrete Wigner function [33, 34]. Particularly relevant to our work
is the dyadic frame simulator of Seddon et al. [22]. In this simulator, density states are decomposed into a linear
combination of stabilizer dyads: operators of the form |L〉〈R| where |L〉 and |R〉 are pure stabilizer states. The
efficiently simulable circuits consist of initial states that are a tensor products of convex combination of stabilizer
dyads, stabilizer preserving operations including Clifford gates and computational basis measurements. These circuits
can be promoted to universality by allowing initial states to include many copies of a magic state: states that are not
a convex combination of stabilizer dyads and can be used to teleport non-Clifford gates into the circuit. The degree
to which the initial state’s optimal linear decomposition into stabilizer dyads departs from a convex combination is
quantified by the dyadic negativity. The run-time of the dyadic frame simulators depends quadratically on the dyadic
negativity. The dyadic negativity can in general be exponentially large and is the only source of run-time inefficiency.
Nevertheless, in contrast to the Aaronson and Gottesman simulator, the dyadic frame simulator’s run-time will be
responsive to the level of deviation from the efficiently simulable operations. The dyadic frame simulator of Ref. [22]
is the current state-of-the-art quasi-probabilistic simulator for simulating stabilizer circuits promoted to universality
via magic state injection.

In the pure state formalism, a number of works [26–28] have culminated in two important simulation algorithms
by Bravyi and Gosset (BG) [29]. The first of these, which we refer to as the BG-estimation algorithm, produces
multiplicative precision estimates of Born rule probabilities. The second of these, which we refer to as the BG-sampling
algorithm, approximately samples from the outcome distribution of the quantum circuit. These algorithms exactly or
approximately represent the initial quantum state by a linear combination of stabilizer states. The efficiently simulable
circuits consist of initial states that are a superposition of at most polynomially many stabilizer states, together with
Clifford gates and computational basis measurements. These circuits can be promoted to universality by allowing
initial states to include many copies of a magic state. The run-times of the BG-estimation and BG-sampling algorithms



4

Elementary
description of p Compress {X0, v, r,W,G} Return p = 0

x ∈ X0

Large rSmall r

Compute Return pEstimate(εtot, δtot)

p̂ s, L

RawEstim(s, L)

Return p̂

FIG. 1. Flowchart for our main algorithms. A component of the output of Compress is the identification of v measured
qubits which have a deterministic outcome. Here, X0 represents the set of measurement outcomes that are inconsistent with this
deterministic outcome (also output by Compress). Owing to the Compute algorithm’s run-time having an inverse exponential
dependence on r (like 2t−r), the choice of preferred algorithm is informed by the size of r (relative to t). The broad blue arrows
indicate multiple calls by Estimate to RawEstim with different parameters s and L, and multiple outputs of p̂ that are fed
back to Estimate.

depend linearly on the exact and approximate stabilizer rank of the initial quantum state respectively. Roughly, the
exact (or approximate) stabilizer rank of a quantum state is the minimal number, χ, of stabilizer states required
such that this state can exactly (or approximately) be written as a linear combination of χ stabilizer states. Both
algorithms have run-times that scale linearly in their respective stabilizer ranks and efficiently in all other circuit
parameters, although some of the polynomial dependencies are nevertheless significant and can be prohibitive. Both
the exact and approximate stabilizer ranks are computationally hard to compute even for product states although
upper bounds exist for some important examples. Ref. [30] introduced a computationally better-behaved quantity
ξ, called the stabilizer extent, and showed that the approximate stabilizer rank of an initial state |ψ〉 can be upper
bounded by ξ(|ψ〉)/ε2, where ε quantifies the degree of error in the approximation of |ψ〉. Ref. [30] also presented
the sum over Cliffords sampling algorithm: a new variant of the BG-sampling algorithm where non-Clifford gates
are directly simulated by expressing them as a linear combination of Clifford gates. To compare this to our work,
we consider the application of this technique to diagonal single qubit non-Clifford gates Tφ inducing a Z−rotation of
angle φ ∈ (0, π/4). For circuits composed of exactly t uses of Tφ, the run-time of the sum over unitaries algorithm

scales linearly in the stabilizer extent of the state |T †φ〉.

The mixed-state stabilizer rank simulator of Ref. [22] made further improvements to the BG-sampling algorithm by
improving the run-time dependence on the error tolerance for the approximate sampling task and by generalizing the
algorithm to the setting where initial states can be mixed states. The mixed-state stabilizer rank simulator’s run-time
scales linearly in a quantity known as the mixed state extent [22]. Ref. [22] also showed that for any n−qubit product
states, its dyadic negativity, stabilizer extent and mixed state extent are all equal. This result allows one to compare
performance across multiple simulation algorithms in the practically relevant setting where initial states are product
states.

C. Summary of results

Our main results consist of two classical algorithms Compute and Estimate that either exactly compute or
estimate the Born rule probability p given its elementary description. These make use of two auxiliary algorithms
Compress and RawEstim, and the relation between them is presented in Fig. 1. The C+Python implementation of
our algorithms used to generate Figures 2, 3 and 4 can be found in Ref. [35].



5

1. The Compress algorithm

The Compress algorithm is the starting point of our Born rule probability estimator. It takes as input the
elementary description of p, and the purpose of this algorithm is to efficiently transform the elementary description
of the Born rule probability into an alternative form, where we can decide what type of estimator is most suitable.

The Compress algorithm is composed of three steps, which we summarize here; a detailed description is presented
in Sec. III. In the first step, we use a “reverse gadgetization” of Tφj gates (see Eq. (27)) to re-express the general

circuit U acting on |0〉⊗nab as a Clifford circuit V acting on |0〉⊗nab ⊗ |0〉
⊗t
c , with the t ancillary qubits in register ‘c’

post-selected on the state |T †φ〉. Thus, we re-express the Born rule probability from Eq. (4) as:

p = 2t
∥∥∥〈x|a 〈T †φ|cV |0〉⊗n+tabc

∥∥∥2
2
. (5)

Second, by imposing constraints on stabilisers, we re-express the Born rule probability p as:

p = 2v−w〈T †φ|
t−r∏
i=1

(I + gi)|T †φ〉, (6)

where r ∈ {0, 1, . . . ,min {t, n− w}} and v ∈ {0, 1, . . . , w} are circuit specific quantities (dependent on V ) that are
efficiently computable, and {gi}t−ri=1 are t-qubit Pauli operators (generators of a stabiliser group). Finally, by explicitly
constructing a gate sequence based on a stabiliser generator matrix, we re-express p as:

p = 2t−r+v−w
∥∥∥〈0|⊗t−rW |T †φ〉∥∥∥2

2
, (7)

where W is a t-qubit Clifford circuit of length O(t2) with O(t) Hadamard gates.
The performance of Compress is captured by the following theorem:

Theorem 1 (Compress algorithm). Given an elementary description of p, Compress outputs the deterministic
number v ∈ {0, 1, . . . , w}, specifies a size v subset of the measured qubits that have deterministic outcomes and provides
the measurement outcomes these qubits must produce. If the input x is consistent with these deterministic outcomes,
then the algorithm outputs the projector rank r ∈ {0, 1, . . . ,min {t, n− w}} and an elementary description of the
t-qubit Clifford unitary W together with a set G of (t− r) Pauli operators gi on t qubits such that:

p = 2t−r+v−w
∥∥∥〈0|⊗t−rW |T †φ〉∥∥∥2

2
= 2v−w〈T †φ|

t−r∏
i=1

(I + gi)|T †φ〉. (8)

The run-time τCompress of the algorithm scales as

τCompress = poly(n, c, t). (9)

The proof of this theorem is given in Sec. III C.
If x is not consistent with the deterministic outcomes specified by the Compress algorithm then we immediately

conclude that p = 0 and we have efficiently calculated the target Born rule probability. Otherwise, we have two
choices: either to use the Compute or the Estimate algorithm. In making this choice, the size of r relative to t will
be important. The quantity r is the exponent of the rank of the stabilizer projector defined by G but we will call it
the projector rank for short.

2. The Compute algorithm

If Compress outputs a large value of r relative to t (in the sense that (t− r) is small), the Compute algorithm is
likely to outperform our Estimate algorithm. Compute directly calculates 2t−r terms appearing if one multiplies
out the product appearing in Eq. (6). For each term we first need to calculate the product of (t− r) Pauli operators
of length t, and then compute the expectation value of product observables for product states of t qubits. Thus, the
algorithm scales as O (2t−r(t− r)t), and projector rank r can be interpreted as the effective number of non-Clifford
gates appearing in the original circuit. Full details of this algorithm are given in Sec. III.

The performance of Compute is captured by the following theorem:



6

Theorem 2 (Compute algorithm). Given the output of the Compress algorithm, Compute outputs p (up to
machine precision) in the run-time:

τCompute = O
(
2t−r(t− r)t

)
. (10)

The proof of this theorem is given in Sec. III B.

3. The Estimate algorithm

If the projector rank is too small and τCompute becomes infeasible, we may use our main result: the Estimate
algorithm. This algorithm produces Born rule probability estimates satisfying a desired additive error and failure
probability. Our Estimate algorithm makes use of a crucial subroutine we call RawEstim. This subroutine pro-
duces an estimate p̂ of p given run-time constraints specified by a pair of parameters s and L. Optimal values for
these parameters leading to estimates that satisfy a desired additive error and failure probability are determined by
Estimate. Here, we will first summarize the RawEstim subroutine (details of which are presented in Sec. IV), and
then briefly describe our Estimate algorithm (with details in Sec. V).

At its core, the RawEstim algorithm uses a concentration inequality (see Lemma 7) to bound the norm between
a target vector |µ〉 and a “simulated” approximation

∣∣ψ〉. The target quantity p is directly related to the Euclidean

norm of the target vector |µ〉. Thus, an estimate of the Euclidean norm of the approximation vector
∣∣ψ〉 is used to

compute an estimate of p. The approximation vector
∣∣ψ〉 is a uniform superposition of s randomly sampled stabilizer

states. The sample space of stabilizer states and the probability distribution over these is directly constructed from

stabilizer decompositions of magic states |T †φ〉. The RawEstim algorithm also uses a number of novel techniques to
improve the run-time.

The RawEstim algorithm is composed of three steps, which are briefly summarized as follows. In the first step, we

decompose the state |T †φ〉 appearing in Eq. (7) into a superposition of stabilizer states, thus re-expressing the Born

rule probability p as the length ‖|µ〉‖22 of the following vector:

|µ〉 =
∑
y

q(y) |ψ(y)〉 . (11)

Here, the sum is over all binary strings y of length t, q(y) is a product probability distribution and |ψ(y)〉 are
unnormalised stabiliser states on r qubits given by:

|ψ(y)〉 ∝ 〈0|⊗t−rW |ỹ〉 , (12)

where |ỹ〉 is a t-fold tensor product of single qubit stabiliser states with yj = 0 or yj = 1 meaning that qubit j is in
a stabiliser state |+〉 or |−i〉. We independently sample bit strings y, with probability q(y), a total of s times, each
time returning an r-qubit stabilizer state |ψj〉 equal to |ψ(y)〉 for the sampled y (the fast computation of |ψ(y)〉 is

discussed in the next step). The uniform superposition of all s sampled stabilizer states
∣∣ψ〉 is used to approximate

|µ〉. The distance between |µ〉 and
∣∣ψ〉 for a given s is sensitive to the lengths of |ψ(y)〉, which we upper-bound for

all y using the stabilizer extent:

max
y
‖|ψ(y)〉‖22 ≤ ξ

∗. (13)

In the second step, each sampled state |ψj〉 in the previous step is an unnormalised stabiliser state given by Eq. (12).
We compute and represent these states in the phase sensitive CH form introduced in Ref. [30]. In order to obtain the
needed CH forms of |ψj〉 we do the following. First, even before taking any samples, we pre-compute the CH form of

W
∣∣0̃ . . . 0̃〉 using the phase-sensitive simulator of Ref. [30]. Then, for each sampled y, we efficiently update the CH

form of W
∣∣0̃ . . . 0̃〉 to get the CH form of W |ỹ〉. Finally, we use a novel subroutine that efficiently yields the CH form

of the post-selected state 〈0|⊗t−rW |ỹ〉, and so of |ψ(y)〉. The vector
∣∣ψ〉 is represented and stored as the CH forms

of |ψj〉 for j ∈ [s].
Finally, as the third step, we employ the fast norm estimation algorithm from Ref. [30] to estimate the norm of∣∣ψ〉. The square of the returned norm is the RawEstim algorithm’s Born rule probability estimate p̂.
The RawEstim algorithm’s performance is characterized by the following theorem:



7

Theorem 3 (RawEstim algorithm). Given the output of the Compress algorithm and two positive integers s and
L, RawEstim outputs an estimate p̂ of the outcome probability p such that for all εtot > 0 and ε ∈ (0, εtot):

Pr (|p̂− p| ≥ εtot) ≤ 2e2exp

(
−s(
√
p+ ε−√p)2

2(
√
ξ∗ +

√
p)2

)
+ exp

(
−
(
εtot − ε
p+ ε

)2

L

)
=: δtot. (14)

The run-time τRawEstim of the algorithm scales as

τRawEstim = O
(
st2(t− r) + sLr3

)
. (15)

The proof of this theorem is presented in Sec. IV.
Given the output of the Compress algorithm and accuracy parameters εtot, δtot > 0, Estimate outputs an estimate

p̂ of the outcome probability p such that:

Pr (|p̂− p| ≥ εtot) ≤ δtot. (16)

The RawEstim algorithm is used as a subroutine of the Estimate algorithm to achieve the desired error εtot > 0
and failure probability δtot > 0. With the proper choice of input parameters s and L, the RawEstim algorithm
can achieve a desired failure probability δtot of the estimate p̂. However, this proper choice depends on the unknown
quantity p that we want to estimate. One could always make the conservative choice of p = 1 in Eq. (14), which will
result in well-defined but highly suboptimal (too large) input parameters s and L. In contrast, the run-time of our
Estimate algorithm takes advantage of improvements that become significant for small p. The Estimate algorithm
achieves this by calling the RawEstim subroutine multiple times, with different choices of s and L. It starts with
s = s0 and L = L0 so small that they cannot possibly satisfy the desired accuracy requirement. Then, at each step
it chooses larger sk, Lk that lead to estimates p̂k, which are used to learn upper bounds on p that decrease with each
iteration. These, in turn, allow one to estimate sharper values of s and L to achieve the desired accuracy.

The run-time of Estimate, τEstimate, has two distinct components we call the circuit-sensitive and the circuit-
insensitive components. The circuit-sensitive component of τEstimate is associated with the total run-time over all
calls to the RawEstim subroutine. The run-time of the RawEstim subroutine will approximately double in each
subsequent call with the run-time of each round and the total number of rounds depending on circuit parameters (such
as t) and accuracy parameters (such as εtot). Typically, this component constitutes the overwhelming majority of
τEstimate. The circuit-insensitive component of τEstimate arises from various numerical optimizations that are executed
in each step of the Estimate algorithm, e.g. to determine the choice of sk, Lk for each step k. The run-time of each
such step is of order ∼ 1 second (for a standard desktop computer) and it is insensitive to the various parameters that
define the Born rule probability estimation task. The total number of steps is also small with more than ∼ 50 steps
being infeasible due to the exponential growth of the run-time of RawEstim in the step number k. For this reason,
we treat the circuit-insensitive component of τEstimate as a fixed run-time cost.

Consistent with Eq. (15), we model the run-time of RawEstim as:

τmodel(s, L) := c1st
2(t− r) + c2sLr

3, (17)

where c1, c2 are hardware specific positive constants (in units of seconds per elementary operation) that can be used
to model the actual run-time of RawEstim. The Estimate algorithm aims to minimize the quantity:

C :=
∑
k∈[K]

τmodel(sk, Lk), (18)

where K is the total number of times the RawEstim algorithm will be called and sk, Lk indicate the input parameters
used on the kth call. We call C the run-time cost ; it represents our modelled circuit-sensitive component of the run-time
of Estimate.

The run-time cost C is probabilistic and depends on the unknown p. Our RunTime algorithm efficiently computes
a probabilistic upper bound of C for any assumed p. This may be useful for informing expected run-times particularly
when prior information about p is known. Our Estimate and RunTime algorithms, together with related details,
can be found in Sec. V. We note that our Estimate algorithm allows the user to fix the accuracy parameters, εtot
and δtot, for the price of moving their dependence on p to τEstimate.

D. Discussion of the performance of our algorithms

Our suite of algorithms offer state-of-the-art performance in Born rule probability estimation across a broad range
of parameter regimes, as we now describe.



8

0 1 2 3 4
0

200

400

600

t− r

C
o
u
n
ts

(a)

15 20 25 30 35 40 45 50

10−3

10−1

101

103

n

A
v
er

a
g
e

ru
n
-t

im
e

[s
] Compute

Qiskit

(b)

FIG. 2. Performance of the Compute algorithm for random circuits. Random circuits are generated as follows: we
generate c Clifford gates acting on random qubits (equal probability of choosing S, H, CX and CZ), and then replace randomly
selected t of them with T gates. (a) The distribution of the compressed T -count (t− r) for 103 random circuits with n = 100
qubits, c = 105 Clifford gates, t = 80 T gates and w = 20 measured qubits. (b) Average run-times for calculating the Born
rule probability for random circuits with n qubits, c = 103 Clifford gates, t = 30 T gates and w = 10 measured qubits, with
the average taken over 102 random circuits for each n. The red circles correspond to our Compute algorithm (including the
run-time needed to run Compress), while the blue squares correspond to classical state vector simulation framework of IBM’s
quantum programming suite Qiskit [36]. Simulations were performed on a standard desktop computer.

We first discuss the performance of the Compute algorithm, noting that it depends exponentially on (t − r). In
the case of random circuits where many Clifford gates are interleaved between each non-Clifford gate, our numerical
investigations show that r very strongly concentrates around the maximum allowed value of min{t, n−w}, see Fig. 2a
for details. Thus, in certain parameter regimes, e.g., when (n − w) ≥ t, the Compute algorithm has a very quick
run-time. In Fig. 2b we present the comparison of the run-times between our Compute algorithm and the IBM’s
Qiskit state vector simulator [36]. While the run-times for the latter algorithm become infeasible on a standard
desktop computer for n > 35 (due to memory limitations), our algorithm can, within feasible runtimes, compute the
Born rule probabilities as long as the number of non-Clifford gates t is not significantly larger than (n−w). Thus, for
random circuits it is not the total number of non-Clifford gates that makes our simulation infeasible, but rather the
number of non-Clifford gates in excess of the number of unmeasured qubits. To illustrate this, we employed Compute
to get the Born rule probability of a random circuit with n = 55, w = 5, c = 105 and t = 80, and the total run-time
was 5586 seconds. For this circuit, r was found to take its maximal value r = 50. By randomly sampling 1, 000 such
circuits and processing them through Compress we found that r was exactly 50 in all cases. Hence our Compute
run-time for such circuits is typical.

Let us also compare our Compute algorithm with the BG-estimation algorithm [29]. There are two obvious benefits
of our algorithm. First, we are not limited to T gates but allow for general diagonal gates Tφ, which can significantly
reduce the run-time [37]. This is because a diagonal gate Tφ with a small angle φ requires many T gates to be
synthesised (which increases the simulation cost), while we can use a single Tφ gate in our simulator. Second, our
algorithm is exact, while the one of Ref. [29] runs with a failure probability δ and relative error ε, and to improve
these precision parameters one has to pay the price of longer run-times. Specifically, the run-time of that algorithm
is given by O

(
2βtt3ε−2 log(δ−1)

)
, where β = (1/6) log2 7 ≈ 0.47. Comparing this with τCompute, we see that the

performance of our algorithm is better in certain parameter regimes when (t − r) ≤ βt. As discussed above, this
happens generically for random circuits when (1− β)t ≤ n− w.

The analysis of the performance of Estimate will be divided into three parts. First, we will discuss the crucial
RawEstim subroutine and point out the run-time improvements over the existing Born rule estimation algorithms.
Second, we will explain additional run-time improvements that arise from the Estimate algorithm itself, i.e., from
the adaptative choice of optimal input parameters s and L for the RawEstim subroutine that leads to upper bounds
on the estimate value of p. Finally, we will explain why we expect the total run-time of Estimate to be closely
related (to within 1-2 orders of magnitude) to the run-time of RawEstim with the optimal choice of parameters; and
we will also provide numerical evidence supporting these expectations. The performance of our Estimate algorithm
is illustrated in Fig. 3.

To analyse the performance of RawEstim, we start by employing Eq. (14) to note that for arbitrary ε ∈ (0, εtot)



9

0 0.2 0.4 0.6 0.8 1

5 · 10−2

10−1

100

Total run-time [105s]

p̂
,
p
∗

p̂

p∗

p

(a)

0 0.2 0.4 0.6 0.8 1

3 · 10−2

10−1

100

Total run-time [105s]

ε∗

(b)

εtot

FIG. 3. Performance of the Estimate algorithm. An n = 50 qubit, t = 60 non-Clifford gate circuit of the form UU†V (p)
as described at the end of Sec. II D. The unitary U is randomly constructed as described in the caption of Fig. 2, and consists
of 1000 gates of which 26 are non-Clifford Tθ gates. The unitary V (p) acts non-trivially on the first w = 8 qubits, which are
then measured in the computational basis, leading to the the probability of the all-zero outcome p = 0.05. The parameter θ is
chosen such that the total circuit has stabiliser extent ξ∗ ≈ 3767, equivalent to 52 T gates. For this circuit the value of projector
rank is r = 10. The total run-time of approximately 9× 104s includes approximately 38s of fixed overhead from the Estimate
algorithm. (a) The estimate p̂ (red circles) and its upper bound p∗ (blue triangles) as a function of the total run-time. The
dashed line indicates the chosen value of p. (b) The upper-bound ε∗ for the total estimation error as a function of the total
run-time. The dashed line indicates the target error εtot = 0.03, and a failure probability of δtot = 10−3 was used.

and δ ∈ (0, δtot) the choice of parameters s and L satisfying

s ≥
2(
√
ξ∗ +

√
p)2(√

p+ ε−√p
)2 log

(
2e2

δ

)
, L ≥

(
p+ ε

εtot − ε

)2

log

(
1

δtot − δ

)
, (19)

guarantees an estimate p̂ with error smaller than εtot and failure probability smaller than δtot. The meaningful
parameter regime is given by εtot � p (estimation error should be smaller than the estimated value) and ξ∗ � 1 (we
want to simulate non-Clifford circuits, as Clifford ones are already efficiently simulable). Then, the two terms of the
run-time τRawEstim characterized by Eq. (15) scale as

τ
(1)
RawEstim = Õ

(
ξ∗t2(t− r)pε−2tot

)
, τ

(2)
RawEstim = Õ

(
ξ∗r3p3ε−4tot

)
, (20)

where Õ notation hides the logarithmic dependence on the failure probability δtot. Importantly, note that the relative
error εtot introduced by the additive error εtot is given by εtot = εtot/p. Thus, the run-time only weakly depends on
the additive error as O

(
ε−1tot

)
for both terms, with the remaining scaling dependent on the relative error as O

(
ε−1tot

)
and O

(
ε−3tot

)
, respectively.

We first compare the performance of RawEstim with the results of Ref. [30], where the authors develop a state-of-
the-art simulator that samples from the Born rule probability distribution. But they also provide a subroutine that,
like our RawEstim algorithm, approximates Born rule probabilities to additive polynomial precision. This estimation
algorithm is based on the approximate stabiliser decomposition of magic states and on a novel fast norm estimation
subroutine. First, one computes k-rank stabiliser decomposition taking O

(
kt3
)

steps. The crucial Theorem 1 of

Ref. [30] proves that by choosing k ≈ ξ∗/ε21, the additive error introduced in this step will be bounded by ε1. Next,

one uses the fast norm estimation with a failure probability δtot and a relative error ε2, which takes Õ
(
kt3ε−22

)
steps,

and the run-time of this step dominates the total run-time. Note that the worst case total additive error εtot can
be lower-bounded by ε1 + pε2. Thus, the term O

(
ε−21 ε−22

)
can be optimally replaced by O

(
p2ε−4tot

)
. Taking this

into account, one gets that the total run-time is Õ
(
ξ∗t3p2ε−4tot

)
. A variation of this algorithm, the sum over Cliffords

method [30], has the total run-time of Õ
(
ξ∗n3p2ε−4tot

)
. We combine and compare to the best of these performances

given by Õ
(
ξ∗min

{
n3, t3

}
p2ε−4tot

)
. Comparing this with τ

(1)
RawEstim and τ

(2)
RawEstim (and noting that r ≤ t, r ≤ n,

p ≤ 1 and ε2tot/p ≤ 1), we see that RawEstim compares favourably in almost all regimes. More precisely, there is a

performance advantage scaling as Õ
(
pε−2tot min{1, (n/t)3}

)
and Õ

(
p−1 min{(n/r)3, (t/r)3}

)
for the two components

of the run-time. Moreover, note that in the regime where (t − r) is small, the performance of Compute should be
much better than that of Estimate. Thus, a more natural regime for the RawEstim algorithm is when r � t, i.e.,

when the dominant run-time comes from τ
(1)
RawEstim component. The run-time improvement related to the estimated



10

probability and its error is then of the order O
(
pε−2tot

)
, so that the advantage becomes particularly significant for high

accuracy estimates.
Next, we compare the performance of RawEstim with the results of Ref. [22]. We start by noting that the mixed-

state stabilizer rank simulator of Ref. [22] improved the run-time by a factor of up to ε−1tot as compared to the sampling
based simulation of Ref. [30]. This should be contrasted with our improvement factors of p−1 and ε−2tot/p, and so,
depending on the regime, the mixed-state stabilizer rank simulator could be better or worse than RawEstim. However,
it should be noted that the improvement in Ref. [22] applies specifically to the task of approximately sampling from
the outcome distribution of a quantum circuit. Therefore, it is unclear how to attain such an improvement directly
for the task of Born probability estimation (we note that one can attain Born probability estimates by using O

(
ε−2tot

)
samples but this invalidates the run-time advantage). Reference [22] also presents the dyadic frame simulator. It
performs exactly the same task as Estimate, i.e., it estimates a single Born rule probability with an additive error
εtot, and we note that the dyadic frame simulator is more generally applicable as it is also suitable for mixed states.
Ignoring the polynomial and logarithmic pre-factors, its dominant run-time scales as O

(
ξ∗2ε−2tot

)
. Therefore, we see

that our RawEstim algorithm compares favorably, as it has a run-time advantage of ξ∗ that is exponential in the
number t of non-Clifford gates.

We now proceed to discussing the second source of performance advantage that arises from the adaptive nature of
the Estimate algorithm. In order to produce a meaningful estimate, we require guarantees on its error εtot and failure
probability δtot. We note that neither RawEstim nor any of the above mentioned competing algorithms have such
an accuracy guarantee, as in order to choose proper simulation parameters (like our s and L), achieving given εtot and
δtot, one would need to know the unknown value of p. Thus, one is left to make a conservative choice of p = 1 that kills
any run-time advantage coming from the polynomial dependence on p. On the other hand, our Estimate algorithm
is able to take advantage of this p dependence. As a result, the run-time improvements related to the estimated
probability and its error effectively scale as O

(
p−1ε−2tot

)
and O

(
p−3
)

(rather than the above-mentioned O
(
pε−2tot

)
and

O
(
p−1
)
). The run-time price of using Estimate, as compared to RawEstim with optimally chosen parameters s

and L, is a small circuit-insensitive overhead related to parameter optimisation, and an additional circuit-sensitive
overhead arising from the fact that we make multiple calls to RawEstim. The former one is so small that can be
ignored, while we explain how to effectively upper-bound the latter one below. To conclude, Estimate exhibits the
following run-time improvements as compared to the run-time τ[30] of the two methods of Ref. [30]:

τ[30]

τ
(1)
RawEstim

= Õ
(
p−1ε−2tot min{1, (n/t)3}

)
,

τ[30]

τ
(2)
RawEstim

= Õ
(
p−3 min{(n/r)3, (t/r)3}

)
. (21)

Finally, we will now explain why we expect that τmodel(s
∗, L∗), with (s∗, L∗) being the choice of parameters s and

L optimized with respect the unknown p, can act as a proxy for τEstimate in the regime where p ≥ εtot. The Estimate
algorithm runs the RawEstim subroutine K times, at each step k, the parameters sk and Lk are chosen optimally
with respect to pUB

k , an upper bound for p. It can be shown that in the final step, pUB
K ≤ p+2εtot. Thus, in the regime

where p ≥ εtot, the optimization is with respect to pUB
K = O(p) with τmodel(s

∗, L∗) having a cubic dependence on p. An
additional source of discrepancy arises since the final step’s optimisation uses a failure probability of δk = 6

π2K2 δtot
in contrast to δtot used in determining s∗ and L∗. However, due to τmodel(s

∗, L∗) having only a poly-logarithmic
dependence on δtot, this also contributes a small run-time overhead to the final step’s call to RawEstim. Finally,
since the final call’s cost is approximately half of the total run-time cost we expect that run-time of Estimate to be
within 1-2 orders of magnitude of τRawEstim when p ≥ εtot.

In order to verify our expectations, we performed the following analysis. We constructed quantum circuits of the
form UU†V (p), where U is a random non-Clifford circuit composed of Clifford and Tθ gates, and V (p) is a non-Clifford
circuit that acts non-trivially on the first w measured qubits as:

V (p) =

(
H Tφ(p) H

)⊗w
⊗ I⊗(n−w). (22)

This way we were able to generate random non-Clifford circuits with a chosen probability p ∈ [0, 1] of the all zero
outcome controlled by the choice of parameter φ(p), and a stabilizer extent ξ∗ that is made independent of p by
controlling θ. Then, using the RunTime algorithm, we found the upper-bound of run-time cost C of the Estimate
algorithm as a function of p. We have also lower-bounded this cost by the run-time cost of RawEstim with the
optimal choice of s and L (as we know the value of p this can be easily done using Theorem 3). We present both
bounds in Fig. 4, where it is clear that they differ by less than 2 orders of magnitude. To further strengthen our
point, we have also run the Estimate algorithm on circuits UU†V (p) for a few chosen values of p, and also plotted
the actual run-time costs in Fig. 4. This shows that, provided p ≥ εtot, C is indeed close to the run-time cost of
RawEstim with the choice of s and L that being optimised using knowledge of the value of p.



11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1010

1011

1012

1013

1014

1015

p

R
u
n
-t

im
e

co
st
C

Actual C
Lower bound

Upper bound

FIG. 4. Estimate run-time cost and its bounds. The run-time cost of the Estimate algorithm with εtot = 0.05,
δtot = 0.001 for random circuits UU†V (p). The black dots represent the total run-time cost C, as defined in Eqs. (17)-(18)
using c1 = c2 = 1. The circuits were acting on n = 40 qubits and were composed of t = 40 non-Clifford gates with the total
stabilizer extent ξ∗ = 158.715 (equivalent to 32 T gates). Each black dot is in fact a cluster of 2-3 independent Estimate
simulations that produce C values that are too close to resolve on this plot. All final Born rule probability estimates produced
by Estimate were within an additive error 0.2εtot of p. The top red line indicates the probabilistic upper bound (with failure
probability less than δUB = 0.05) for the total run-time cost C obtained with the efficient RunTime algorithm. The bottom
blue line indicates the lower bound on C obtained from τRawEstim with the choice of parameters s and L being optimized using
knowledge of the value of p. The run-time cost of the first data point with p = 0.015 corresponds to actual computational time
of 478 seconds.

III. THE COMPRESS AND COMPUTE ALGORITHMS

A. Step 1: Gadgetization

It is well known that a T gate acting on a given qubit can be replaced by its gadgetised version [38, 39]. More
precisely, one can prepare an ancillary qubit in a magic state

|T 〉 =
1√
2

(|0〉+ exp(iπ/4) |1〉), (23)

couple it to the original qubit by a CX gate (with the original qubit acting as the control) and measure in the
computational basis. Then, if the outcome is |1〉, one also needs to apply a correction Clifford phase gate S to the
original qubit. The effect of the above procedure is the same as direct application of the T gate to a given qubit.
Diagrammatically,

|T 〉
{〈0| , 〈1|}

S

= T . (24)

Here, we will employ an alternative construction that replaces the ancillary non-stabiliser |T 〉 state with a non-
Clifford measurement, and allows one to implement any diagonal Tφ gate. Our reverse gadget is obtained as follows:

|0〉

{〈T †φ|, 〈T
†⊥
φ |}

Z

= Tφ , (25)

with

|T †φ〉 =
1√
2

(|0〉+ exp(−iφ) |1〉), |T †⊥φ 〉 =
1√
2

(|0〉 − exp(−iφ) |1〉). (26)



12

(a)
General circuit U

Register ‘a’

Register ‘b’

. . .

. . .

. . .

. . .

〈x|a

Ct

Tφt

C2

Tφ2

C1

Tφ1

C0 |0〉⊗nab

|ψU 〉b := 〈x|a U |0〉
⊗n
ab ←[

(b)
Clifford circuit V

Register ‘c’

. . .

. . .

. . .

. . .

. . .

. . .

. . .

〈x|a

Ct C2 C1 C0 |0〉⊗nab

2−
t
2 |ψU 〉b = 〈x|a 〈T

†
φ|cV |0〉

⊗n+t
abc ← [

〈T †φ|c |0〉⊗tc

FIG. 5. Circuits and registers. Circuit diagrams should be read from right to left. (a) General circuit U composed of Clifford
gates and t diagonal Tφj gates, post-selected on the x outcome of w qubits in register ‘a’. Gates Cj consist of all Clifford gates
appearing before the j-th diagonal gate Tφj . Note that non-Clifford diagonal gates act only on the first qubit for clarity of
the figure and without loss of generality (since SWAP gates are Clifford, each Tφj gate can effectively act on any qubit). (b)
Post-selected circuit obtained by reverse gadgetisation of U . The unitary V is obtained from U by replacing each Tφj with a
CX gate between the original qubit and an ancillary qubit in register ‘c’. Qubits in register ‘c’ are then post-selected on the
non-stabiliser state |T †φ〉, while qubits in register ‘b’ are post-selected on the same outcome as in the original U circuit.

Next, it is straightforward to show that in the above reverse gadget the measurement outcomes of the ancillary qubit

are equally likely. Therefore, we can focus on the |T †φ〉 outcome (as no correction gates are then needed), and consider
a simplified post-selected circuit:

|0〉 〈T †φ|
= 1√

2
Tφ . (27)

Now, for a circuit U consisting of c Clifford gates and t diagonal gates {Tφj}, we can gadgetise each of the t
occurrences of the non-Clifford gate in the way described above. Hence, we can replace a general unitary circuit U

on n qubits in a state |0〉⊗nab by a Clifford circuit V on n+ t qubits in a state |0〉⊗n+tabc , which is post-selected on |T †φ〉
outcome on the ancillary qubits in register ‘c’. The unitary V is composed of c + t Clifford gates: the original c
Clifford unitaries appearing in the decomposition of U into Cliffords and non-Clifford gates, plus t instances of CX
gates between computational and ancillary qubits arising from the reverse gadgetisation of Tφi gates. We illustrate
this in Fig. 5, where we also present the division of all n+ t qubits into 3 registers: the measured register ‘a’ that we
post-select on the |x〉 outcome, the marginalised register ‘b’, and register ‘c’ consisting of the ancillary qubits that

we post-select on the |T †φ〉 outcome. Due to the fact that all measurement outcomes in reverse gadgets are equally



13

probable, such a post-selected circuit V will realise U up to a renormalization factor:

U |0〉⊗nab = 2t/2〈T †φ|cV |0〉
⊗n+t
abc . (28)

The probability of observing outcome x is thus given by

p = 2t
∥∥∥〈x|a 〈T †φ|cV |0〉⊗n+tabc

∥∥∥2
2
. (29)

The process of constructing V given an elementary description of U obviously has a polynomial run-time poly(n, c, t).

B. Step 2: Constraining stabilisers

In this step we will use the stabilizer formalism introduced in Refs [13, 16] to rewrite the expression for p given
in Eq. (29) in a simplified form. It will lead directly to the Compute algorithm, and will be further simplified in
the next step before serving as an input to the RawEstim algorithm. Moreover, we will also extract the crucial
parameters describing the circuit V : the projector rank r and the deterministic number v. The first one of these
effectively characterizes how much the number t of diagonal gates can be compressed, while the latter one is related
to the number of outcomes with a zero probability.

Let us first briefly introduce some notation and recall standard techniques within the stabilizer formalism. An
n-qubit Pauli operator, P , is any operator of the form ωP1 ⊗ . . .⊗ Pn where ω ∈ {±1,±i} and Pj ∈ {I,X, Y, Z} are
single qubit Pauli operators. We denote the set of all n-qubit Pauli operators by Pn. For any P ∈ Pn and j ∈ [n], we
use |P |j to denote the jth tensor factor Pj and ω(P ) to denote the phase factor ω. We will slightly abuse notation by

using |P |a to denote the sub-string of tensor factors associated with register ‘a’, i.e. |P |a := ⊗j∈[w]Pj and similarly
for |P |b and |P |c.

We say that P ∈ Pn stabilizes an n-qubit quantum state |ψ〉 if and only if P |ψ〉 = |ψ〉. The subset S(|ψ〉) ⊂ Pn
consisting of all stabilizers of |ψ〉 is an Abelian group isomorphic to Zn2 . This group can be non-uniquely represented
by a generator set G = {g1, . . . , gn} ⊂ S(|ψ〉) such that S(|ψ〉) = 〈G〉. For k ≤ n, G = {g1, . . . , gk} is an n-qubit,
k-element generating set if and only if gi ∈ Pn for all i ∈ [k], all pairs gi, gj ∈ G commute and G is independent,
i.e. for all i ∈ [k], gi 6∈ 〈G \ {gi}〉. We denote the set of all n-qubit, k-element generating sets by G(n, k). For
G = {g1, . . . , gk} ∈ G(n, k) we define the associated projector:

ΠG :=

k∏
i=1

I + gi
2

(30a)

= 2−k
∑
g∈〈G〉

g. (30b)

We can now state the crucial lemma of this step. Its rigorous proof including the pseudo-code of the algorithm and
associated sub-procedures can be found in Appendix A. Here, we will limit ourselves to a high level description of the
main idea behind the proof.

Lemma 4 (ConstrainStabs algorithm). Given an elementary description of p, ConstrainStabs outputs de-
terministic number v ∈ {0, 1, . . . , w}, projector rank r ∈ {0, 1, . . . ,min {t, n− w}}, a set J = {j1, . . . , jv} ⊆ [w], a

bitstring x′ = (x′1, . . . , x
′
v) and two generating sets G̃ ∈ G(n+ t, t− r + v) and G ∈ G(t, t− r) such that:

Trab

(
V |0〉〈0|⊗n+tabc V † |x〉〈x|a

)
= 2−n−r+vTrab (ΠG̃ |x〉〈x|a) (31a)

= 2−r+v−wΠG, (31b)

and for all k ∈ [v], xjk 6= x′k immediately implies ΠG = 0. The run-time of the ConstrainStabs algorithm is
polynomial in the relevant parameters:

τConstrainStabs = poly(c, n, t). (32)

Using Eq. (29), we note that Lemma 4 immediately implies that we can rewrite the Born rule probability p in the
following two ways:

p = 2−n+t−r+vTr
(

ΠG̃ |x〉〈x|a ⊗ I
⊗n−w
b ⊗ |T †φ〉〈T

†
φ|c
)

(33a)

= 2t−r+v−wTr
(

ΠG|T †φ〉〈T
†
φ|
)

= 2v−w〈T †φ|
t−r∏
i=1

(I + gi)|T †φ〉, (33b)



14

where in the last equality the product is over all gi ∈ 〈G〉. Moreover, since for all k ∈ [v], xjk 6= x′k immediately
implies ΠG = 0, it also implies p = 0. Most importantly, by directly calculating all the terms appearing in Eq. (33b)
in O (2t−r(t− r)t), we get the statement of Theorem 2.

The high level description of the proof of Lemma 4 goes as follows. First, we rewrite V |0〉〈0|⊗n+tabc V † appearing on
the left hand side of Eq. (31a) as a stabilizer projector Π〈G(0)〉 in the form of Eq. (30b). Viewing Π〈G(0)〉 as a sum

over stabilizers, we note that to contribute non-trivially to the sum in Eq. (31a), a stabilizer must satisfy certain
constraints. In particular, for a fixed g ∈ 〈G(0)〉 to produce a non-zero contribution to the sum, it is necessary that:

• Register ‘a’ constraints: for all j ∈ [w], |g|j ∈ {I, Z},

• Register ‘b’ constraints: for all j ∈ [n− w], |g|w+j = I.

The generating set G̃ ∈ G(n+ t, t− r + v) is defined (and computed from G(0)) such that the stabilizer group 〈G̃〉
contains g ∈ 〈G(0)〉 if and only if g satisfies all of these constraints. From this (n + t)-qubit stabilizer group, we
compute a “compressed” generating set, G, of a t-qubit stabilizer group 〈G〉. The quantity r is indirectly defined by:

|G| = t− r. (34)

Thus, the stabilizer projector ΠG projects onto a subspace of dimension 2r, i.e. Tr (ΠG) = 2r. In addition one may
impose constraints on the qubits from register ‘c’, as detailed in App. G. Exploring impact of imposing these constraints
on the run-time of Compute and RawEstim is a work in progress, however we expect substantial improvements in
the performance of Compute in the case of low Clifford count random circuits.

The quantity v is implicitly defined by the equation |G̃| = t − r + v. Together with related objects, J and x′, the

quantity v is associated with the compression step, i.e., transforming G̃ into G. Here, each generator g ∈ G̃ is mapped

to a Pauli fx(g) ∈ Pt where fx(g) := ω(g) 〈x| |g|a |x〉 |g|c. The set
{
fx(g)|g ∈ 〈G̃〉

}
is a group but the set of Pauli

operators
{
fx(g)|g ∈ G̃

}
may not be independent. That is, for a fixed x ∈ {0, 1}w and g∗ 6= I⊗n+t, it is possible

that fx(g∗) ∈ {±I⊗t}. When fx(g∗) = −I⊗t, the sum over g ∈ G̃ of fx(g) is zero. The objects J and x′ specify the

constraints on x that ensure −I⊗t 6∈
{
fx(g)|g ∈ 〈G̃〉

}
. When fx(g∗) = I⊗t, the sum over g ∈ 〈G̃〉 of fx(g) contains

duplicate sums over the group. The quantity v is the minimal number of deletions to G̃ required to ensure the image
under fx is an independent set.

C. Step 3: Gate sequence construction

So far we have replaced a general circuit U with a post-selected Clifford circuit V in Step 1, and then employed the
stabilizer formalism in Step 2 to re-express the Born probability p using a compressed stabiliser projector ΠG. Now,
the final step is to go back from the compressed projector picture to a compressed unitary circuit W built of Clifford
gates. The aim of this step is summarised by the following lemma.

Lemma 5 (GateSeq subroutine). Given a stabilizer generator matrix G ∈ G(t, t− r), GateSeq outputs an elemen-
tary description of a t-qubit Clifford unitary W such that:

ΠG = W †(|0〉〈0|⊗t−r ⊗ I⊗r)W. (35)

The circuit W consists of O
(
t2
)

Clifford gates including at most O (t) Hadamard gates, and the run-time scaling of
the algorithm is given by

τGateSeq = poly(n, c, t). (36)

The proof of the above lemma can be found in Appendix B, and it is simply based on an explicit construction of
a circuit W out of elementary Clifford gates using the stabilizer formalism. Now, applying Lemma 5 to Eq. (33b) we
immediately get

p = 2t−r+v−w
∥∥∥〈0|⊗t−rW |T †φ〉∥∥∥2

2
, (37)

which is precisely the main statement of Theorem 1 (with the second equality already proven in Eq. (33b)). Moreover,
since Steps 1 to 3 all required polynomial number of operations, the total run-time of the Compress algorithm is
poly(n, c, t), and so we have proven Theorem 1.



15

0 π/8 π/4 3π/8 π/2
1

1.05

1.1

1.15

1.2

φ

ξ(
|T
† φ
〉

FIG. 6. Stabiliser extent. The values of the stabiliser extent ξ of |T †φ〉 states as a function of φ. Note that the maximum

at φ = π/4 is achieved for 2γ with γ ≈ 0.228 being exactly the same as in the exponential component of the run-time of the
sampling algorithm presented in Ref. [29].

IV. THE RAWESTIM ALGORITHM

A. Step 1: Stabiliser decomposition and sampling

Each state |T †φj 〉 appearing in |T †φ〉 can be decomposed into stabilizer states,

∣∣0̃〉 := |+〉 =
1√
2

(|0〉+ |1〉),
∣∣1̃〉 := |−i〉 =

1√
2

(|0〉 − i |1〉), (38)

as follows:

|T †φj 〉 = αφj
∣∣0̃〉+ α′φj

∣∣1̃〉 , (39)

where

αφj =
i+ e−iφj

1 + i
= eiϕj

√
1− sinφj , α′φj =

1− e−iφj
1 + i

= eiϕ
′
j

√
1− cosφj , (40)

for some phases ϕj , ϕ
′
j .

The above decomposition achieves the minimum defining the stabiliser extent ξ [30],

ξ(|ψ〉) := min
c

‖c‖21 |ψ〉 =
∑
j

cj |σj〉 , |σj〉 is a stabiliser state

 , (41)

i.e.,

ξ(|T †φj 〉) = (|αφj |+ |α′φj |)
2 = (

√
1− sinφj +

√
1− cosφj)

2. (42)

We choose this particular decomposition because it minimises the run-time of the algorithm: as we will shortly see,
it scales in the square of the l1-norm of the expansion coefficients. Moreover, as proven in Ref. [30], the stabilizer
extent for products of single-qubit states is multiplicative. Thus, denoting by ξ∗ the total stabiliser extent of all states
coming from reverse gadgetisation of non-Clifford gates in U , we have

ξ∗ := ξ(|T †φ〉) =

t∏
j=1

ξ(|T †φj 〉), (43)

and so the optimal stabiliser decomposition of |T †φ〉 is simply obtained by decomposing each |T †φi〉 according to Eq. (39).

In Fig. 6, we present the values of the stabiliser extent of |T †φ〉 as a function of φ.



16

Using the optimal stabiliser decomposition, we can rewrite Eq. (8) as follows

p = 2t−r+v−w

∥∥∥∥∥∥
∑
y

t∏
j=1

α
1−yj
φj

α
′yj
φj
〈0|⊗t−rW |ỹ〉

∥∥∥∥∥∥
2

2

(44)

= ξ∗ · 2t−r+v−w
∥∥∥∥∥∥
∑
y

t∏
j=1

α
1−yj
φj

α
′yj
φj

|αφj |+ |α′φj |
〈0|⊗t−rW |ỹ〉

∥∥∥∥∥∥
2

2

(45)

= ξ∗ · 2t−r+v−w
∥∥∥∥∥∥
∑
y

q(y)

t∏
j=1

eiϕj(1−yj)eiϕ
′
jyj 〈0|⊗t−rW |ỹ〉

∥∥∥∥∥∥
2

2

, (46)

where q(y) is a normalised product probability distribution,

q(y) =

t∏
j=1

q(yj), q(yj) =


|αφj |

|αφj |+|α
′
φj
| for yj = 0,

|α′φj |
|αφj |+|α

′
φj
| for yj = 1.

(47)

Therefore, we can introduce the following states:

|ψ(y)〉 :=
√
ξ∗ · 2

t−r+v−w
2

t∏
j=1

eiϕj(1−yj)eiϕ
′
jyj 〈0|⊗t−rW |ỹ〉 , (48)

and write p as

p = ‖|µ〉‖22 , |µ〉 := E
Y∼q

[|ψ(Y )〉] =
∑
y

q(y) |ψ(y)〉 . (49)

We thus see that the Born rule probability p is given by the squared length of a vector |µ〉 that is an expectation
value over vectors |ψ(y)〉 distributed according to q(y). The idea behind our algorithm is then to estimate this
expectation value |µ〉 using a mean

∣∣ψ〉 over s samples:

∣∣ψ〉 =
1

s

s∑
j=1

|ψj〉 , (50)

where each |ψj〉 takes the value |ψ(y)〉 with probability q(y). More precisely, in order to obtain each sample we first
generate a t-bit string y bit by bit according to q(yj). This way we generate the state |ỹ〉 with probability q(y). We

then evolve it by a Clifford W and project on |0〉⊗t−r to finally obtain |ψ(y)〉 with probability q(y). The evolution
and projection can be performed efficiently and we describe how to do it in the next step. Here, assuming that we
have s such samples, we bound the estimation error.

First, we note that by construction
∣∣ψ〉 is an unbiased estimator of |µ〉. Next, we use the following lemma, the

proof of which can be found in Appendix C, to upper-bound the norm of each |ψ(y)〉.

Lemma 6 (Upper-bound for ‖|ψ(y)〉‖22). For every elementary description of p, the corresponding vectors |ψ(y)〉
defined in Eq. (48) are unnormalised stabilizer states with the squared l2-norm upper-bounded by the total stabiliser
extent ξ∗ of all states coming from reverse gadgetisation of non-Clifford gates appearing in that elementary description:

‖|ψ(y)〉‖22 ≤ ξ
∗. (51)

It is very important to note that the above bound for ‖|ψ(y)〉‖22 is general, i.e. independent of the particularities of
a given quantum circuit. We do expect that stronger circuit-specific bounds can be efficiently computed, which would
translate into improved run-times of the RawEstim algorithm. Now, the key technical tool that we will employ
is the next lemma, proven in Appendix D, which applies a concentration inequality for vector martingales given by
Heyes [40] to our setting.



17

Lemma 7. Let N, s ∈ N and {|ψj〉}j∈[N ] be a set of d-dimensional vectors over C satisfying ‖|ψj〉‖22 ≤ m. Moreover,

let q be a probability distribution over [N ] and define |µ〉 as the d-dimensional vector over C that is the expectation of
|ψX〉 with respect to the random variable X with probability distribution q:

|µ〉 = E
X∼q

[|ψX〉] =
∑
j∈[N ]

qj |ψj〉 .

For j ∈ [s], let xj ∈ [N ] be independently sampled from the probability distribution q, and define a vector sample mean
over s samples by:

∣∣ψ〉 =
1

s

s∑
j=1

∣∣ψxj〉. (52)

Then, for all ε > 0:

Pr
(∥∥∣∣ψ〉− |µ〉∥∥

2
≥ ε
)
≤ 2e2 exp

(
−sε2

2(
√
m+

√
p)2

)
(53)

and

Pr
(∥∥∣∣ψ〉〈ψ∣∣− |µ〉〈µ|∥∥

1
≥ ε
)
≤ 2e2 exp

(
−s(
√
p+ ε−√p)2

2(
√
m+

√
p)2

)
(54)

where p := ‖|µ〉‖22 and ‖·‖1 is the Schatten 1-norm.

The bound on the estimation error, leading to the exponential scaling of the run-time (measured by the number of
steps s) with the total stabiliser extent, can now be given as a simple corollary of the above technical lemmas.

Corollary 8 (Upper-bound for estimation error). The mean vector
∣∣ψ〉 from Eq. (50) satisfies

Pr
(∣∣∣∥∥∣∣ψ〉∥∥2

2
− p
∣∣∣ ≥ ε) ≤ δ, δ := 2e2 exp

(
−s(
√
p+ ε−√p)2

2(
√
ξ∗ +

√
p)2

)
. (55)

Proof. We first note that |Tr (A)| ≤ ‖A‖1 for any Hermitian operator A. This follows from the fact that Tr (A)
is the sum of the eigenvalues of A while ‖A‖1 is the sum of the singular values of A.By applying this inequality to

A =
∣∣ψ〉〈ψ∣∣−|µ〉〈µ|, the result follows immediately from Eq. (54), where m can be replaced by ξ∗ due to Lemma 6.

B. Step 2: State evolution

In the previous step we showed that by randomly sampling s stabiliser states |ψj〉, each equal to |ψ(y)〉 with

probability q(y), and creating their uniform superposition
∣∣ψ〉, we can estimate p by calculating

∥∥∣∣ψ〉∥∥2
2
. Here, we

will show how to efficiently obtain the description of each sampled state. It is clear from Eq. (48) that to find a given

|ψ(y)〉 it is enough to find an efficient way of representing 〈0|⊗t−rW |ỹ〉 for every y. This step of the algorithm will
consist of three parts: first, we will explain how to get W

∣∣0̃ . . . 0̃〉; then, how to modify this state to obtain W |ỹ〉 for

arbitrary y; and finally, how to perform post-selection to end up with 〈0|⊗t−rW |ỹ〉.
In the first part, we use the phase-sensitive Clifford simulator described in Ref. [30] to efficiently calculate the CH

form of a t-qubit stabiliser state W
∣∣0̃ . . . 0̃〉. The CH form of a general t-qubit stablizer state |σ〉 can be described

by a tuple T (σ) = {F,G,M, γ, v, s, ω}. Here F,G and M are t × t binary matrices, γ is a length t vector with
entries in Z4, v and s are binary vectors of length t, and ω is a complex number. Ref. [30] shows that for each gate
Γ ∈ {S,CX,CZ}, the updated information T (σ′) representing |σ′〉 = Γ |σ〉 can be computed in O (t) elementary
steps. Updates associated with each Hadamard gate can be computed in O

(
t2
)

steps. Since W is composed of O
(
t2
)

including O (t) Hadamard gates, in O
(
t3
)

steps we can calculate the CH form of W
∣∣0̃ . . . 0̃〉 by updating the CH form

of
∣∣0̃ . . . 0̃〉 step by step with every application of the elementary Clifford gates composing W . For completeness, we

provide a more detailed introduction of the CH form in Appendix E. Importantly, this first step can be performed as
pre-computation, before any sampling of y is started.

In the second part of this step, we show how to update the CH form of W
∣∣0̃ . . . 0̃〉 to get the CH form of W |ỹ〉

after sampling a given y. If the kth bit of a bitstring z is zero, and y is the same bitstring with the kth bit set to one



18

then |ỹ〉 = S3
k |z̃〉. Hence W |ỹ〉 = WS3

kW
†W |z̃〉. In order to update the state W

∣∣0̃ . . . 0̃〉 to W |ỹ〉, for arbitrary y we

therefore pre-compute the t Clifford operators WS3
kW
†. By writing S3

k = 1√
2
e−i

π
4 (I + iZk) we can apply Lemma 4

of Ref. [30] to update a single bit of y in time O
(
t2
)
. Transforming W

∣∣0̃ . . . 0̃〉 into W |ỹ〉 for arbitrary y therefore

takes time O
(
t3
)
.

In the third and final part, we need to transform the CH form of a t-qubit stabilizer state W |ỹ〉 into an r-qubit

stabiliser state 〈0|⊗t−rW |ỹ〉. The authors of Ref. [30] explained how, in O
(
t2
)

steps, one can update the CH form of

a given t-qubit state to simulate the action of a projector |0〉〈0|⊗t−r. Surprisingly, despite the fact that the resulting
state is a product state, it is highly non-trivial to discard the (t − r) measured qubits in the CH form description.
This complication is related to the fact that the tuple T (σ) corresponding to a stabiliser state |σ〉 is not unique. Thus,
there exists a large number of equivalent tuples describing a given product state that do not admit a decomposition
into two tuples representing each component of the tensor product. Therefore, we have developed a new subroutine
allowing us to deal with this issue, and it is summarised in the following theorem, the proof of which can be found in
Appendix F.

Lemma 9 (Discarding systems in CH form). Given a tuple describing the CH form of an (n+1)-qubit stabilizer state
|0〉 ⊗ |σ〉, one can find the tuple describing the CH form of an n-qubit stabilizer state |σ〉 in O(n2) time.

Using the above and given y, we can generate the CH form of a state |ψ(y)〉 in O
(
t2(t− r)

)
time.

C. Step 3: Norm estimation

We are now at the point that we have the description of a state
∣∣ψ〉 as a uniform superposition of s stabiliser states

|ψ1〉 , . . . |ψs〉, and the squared l2-norm of
∣∣ψ〉 is an estimate for the Born rule probability p. The goal of the final step

is to find and estimate p̂ for
∥∥∣∣ψ〉∥∥2

2
(so effectively for p), and bound the total estimation error by relating it to the

run-time.
Given a vector

∣∣ψ〉 with a decomposition into an s-term linear combination of r-qubit stabilizer states |ψj〉 from

Eq. (50), one can estimate the squared l2-norm of
∣∣ψ〉 using a fast norm estimation algorithm by Bravyi and Gosset [29].

As inputs, the algorithm is given the CH-forms of |ψj〉. Next, it generates L randomly sampled r-qubit stabilizer
states |θ1〉 , . . . , |θL〉. The estimate p̂ is then given by:

p̂ =
2r

s2L

L∑
j=1

∣∣∣∣∣
s∑

k=1

〈θj |ψk〉

∣∣∣∣∣
2

. (56)

Each phase sensitive stabilizer inner product, 〈θj |ψk〉, appearing above takes O
(
r3
)

steps to evaluate, and so we need

O
(
sLr3

)
steps to evaluate p̂. By choosing:

L =
⌈
ε̃−2 log δ̃−1

⌉
, (57)

we ensure that the estimate p̂ has multiplicative precision, i.e., for any desired error level, ε̃ > 0 and failure probability,
δ̃ > 0, we have

Pr
(∣∣∣p̂− ∥∥∣∣ψ〉∥∥2

2

∣∣∣ ≥ ε̃∥∥∣∣ψ〉∥∥2
2

)
≤ δ̃, (58)

with the run-time scaling as:

O
(
sr3 ε̃−2 log δ̃−1

)
. (59)

We have now estimated the squared l2-norm of |µ〉, i.e. p, by an estimate of the squared l2-norm of
∣∣ψ〉, i.e. p̂. This

introduced two sources of error. The first is due to the deviation between the two squared l2-norms, and we have
bounded this error in Corollary 8. The second source of error is due to the deviation between the estimate p̂ and the
squared l2-norm of

∣∣ψ〉. We now combine these two errors to show that, for an appropriate choice of s and L, our
estimate satisfies Eq. (14). First, we can employ the triangle inequality to obtain

|p̂− p| =
∣∣∣p̂− ∥∥∣∣ψ〉∥∥22 +

∥∥∣∣ψ〉∥∥2
2
− p
∣∣∣ ≤ ∣∣∣p̂− ∥∥∣∣ψ〉∥∥22∣∣∣+

∣∣∣∥∥∣∣ψ〉∥∥22 − p∣∣∣ . (60)



19

From Eq. (58) we have that with probability larger than 1− δ̃ the following holds:∣∣∣p̂− ∥∥∣∣ψ〉∥∥2
2

∣∣∣ ≤ ε̃∥∥∣∣ψ〉∥∥2
2
≤ ε̃

(∣∣∣∥∥∣∣ψ〉∥∥2
2
− p
∣∣∣+ p

)
= ε̃ (ε+ p) . (61)

Then, from Eq. (55) we get that with probability larger than 1− δ we have∣∣∣∥∥∣∣ψ〉∥∥22 − p∣∣∣ ≤ ε. (62)

Since both steps (computing the sample average vector
∣∣ψ〉 and computing p̂ using fast norm estimation) are inde-

pendent, we get that with probability larger than (1− δ)(1− δ̃) we have

|p̂− p| ≤ ε̃(ε+ p) + ε. (63)

We can thus write

Pr (|p̂− p| ≥ ε̃(ε+ p) + ε) ≤ δ̃ + δ. (64)

Introducing variables describing the total estimation error, εtot > 0 and δtot > 0, we want to find the bounds on
the number of samples s from Step 1 and on the number of repetitions L from Step 3, so that the estimate p̂ satisfies:

Pr (|p̂− p| ≥ εtot) ≤ δtot. (65)

Employing Eq. (64), together with Eqs. (55) and (57), the above is satisfied whenever for any arbitrary choice of
ε ∈ (0, εtot) and δ ∈ (0, δtot) we have

s ≥
2(
√
ξ∗ +

√
p)2(√

p+ ε−√p
)2 log

(
2e2

δ

)
, (66a)

L ≥
(

p+ ε

εtot − ε

)2

log

(
1

δtot − δ

)
. (66b)

The output of the fast norm estimation algorithm p̂ is the output of our RawEstim algorithm. The bound on the
estimation error, Eq. (65), together with the bounds on s and L, Eqs. (66a) and (66b), are equivalent to the main
statement of Theorem 3. To finish the proof, we need to show that the run-time is indeed as claimed in the theorem.
To see this, recall that producing each of s samples |ψj〉 (sampling y in Step 1 and evolving the state in Step 2)
takes O

(
t2(t− r)

)
. Moreover, each sample has to go through L repetitions of the norm estimation subroutine,

with each repetition taking O
(
r3
)

steps. Putting this all together, the run-time of the RawEstim algorithm is

O
(
st2(t− r) + sLr3

)
, as claimed in Theorem 3.

We present the psuedocode for the RawEstim algorithm below.

Algorithm 1 RawEstim outputs an estimate p̂ as characterized by Theorem 3.

Input: Output of Compress for an elementary description of p and parameters s, L ∈ N.
Output: An estimate p̂.

1: [r, v,W ]← Compress(D) . D represents the elementary description of p.

2: Compute CH-Form(r,W, 0̃) . This is the CH-form of the state 〈0|⊗t−rW
∣∣0̃〉⊗t.

3: for k ∈ [s] do
4: y ← Y where Y ∈ {0, 1}t is sampled according to the product distribution in Eq. (47)
5: Compute |ψk〉 ← CH-Form(r,W, ỹ) . CH-Form(r,W, ỹ) is computed from CH-Form(r,W, 0̃) as per Sec. IV B.
6: end for
7: for j ∈ [L] do
8: |θj〉 ← random r-qubit equatorial state.
9: end for

10: p̂← SumOverlaps({|ψk〉}k∈[s] , {|θj〉}j∈[L]) . The SumOverlaps sub-procedure evaluates Eq. (56).
11: return p̂

Finally, we note that both s and L depend on the unknown quantity p and increase with p. Thus if we require a
bound on our estimate’s failure probability, we can make a conservative choice by substituting p = 1 into Eqs. (66a)
and (66b). Instead of this naive approach, the Estimate algorithm allows us to significantly improve run-time by
making a less conservative choice of p thus taking advantage of the substantial run-time improvements that occur for
smaller p values.



20

V. THE ESTIMATE ALGORITHM

The role of the Estimate algorithm is to choose the parameters used in making repeated calls to the RawEstim
algorithm with the goal of finally attaining a Born rule probability estimate p̂ satisfying Eq. (16). The goal is to
achieve this task with frugal use of run-time. Consistent with Eq. (15), we model the run-time of RawEstim using
Eq. (17). Hence the Estimate algorithm aims to minimize the run-time cost, C, as defined in Eq. (18).

For p ∈ [0, 1], εtot ∈ R+, η ∈ (0, 1) and s, L ∈ N+, we define the function:

δ′(p, εtot, η, s, L) := 2e2exp

(
−s(
√
p+ ηεtot −

√
p)2

2(
√
ξ∗ + 1)2

)
+ exp

(
−
(

(1− η)εtot
p+ ηεtot

)2

L

)
. (67)

Comparing to Eq. (14), we note that RawEstim(s, L) outputs an estimate p̂ such that for all εtot > 0 and η ∈ (0, 1):

Pr (|p̂− p| ≥ εtot) ≤ δ′(p, εtot, η, s, L). (68)

For fixed p, η, s, L, we want to view δ′ as a function of εtot and define its functional inverse. We will need this to be
defined for all δ′ > 0. By inspection of Eq. (67), we note that for δtarg > 0 close to zero and L, η too small there does
not exits ε′ such that δ′(p, ε′, η, s, L,m) = δtarg. To resolve this technicality, we define a minimal L value:

Lmin(δ, η) :=

⌈
−
(

η

(1− η)

)2

ln δ

⌉
. (69)

To specify a well defined inverse ε′(p, δtarg, η, s, L) ∈ R+ of the δ′ function, let us define its domain

D = [0, 1]× (0, 1)× (0, 1)× N+ × N+. (70)

By inspecting Eq. (67), it is clear that on D, there exists a well defined function ε′ that satisfies the following: for all
(p, δtarg, η, s, L

+) ∈ D, there exists εtarg =: ε′(p, δtarg, η, s, L
+) such that δ′(p, εtarg, η, s, Lmin(δtarg, η) + L+) = δtarg.

To see this, we just note that for p ∈ [0, 1] fixed, the function f(c) =
√
p+ c−√p is strictly increasing and unbounded

from above.
A property of ε′(p, δtarg, η, s, L

+) that will be useful is that it is a monotonically increasing function of p. To see
this we note that by the definition of the functions ε′ and δ′, we have:

0 = dδ′(p, ε′, η, s, Lmin(δ, η)) =
∂δ′

∂p
dp+

∂δ′

∂ε′
dε′. (71)

Using Eq. (67), it is easy to verify that ∂δ′

∂p ≥ 0 and ∂δ′

∂ε′ ≤ 0. Thus dε′

dp ≥ 0.

For T ∈ [2,∞) and all other ranges as before, let us define the function ε∗(p, δtot, T ) ∈ R as:

ε∗(p, δtot, T ) = inf
η,s,L+

ε′(p, δtot, η, s, L
+) (72)

where the infimum is over all η ∈ (0, 1), s, L+ ∈ N+ subject to the constraint:

τmodel(s, L
+ + Lmin(δtot, η)) ≤ T . (73)

Since the range η ∈ (0, 1) is not closed, in principal the function ε′ could get arbitrarily close to its infimum ε∗

without attaining it. However, one can show that for all p ∈ [0, 1], δtot ∈ (0, 1) and T ≥ 2, there always exists
η ∈ (0, 1) and s, L+ ∈ N+ such that the infimum is attained, i.e. ε′(p, δtot, η, s, L

+) = ε∗(p, δtot, T ). To see this, we
note that Eqs. (69) and (73) can be used to impose a closed upper bound on η. Similarly, using the fact that in the
limit of η → 0, δ′(p, εtot, η, s, L) becomes greater than 1, we can impose a closed lower bound on η. Having restricted
the range of η in Eq. (72) to a closed interval contained in (0, 1), we can apply the Extreme Value Theorem to prove
our claim.

We now show that for δtot ∈ (0, 1] and T ≥ 2 fixed, ε∗(p, δtot, T ) is monotonically increasing in p. Let η′, s′, L′

and η′′, s′′, L′′ be such that ε∗(p′, δtot, T ) = ε′(p′, δtot, η
′, s′, L′) and ε∗(p′′, δtot, T ) = ε′(p′′, δtot, η

′′, s′′, L′′). Then, for
p′ ≤ p′′, we have:

ε∗(p′, δtot, T ) = ε′(p′, δtot, η
′, s′, L′)

≤ ε′(p′, δtot, η′′, s′′, L′′)
≤ ε′(p′′, δtot, η′′, s′′, L′′)
= ε∗(p′′, δtot, T ), (74)



21

where the first inequality holds by the definition of ε∗ and the second inequality holds by the fact that ε′ is monotone
increasing in p.

The Estimate algorithm works by iteratively querying the RawEstim algorithm with each iteration indexed by
k = 1, 2, . . .. Each call RawEstim(sk, Lk) allocates a run-time budget Tk to RawEstim so that τmodel(sk, Lk) ≤ Tk.
The budget allocation in the first step is 2T0 where T0 is a budget that is insufficient (in the best case scenario of
p = 0) to satisfy Eq. (16). Starting from this low initial run-time allocation, the budget doubles at each iteration.
Thus, the run-time budget for each call of the RawEstim algorithm and the total run-time over all prior calls both
grow exponentially in the round number.

Each round’s estimate p̂k is used to compute a probabilistic quantity p∗k, that with high probability upper
bounds p. From Eq. (14) and the definitions of ε′ and ε∗, we note that for all δtot > 0 and η, s, L+ satisfying
ε∗(p, δtot, T ) = ε′(p, δtot, η, s, L

+), the output p̂ of RawEstim(s, Lmin(δtot, η) + L+) satisfies:

Pr (|p̂− p| ≥ ε∗(p, δtot, T )) ≤ δtot. (75)

Thus, defining p∗min as the random variable constructed from p̂ using p∗min = p̂+ ε∗(p, δtot, T ) we have:

Pr (p∗min ≤ p) ≤ δtot, (76)

where the probability is over the randomness of the RawEstim algorithm. Of course, given a p̂ one cannot compute the
corresponding upper bound p∗min because this requires the evaluation of ε∗(p, δtot, T ) with p unknown. We overcome
this by using the fact that ε∗(p, δtot, T ) is monotonically increasing in p. Thus, if p∗k is a probabilistic upper bound of
p with failure probability δ1 + . . .+ δk, then, by the union bound, p∗k+1 := p̂+ ε∗(p∗k, δk+1, T ) is a probabilistic upper
bound for p with failure probability δ1 + . . . + δk+1. Using this procedure, we can start with the upper bound of 1
and iteratively produce tighter upper bounds at the cost of incurring a increased probability of failure of the upper
bound. We will choose δk := 6

π2k2 δtot. This guarantees that the infinite sum δ1 + δ2 + . . . converges to δtot and hence
the probability that at least one of the upper bounds, p∗1, p

∗
2 . . ., fails is at most δtot.

For (p, δtot, T ) ∈ [0, 1] × R+ × [2,∞), we define the function OptC(p, δtot, T ) ∈ (0, 1) × N+ × N+. For a given
target cost T , this function finds the optimal choices η, s and L+ (subject to the cost budget constraint) such that
ε∗(p, δtot, T ) = ε′(p, δtot, η, s, L

+).
We now present the pseudocode for the Estimate algorithm before discussing the characterization of the run-time

of Estimate.

Algorithm 2 Estimate returns the estimate p̂ as characterized by Eq. (16).

Input: Output of Compress for an elementary description of p and accuracy parameters εtot, δtot > 0.
Output: An estimate p̂.

1: [r, v,W ]← Compress(D) . D represents the elementary description of p.
2: p∗ ← 1 . This is the running upper bound for the unknown p.
3: Exit← 0, k ← 0

4: T0 ← τmodel(− 2(
√
ξ∗+1)2

εtot
ln δtot

2e2
, 1) . T0 is a runtime budget that is too small to satisfy Eq. (16) even assuming p = 0.

5: while Exit = 0 do
6: k ← k + 1
7: (η, s, L+)← OptC(p∗, 6

π2k2
δtot, 2

kT0) . In each round, we double the run-time budget.

8: ε∗ ← ε′(p∗, 6
π2k2

δtot, η, s, L
+) . Equivalently, ε∗ ← ε∗(p∗, 6

π2k2
δtot, 2

kT0).
9: if ε∗ ≤ εtot then

10: Exit← 1
11: end if
12: p̂← RawEstim(s, L+ + Lmin( 6

π2k2
δtot, η))

13: p∗ ← max {0,min {1, p∗, p̂+ ε∗}}
14: end while
15: return p̂

We note that small improvements in performance can be achieved by using a larger choice of T0 subject to the
requirement that T0 is still too small to satisfy Eq. (16) even assuming p = 0. Fig. 3 shows the output and intermediate
values of p̂, p∗ and ε∗ produced using the Estimate algorithm.

The remainder of this section focuses on computing an upper bound for the total modeled run-time cost associated
with Estimate as defined in eq. (18). The run-time cost of Estimate is probabilistic and dependent on the unknown
p. Here, we introduce our RunTime algorithm which produces run-time cost upper bounds for any given p value.
This algorithm can be used to produce a run-time cost upper bound as a function of p. We point out that the actual



22

run-time of Estimate may differ from the run-time cost for a number of reasons. Firstly, run-time cost is a modelled
and/or expected run-time and may differ from actual run-time it aims to predict due to limitations of the model or
incorrectly calibrated model parameters c1 and c2. Secondly, the run-time cost only aims to model the total run-time
of RawEstim over all calls made in Step. 12 of the Alg. 2. Thus, it ignores the run-time incurred by Estimate in
all other steps. We justify the choice to not model the run-time cost associated with these other steps since their
run-time is insensitive to circuit parameters.

We now present the pseudo-code for our RunTime algorithm. We note that all steps except Steps 12 and 15 are
identical to the pseudo-code for Estimate.

Algorithm 3 RunTime returns a probabilistic upper bound of C, the run-time cost defined in Eq. (18).

Input: Assumed value of p; δUB > 0, the required maximum failure probability of the probabilistic upper bound for C; the
output of Compress; and accuracy parameters εtot, δtot > 0.

Output: The probabilistic upper bound CUB = CUB(p).

1: [r, v,W ]← Compress(D) . D represents the elementary description of p.
2: p∗ ← 1 . This is the running upper bound for the unknown p.
3: Exit← 0, k ← 0

4: T0 ← τmodel(− 2(
√
ξ∗+1)2

εtot
ln δtot

2e2
, 1) . T0 is a runtime budget that is too small to satisfy Eq. (16) even assuming p = 0.

5: while Exit = 0 do
6: k ← k + 1
7: (η, s, L+)← OptC(p∗, 6

π2k2
δtot, 2

kT0) . In each round, we double the run-time budget.

8: ε∗ ← ε′(p∗, 6
π2k2

δtot, η, s, L
+) . Equivalently, ε∗ ← ε∗(p∗, 6

π2k2
δtot, 2

kT0).
9: if ε∗ ≤ εtot then

10: Exit← 1
11: end if
12: p̂← p+ ε′

(
p, δUB/KUUB, η̃, s, L

+ + Lmin

(
6

π2k2
δtot, η

)
− Lmin(δUB/KUUB, η̃)

)
. The choice of KUUB > 0 and η̃ ∈ (0, 1)

are discussed below.
13: p∗ ← max {0,min {1, p∗, p̂+ ε∗}}
14: end while
15: return CUB ← 2k+1T0

To establish the correctness of our RunTime algorithm, we first establish some notation. The Estimate algo-
rithm generates the following strings of random variables: {p̂k}k∈[K], {ε∗k}k∈[K] , {p∗k}k∈[K] and the string of triples{

(ηk, sk, L
+
k )
}
k∈[K]

where K is itself a random variable indicating when the exit condition is triggered. The exit

condition is triggered when

ε∗k := ε∗
(
p∗k−1,

6

π2k2
δtot, 2

kT0
)
≤ εtot (77)

for the first time. The lowest value of k for which the exit condition is triggered defines the random variable K.
Since τmodel(sk, Lk) ≤ 2kT0, where Lk = L+

k + Lmin( 6
π2k2 δtot, ηk), the total cost associated with calls to the

RawEstim algorithm as modelled by Eq. (18) is upper bounded by:

C ≤ (2 + 22 + . . .+ 2K)T0 < 2K+1T0. (78)

We note that the run-time cost is a random variable that depends on K. We will show that KUB, the value of k used
in Step 15 of the RunTime pseudo-code, is a probabilistic upper bound for K and hence C ≤ CUB with probability
≥ 1− δUB.

We note that the RunTime algorithm is deterministic. In the Estimate algorithm, the randomness of the variables
K, ε∗k, p∗k is entirely due to their functional dependence on {p̂k}k∈[K]. The stochastic p̂k used in Step 12 of the

Estimate algorithm are replaced with deterministic p̂k in Step 12 of the RunTime algorithm. Thus, the associated
strings of variables generated by the RunTime algorithm are all deterministic.

Let p = {pk}k∈N+ be a sequence of probabilities pk ∈ [0, 1]. Then we will use K(p) and {ε∗k(p)}k∈[K(p)] to denote

the values computed by Estimate in the setting when the RawEstim algorithm’s output is forced to be exactly the
sequence p. Let p = {pk}k∈N+ be some sequence of probabilities pk ∈ [0, 1] representing the output of RawEstim.
For k = 1, 2, . . ., the variable ε∗k computed in Line 8 can be specified by the recursion:

ε∗k(p) = ε∗
(

max
{

0,min
{

1, p0 + ε∗0(p), . . . , pk−1 + ε∗k−1(p)
}}

,
6

π2k2
δtot, 2

kT0
)
, (79)



23

where ε∗1(p) := ε∗(1, 6δtot/π
2, 2T0). From Eq. (79) and that ε∗(p, δ, T ) is monotone increasing in p, it is clear that

higher values of pk−1 and ε∗k−1 both result in higher values of ε∗k. Thus, for some fixed p with p1, . . . , pk−1 sufficiently
large, the deterministic quantity ε∗k(p) is a probabilistic upper bounded of the random variable ε∗k = ε∗k(p̂1, p̂2, . . .)
computed in the Estimate algorithm. In particular, let us define p = {pk}k∈N+ as per Step 15 of the RunTime
algorithm:

pk := p+ ε′
(
p, δUB/KUUB, η̃k, sk, L

+
k + Lmin

(
6

π2k2
δtot, ηk

)
− Lmin(δUB/KUUB, η̃k)

)
. (80)

Here, ηk, sk and L+
k are parameters computed on the kth iteration of Step 7 of RunTime but η̃k is a new independent

parameter. We will see that any choice of η̃k ∈ (0, 1) will result in the desired upper bound and hence we can
optimize the choice of η̃k to achieve a tighter upper bound. Although KUUB must be chosen before KUB can be
computed, KUUB can be any quantity that satisfies KUUB ≥ KUB. Due to the weak dependence of KUB on KUUB,
such a choice is always possible. We note that the deterministic quantity pk serves as a probabilistic upper bound
of p̂k ← RawEstim(sk, L

+
k + Lmin( 6

π2k2 δtot, ηk)) such that the probability that pk fails to upper bound p̂k for any
k ∈ N+ is ≤ δUB/KUUB. Further, since Eq. (68) holds for all η, our statement holds for all choices of η̃k ∈ (0, 1)
subject to L+

k + Lmin

(
6

π2k2 δtot, ηk
)
− Lmin(δUB/KUUB, η̃k) ≥ 1. Thus, K > KUB implies that there is a κ ∈ [KUB]

that is the smallest k ∈ [KUB], such that p̂k produced in Step 12 of Estimate exceeds p̂k produced in Step 12 of
RunTime. By the union bound and our choice of pk the probability of this happening is ≤ KUBδUB/KUUB.

This implies that:

Pr (K ≤ KUB) ≥ 1− δUB. (81)

We note that before any costly calls to the RawEstim algorithm are made, CUB can easily by computed and plotted
as a function of p thus predicting probabilistic run-time upper bounds conditional on the unknown p. A similar plot
is presented in Fig. 4 for the probabilistic upper bound of run-time cost C.

Finally, we note that since the functions ε′(p, δtot, η, s, L − Lmin(δtot, η)) and OptC(T , p, δtot) are not given in a
closed form, their evaluation requires using numerical techniques. These will inevitably be subject to small levels of
imprecision with run-times that mildly (logarithmically or poly-logarithmically) depend on precision requirements.
In principle, the run-time for the numerical evaluation of these functions depends on the Born probability estimation
problem parameters such as εtot since the precision parameters must be � εtot. In practice, the precision parameters
are so small that εtot values of this order would produce completely infeasible run-times for the RawEstim algo-
rithm. Thus, we ignore such run-time dependencies and treat the evaluation of these functions as having a fixed cost
independent of the estimation problem parameters.

VI. CONCLUSIONS AND OUTLOOK

We have developed state-of-the-art classical simulators for computing and estimating Born rule probabilities asso-
ciated with universal quantum circuits. We have made Python+C implementations of these simulators available [35].
These simulators allow us to probe the previously uncharted parameter regimes, for circuits with larger numbers of
qubits and non-Clifford gates than was previously possible. Our results should find direct applications in the verifi-
cation and validation of near-term quantum devices, and the evaluation of proposals for NISQ device applications.

Through the use of our Compress algorithm we were able to distill a complex circuit specification to a simpler
form more amenable to the task of Born rule probability estimation. The circuit specific parameter, r, emerged as
a key driver of run-time, with higher values of r improving the run-time of Compute and lower values of r (often)
improving the run-time of Estimate. Thus the projector rank r is useful in identifying which simulator will be the
fastest. In our work, the primary role served by Compute has been to exclude all of the ‘high r value’ circuits
from consideration, thus emphasising the performance advantages of our Estimate algorithm over its alternatives.
However, it remains an open question if and when the Compute algorithm can be useful in its own right or has
a genuinely interesting application. Indeed, in the extreme regime where r = t, Compute outputs a Born rule
probability consistent with the uniform distribution on all measured ‘non-deterministic’ qubits. However, as r moves
away from t, perhaps the quantity t − r (or other information contained in the stabilizer generating set G) can be
viewed as a measure of departure from ‘non-uniformity’. This is broadly consistent with the outcome of our numerical
analysis of high Clifford count randomly generated circuits where we found that r strongly concentrates near its
maximum value min {t, n− w}. We leave the exploration of this narrative and the identification of other key drivers
of outcome distribution structure to future work.

This work has focused on the task of Born rule probability estimation without discussing the related task of
approximately sampling from the quantum outcome distribution. Some of the techniques we have developed here



24

may also be useful for achieving performance improvements for the task of approximate sampling. We leave this to
future work.

We have restricted our attention to the simulation of ideal or noise-free quantum processes. Realistic implementa-
tions of quantum circuits are subject to noise the presence of which can significantly ease the computational cost of
classical simulation. We leave open the generalization of our work to the mixed state formalism. We point out that
for the task of approximate sampling, an analogous generalization (to the BG-sampling algorithm [29]) was recently
shown in Ref. [22] with additional performance gains being achieved as a consequence of this generalization.

ACKNOWLEDGEMENTS

HP acknowledges Marco Tomamichel for identifying an error in the statement of Lem. 7 in an early draft; David
Gosset for useful discussions regarding the CH-form; and Daniel Grier and Luke Schaeffer for useful discussions
regarding the hardness of computing tight upper bounds associated with Lem. 6. Research at Perimeter Institute
is supported in part by the Government of Canada through the Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities. HP also
acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). KK and
ORS acknowledge financial support by the Foundation for Polish Science through TEAM-NET project (contract no.
POIR.04.04.00-00-17C1/18-00). This work is supported by the Australian Research Council (ARC) via the Centre of
Excellence in Engineered Quantum Systems (EQuS) project number CE170100009. Research was partially sponsored
(SB) by the ARO and was accomplished under Grant Number: W911NF-21-1-0007. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of ARO or the U.S. Government.

Appendix A: Proof of Lemma 4

We define the following useful form for a generating set.

Definition 10. For G = {g1, . . . , gk} ∈ G(n, k) and j ∈ [n], we say that G is in ZX(j)-form iff Type(|g1|j , . . . , |gk|j)
belong to {[k − 2, 1, 0, 1], [k − 1, 1, 0, 0], [k − 1, 0, 1, 0], [k − 1, 0, 0, 1], [k, 0, 0, 0]} where for P1, . . . , Pk ∈ {I,X, Y, Z},
Type(P1, . . . , Pk) = [NI , NX , NY , NZ ] indicates that there are exactly NI occurrences of I, NX occurrences of X
and so on in the list P1, . . . , Pk.

When G is in ZX(j)-form, we call any generator g ∈ G a leading generator if |g|j 6= I. We call g the leading-X

generator if |g|j = X and similarly for Y and Z. Two generating sets G and G′ are equivalent iff they generate the

same stabilizer group i.e. 〈G〉 = 〈G′〉. If g1, g2 ∈ G are distinct then replacing g2 by g1g2 produces an equivalent
generating set. By repeatedly using this method, any generating set G can be transformed to an equivalent generating
set G′ such that G′ is in ZX(j)-form for any suitable choice of j.

We now present a Lemma that will be useful for the proof of Lemma 4.

Lemma 11. Let n ∈ {2, 3, . . .} and k ∈ {0, 1, . . . , n− 2}. Let G = {gz, gx, g1, . . . , gk} ∈ G(n, k + 2) be a stabilizer
generating set in ZX(j)-form such that it has both a leading-Z and a leading-X generator, gz and gx respectively.
For a ∈ {0, 1} fixed, let g̃z := 〈a| gz |a〉 and for i ∈ [k], g̃i := 〈a| gi |a〉 where the |a〉 vectors act on the jth qubit. Then

G̃ := {g̃z, g̃1, . . . , g̃k} ∈ G(n− 1, k + 1).

Proof. It is clear that G̃ ⊂ Pn−1 is commuting so we only need to show that the subset is independent. The
independence of the set {g̃1, . . . , g̃k} is inherited from the independence of G. Hence we only need to show that
g̃z 6∈ 〈g̃1, . . . , g̃k〉. For a contradiction, let us assume g̃z ∈ 〈g̃1, . . . , g̃k〉. Thus, there exists g ∈ 〈g1, . . . , gk〉 such that
〈a| gz |a〉 = 〈a| g |a〉. This implies that 〈a| gzg |a〉 = I⊗n−1 and hence gzg = (−1)aZj . But (−1)aZj does not commute
with gx and 〈G〉 is a commuting group containing gzg and gx resulting in a contradiction.

We are ready to prove prove Lemma 4.

Proof. Let us define the generating set G(0) = {g1, . . . , gn+t} ∈ G(n+ t, n+ t) by gj := V ZjV
† where Zj is I⊗n+t with

the jth tensor factor replaced by Z. Then, from Eq. (30b), it is evident that ΠG(0) = V |0〉〈0|⊗n+tabc V †. Substituting
into the LHS of Eq. (31a), we get:

Trab

(
V |0〉〈0|⊗n+tabc V † |x〉〈x|a

)
= 2−(n+t)

∑
g∈〈G(0)〉

ω(g)Tr (|g|a |x〉〈x|a) Tr (|g|b) |g|c . (A1)



25

From the RHS of Eq. (A1), we note that terms associated with g will be zero if certain constraints on g are not
satisfied. In particular, for a fixed g ∈ 〈G(0)〉 to produce a non-zero contribution to the sum, it is necessary that:

• Register ‘a’ constraints: for all j ∈ [w], |g|j ∈ {I, Z}

• Register ‘b’ constraints: for all j ∈ [n− w], |g|w+j = I.

We note that for any G ∈ G(n, k) and j ∈ [n] the sets Sa(G, j) :=
{
g ∈ 〈G〉| |g|j ∈ {I, Z}

}
and Sb(G, j) :={

g ∈ 〈G〉| |g|j = I
}

are both subgroups of 〈G〉. Hence these are generated by some generating sets Ga(G, j) and

Gb(G, j) respectively. Through a procedure similar to performing computational basis measurements on a stabilizer

state in the Gottesman-Knill theorem, the ConstrainStabs algorithm computes the generating set G̃.
Starting from the stabilizer group 〈G(0)〉, the ConstrainStabs algorithm imposes the above constraints to find a

stabilizer generating set G̃ =
{
g̃1, . . . , g̃k̃

}
that satisfies the properties:

1. 〈G̃〉 ⊆ 〈G(0)〉

2. for all g ∈ 〈G(0)〉, g satisfies the register ‘a’ and ‘b’ constraints if and only if g ∈ 〈G̃〉.

This allows us to replace the sum over g ∈ 〈G(0)〉 by a sum over g ∈ 〈G̃〉 in the RHS of Eq. (A1). Some further
manipulation gives:

2−(n+t)
∑
g∈〈G̃〉

ω(g)Tr (|g|a |x〉〈x|a) Tr (|g|b) |g|c = 2−(n+t)
∣∣∣〈G̃〉∣∣∣Trab (ΠG̃ |x〉〈x|a)

= 2−n−t+k̃Trab (ΠG̃ |x〉〈x|a) , (A2)

where k̃ :=
∣∣∣G̃∣∣∣. We will later define r and v such that k̃ = t− r + v thus proving Eq. (31a).

We now define the linear map fx : 〈G̃〉 → Pt by:

fx(g) = 2−(n−w)Trab (g |x〉〈x|a) (A3)

= ω(g) 〈x| |g|a |x〉 |g|c . (A4)

We show that this is a group homomorphism. Let g, g′ ∈ 〈G̃〉, then:

fx(g)fx(g′) = ω(g)ω(g′) 〈x| |g|a |x〉〈x| |g
′|a |x〉 |g|c |g

′|c
= ω(g)ω(g′) 〈x| |g|a |g

′|a |x〉 |g|c |g
′|c

= 2−(n−w)Trab (gg′ |x〉〈x|a)

= fx(gg′)

where in the second equality, we used the fact that |g′|a commutes with |x〉〈x| since g′ satisfies the register ‘a’
constraints.

This shows that the image fx(〈G̃〉) is an Abelian subgroup of Pt generated by the set
{
fx(g) | g ∈ G̃

}
. Starting

from Eq. (A2), we now note that:

2−n−t+k̃Trab (ΠG̃ |x〉〈x|a) = 2−t+k̃−wfx(ΠG̃) (A5)

where we have extended the domain of fx by linearity i.e.

fx(ΠG̃) =
∣∣∣〈G̃〉∣∣∣−1∑

g∈G̃

fx(g). (A6)

We note that the list of elements fx(g̃1), . . . , fx(g̃k̃) that generate fx(〈G̃〉) may be dependent. This can happen if

and only if there is a g ∈ 〈G̃〉 \ {I⊗n+t} such that fx(g) = I⊗t. Further, we note that the group fx(〈G̃〉) may contain
the element −I⊗t. If this is the case, it is easy to show that fx(ΠG̃) = 0.

We now outline a simple procedure that allows us to:



26

1. Identify constraints on x that are necessary to ensure that −I⊗t 6∈ fx(〈G̃〉) and, assuming x satisfies all such
constraints,

2. Identify a subset of 〈G̃〉 such that its image under fx is independent and generates fx(〈G̃〉).

Let us start with the set G̃(0) := G̃ and for each j ∈ [w] we update G̃(0) → G̃(1) → . . . → G̃(w). On, the jth update
procedure we:

1. Put G̃(j−1) into ZX(j)-form.

2. If G̃(j−1) does not have a leading generator, G̃(j) ← G̃(j−1)

3. If G̃(j−1) has a leading generator, then it must be a leading-Z. Call this gz.

4. Map all elements g ∈ G̃(j−1) \{gz} to 〈x1 . . . xj | g |x1 . . . xj〉 where the |x1 . . . xj〉 vectors act on the first j qubits.
Check if the group generated by these elements, 〈G(x, j)〉, contains either 〈0| 〈x1 . . . xj−1| gz |x1 . . . xj−1〉 |0〉 or
−〈0| 〈x1 . . . xj−1| gz |x1 . . . xj−1〉 |0〉 (where the |0〉 vectors act on qubit j and the |x1 . . . xj−1〉 vectors act on the

first j − 1 qubits). If neither is true then G̃(j) ← G̃(j−1).

5. If the group 〈G(x, j)〉 contains (−1)a 〈0| 〈x1 . . . xj−1| gz |x1 . . . xj−1〉 |0〉 for either a = 0 or a = 1, then we require

xj = a. In either case (xj = 0 or xj = 1), we note that fx(gz) is dependent on
{
fx(g) | g ∈ G̃(j−1) \ {gz}

}
hence we set G̃(j) ← G̃(j−1) \ {gz}.

It is clear that for all j where Step 5 applies, our constraint on xj is necessary to ensure that −I⊗t 6∈ fx(〈G̃〉).
The final output G̃(w) of this procedure is a subset of 〈G̃〉 such that its image under fx is independent and generates

fx(〈G̃〉). To see that
{
fx(g) | g ∈ G̃(w)

}
generates fx(〈G̃〉), we note that the above procedure only deletes elements

in Step 5. In this case, the deleted element gz has the property that fx(gz) is dependent on the fx image of the

remaining elements. Hence
{
fx(g) | g ∈ G̃(w)

}
generates fx(〈G̃〉) since

{
fx(g) | g ∈ G̃(0)

}
generates fx(〈G̃〉). We

can see that
{
fx(g) | g ∈ G̃(w)

}
is independent by induction. First, we note that

{
g ∈ G̃(0)

}
is independent. Now

for the jth induction step, assume that
{
〈x1 . . . xj−1| g |x1 . . . xj−1〉 | g ∈ G̃(j−1)

}
is independent (where the vector

|x1 . . . xj−1〉 acts on the first j − 1 qubits). Then to see that
{
〈x1 . . . xj | g |x1 . . . xj〉 | g ∈ G̃(j)

}
is independent

let us, without loss of generality, assume G̃(j−1) is in ZX-Form with respect to qubit j. Then it is clear that{
〈x1 . . . xj | g |x1 . . . xj〉 | g ∈ G̃(j−1), g not a leading generator

}
are independent. Thus dependence can only arise if

〈x1 . . . xj | gz |x1 . . . xj〉 is dependent on
{
〈x1 . . . xj | g |x1 . . . xj〉 | g ∈ G̃(j−1), g not a leading generator

}
. We explicitly

check this (in Step 4) and exclude gz from G̃(j) if it gives rise to dependence. Hence by induction we have shown that{
〈x| g |x〉 | g ∈ G̃(w)

}
is independent. This immediately leads to the independence of

{
fx(g) | g ∈ G̃(w)

}
.

We define G := fx(G̃(w)) ∈ G(t, k) for some k ≤ t. Using Eq. (A5) and the definition of k̃, Eq. (31b) follows. We

define r := t− k and define v as the number of rows deleted in Step 5. Hence,
∣∣∣G̃∣∣∣ =

∣∣∣G̃(w)
∣∣∣+ v = |G|+ v = t− r+ v.

Thus, it is clear that v ∈ {0, 1, . . . , w} and r ≤ t. We now show that r ≤ n − w. Let us note that to derive G̃ from
G(0), we imposed the constraints on registers ‘a’ and ‘b’. Since G(0) is a maximal generating set, just imposing the
register ‘b’ constraints must result in the deletion of between (n−w) and 2(n−w) generators. Subsequently imposing
register ‘a’ constraints must result in the further deletion of da generators where, by using Lemma 11, one can show
that da is between 0 and w − v. Thus,∣∣∣G̃∣∣∣ ∈ {∣∣∣G(0)

∣∣∣− 2(n− w)− (w − v),
∣∣∣G(0)

∣∣∣− 2(n− w)− w + 1 . . . ,
∣∣∣G(0)

∣∣∣− (n− w)
}

= {(n+ t)− 2(n− w)− (w − v), (n+ t)− 2(n− w)− (w − v) + 1 . . . , (n+ t)− (n− w)}
= {−n+ t+ w + v,−n+ t+ w + v + 1 . . . , t+ w} (A7)

Now,
∣∣∣G̃∣∣∣ = t− r + v by definition of r and v. So:

r ∈ {(t+ v)− (t+ w), . . . , (t+ v)− (−n+ t+ w + v)}
= {v − w, . . . , n− w} . (A8)

This shows that r ≤ n− w completing our proof.



27

Appendix B: Proof of Lemma 5

Proof. We will provide a sequence of gates that forms a unitary W transforming ΠG into |0〉〈0|⊗t−r ⊗ I⊗r for an
arbitrary stabilizer generator matrix G ∈ G(t, t− r). Equivalently, it means that W should transform a generator

matrix G into a generator matrix corresponding to a projector |0〉〈0|⊗t−r ⊗ I⊗r, i.e.,

G0 = [ X ‖ Z ]
W−→ Gfin = [ 0 ‖ I | 0 ] . (B1)

Here, we will adopt the formulation in terms of tableaux given in Ref. [16]. For our algorithm we only require the
stabilizers, not the destabilisers so the matrices given in equation B1 (and in the sequel) correspond to the lower half
of the destabiliser+stabiliser tableaux of Aaronson and Gottesman.

Each of (t− r) rows of a generator matrix corresponds to a stabilizer generator given by a Pauli matrix encoded as
a binary vector of length 2t. The first t entries correspond to X stabilizers (i.e. if the entry in column j ∈ [t] equals
one, then there is a Pauli X acting on the jth qubit), while the remaining t entries correspond to Z stabilizers. If
a row k has a qubit with a 1 in both the X and Z portion then the stabiliser has the operator Yk on qubit k (this
differs from XkZk by a factor of i). We use the symbol ‖ to visually separate the X and Z parts, and the separator
| to separate a square block within each part. We also use X and Z to denote arbitrary entries in the corresponding
parts, and I to denote a square (t− r)× (t− r) identity matrix. In addition to the Pauli matrices each stabiliser has
a phase ±1 associated to it. This information is stored in a binary vector f of length (t− r).

First, given G0, we can perform row sums, as they correspond to stabiliser multiplication. We can also swap pairs
of columns j and j+ t (one in X part, the other in Z part) by applying a Hadamard gate to qubits j. Using these two
operations, we can bring the X part to the reduced row echelon form. More precisely, using row sums we can perform
Gaussian elimination of the X part, and each time we find a column with no leading 1 in it, we can bring the missing
1 from the Z part (if one exists) using a Hadamard gate. Since the rows are independent we will obtain exactly (n−r)
leading 1s in this way. Finally, using SWAP gates (each composed of three CX gates), we can permute the columns
so that the first (t− r)× (t− r) block in the X part is given by the identity matrix. Thus, after using at most t− r
Hadamard gates and 3(t− r) instances of CX gates, we arrive at

G1 = [ I | X ‖ Z ]. (B2)

Next, we can use CX gates to clear the remaining (t − r) × r block of the X part. Specifically, if there is a 1 in
row j and column k of this block, the application of CX controlled on qubit j and targeted on qubit k flips that 1 to
0. It also non-trivially affects the entries of the Z part, but we will deal with that in the next step. Thus, after using
at most (t− r)r instances of CX gates, we obtain

G2 = [ I | 0 ‖ Z ]. (B3)

The third step employs phase gates to ensure that the main diagonal of the Z part, i.e. the elements Zjj , are all
zero. To achieve this, it is enough to apply S to every qubit j such that Zjj = 1. This requires the use of at most
(t− r) phase gates and results in

G3 = [ I | 0 ‖ Z̃ ], (B4)

with tilde indicating the zero diagonal of the main (t− r)× (t− r) block in the Z part.
Now, we can use CZ gates to clear the last (t− r)× r block of the Z part. Specifically, if there is a 1 in row j and

column k of this block, the application of CZ controlled on qubit j and targeted on qubit k flips that 1 to 0. It also
does not affect the entries of the X part at all. Thus, after using at most (t− r)r instances of CZ gates, we obtain

G4 = [ I | 0 ‖ Z̃ | 0 ]. (B5)

In the fifth step, we employ the fact that stabilisers commute. Assume that there is a non-zero element Z̃ij = 1,

i 6= j in the Z̃ matrix, this means there is Pauli Z matrix on qubit j in stabiliser i. Stabiliser i has to commute with
stabiliser j, since there is a 1 in element (j, j) of the X block there is a Pauli X acting on qubit j in stabiliser j which
would lead to stabiliser i anti-commuting with stabiliser j. Since the X part of the tableau is [ I | 0 ] we must also

have a Pauli Z in stabiliser j acting on qubit i, Z̃ij = 1 =⇒ Z̃ji = 1. Repeating this argument with the initial

assumption Z̃ij = 0 proves that Z̃ is symmetric Z̃T = Z̃.
This allows us to zero the whole Z part using CZ gates. More precisely, for each unordered pair (j, k) such that

Z̃jk = Z̃kj = 1, the application of a CZ gate controlled on qubit j and targeted on qubit k flips both those 1’s to 0’s.
It also does not affect any other entries. Thus, after using at most r(r − 1)/2 instances of CZ gates, we arrive at

G5 = [ I | 0 ‖ 0 ]. (B6)



28

At this stage it is convenient to zero the phase vector f . For each row k if pk = 1 we apply Zk = S2
k. Due to the

form of the X part of the matrix it is easy to see that this will multiply stabiliser k by −1 and leave all the others
invariant. This requires at most 2(t− r) applications of the S gate.

The final step requires implementing t − r Hadamard gates to transform the above G5 to Gfin. Summarising, in
all steps we used at most 2(4 + r)t− r(17 + 3r)/2 Clifford gates including at most 2(t− r) Hadamard gates.

Appendix C: Proof of Lemma 6

Proof. From the definition of |ψ(y)〉, Eq. (48), we have

‖|ψ(y)〉‖22 := ξ∗ · 2t−r+v−w
∥∥∥〈0|⊗t−rW |ỹ〉∥∥∥2

2
, (C1)

Now, combining the statements of Lemma 4 and Lemma 5 we have:

Trab

(
V |0〉〈0|⊗n+tabc V † |x〉〈x|a

)
= 2−r+v−wW †(|0〉〈0|⊗t−r ⊗ I⊗r)W. (C2)

and so

2t
∥∥∥〈x|a 〈ỹ|c V |0〉⊗n+tabc

∥∥∥2
2

= 2t−r+v−w
∥∥∥〈0|⊗t−rW |ỹ〉∥∥∥2

2
. (C3)

Therefore,

‖|ψ(y)〉‖22 = ξ∗ · 2t
∥∥∥〈x|a 〈ỹ|c V |0〉⊗n+tabc

∥∥∥2
2
≤ ξ∗ · 2t

∥∥∥〈ỹ|c V |0〉⊗n+tabc

∥∥∥2
2
. (C4)

Let us take a closer look at 〈ỹ|c V |0〉
⊗n+t
abc . Referring to Fig. 5, recall that the unitary V describes a Clifford circuit

of the form

V = Ct

t∏
j=1

CXjCj−1 (C5)

where Cj is an arbitrary Clifford gate on n qubits in register ‘ab’, CXj is a CNOT gate controlled on one of the
qubits from register ‘ab’ and targeted at the j-th qubit in register ‘c’, and the product is ordered from right to left
(i.e., the rightmost term is given by C0). We then have

〈ỹ|c V |0〉
⊗n+t
abc = 〈ỹ1 . . . ỹt|c

Ct t∏
j=1

CXjCj−1

 |0〉⊗nab ⊗ |0〉
⊗t
c (C6)

= 〈ỹ2 . . . ỹt|c

Ct t∏
j=2

CXjCj−1

 |Φ1〉ab ⊗ |0〉
⊗(t−1)
c (C7)

with

|Φ1〉ab = 〈ỹ1|c CX1C0 |0〉⊗nab ⊗ |0〉c (C8)

being an n-qubit unnormalised stabliser state (note that we could commute the projector 〈ỹ1|c through the circuit as
the first qubit in the register ‘c’ is never again affected by it). In order to normalize |Φ1〉ab we first write

C0 |0〉⊗nab = c0 |0ψ0〉ab + |1ψ1〉ab , (C9)

with |c0|2 + |c1|2 = 1 and the distinguished first qubit corresponding to the control qubit of CX1. We then use the
above to obtain

|Φ1〉ab = 〈ỹ1|c CX1(c0 |0ψ0〉ab + c1 |1ψ1〉ab)⊗ |0〉c (C10)

= 〈ỹ1|c (c0 |0ψ0〉ab ⊗ |0〉c + c1 |1ψ1〉ab ⊗ |1〉c) (C11)

=
1√
2

(c0 |0ψ0〉ab + c1(−i)ỹ1 |1ψ1〉ab), (C12)



29

and so we conclude that the normalised state is given by

|Φ′1〉ab =
1√
2
|Φ1〉ab . (C13)

We thus have

〈ỹ|c V |0〉
⊗n+t
abc =

1√
2
〈ỹ2 . . . ỹt|c

Ct t∏
j=2

CXjCj−1

 |Φ′1〉ab ⊗ |0〉⊗(t−1)c , (C14)

and we can repeat the whole procedure again. More precisely, we introduce an n-qubit unnormalised stabiliser state

|Φ2〉ab = 〈ỹ2|c CX2C1 |Φ′1〉ab ⊗ |0〉c , (C15)

we decompose C1 |Φ′1〉ab analogously as we did in Eq. (C9), and repeating the same reasoning we arrive at

〈ỹ|c V |0〉
⊗n+t
abc =

1√
22
〈ỹ3 . . . ỹt|c

Ct t∏
j=3

CXjCj−1

 |Φ′2〉ab ⊗ |0〉⊗(t−2)c . (C16)

Repeating it t times in total we finally arrive at

〈ỹ|c V |0〉
⊗n+t
abc =

1√
2t
Ct |Φ′t〉ab . (C17)

Substituting the above to the inequality from Eq. (C4) we finally arrive at

‖|ψ(y)〉‖22 ≤ ξ
∗. (C18)

Appendix D: Proof of Lemma 7

In order to prove our result, we will need the definition of a very-weak martingale and a theorem from Ref. [40]
given below.

Definition 12 (Very-weak martingale). Let N ∈ N, Ω be a sample space and for all j ∈ N, let Xj : Ω → RN be a
random variable taking values in RN such that X0 = 0, E

[
‖Xj‖2

]
<∞ and E [Xj | Xj−1] = Xj−1. Then we call the

sequence (X0, X1, . . .) a very-weak martingale in RN .

Theorem 13 (Theorem 1.8 of Ref. [40]). Let X ba a very-weak martingale taking values in RN such that X0 = 0
and for every j, ‖Xj −Xj−1‖2 ≤ 1. Then for every a > 0:

Pr (‖Xs‖2 ≥ a) ≤ 2e1−(a−1)
2/2s < 2e2 exp

(
−a2/2s

)
. (D1)

We can now prove Lemma 7.

Proof. The proof is a simple application of Theorem 13. Let us use R : Cd → R2d to denote the two-norm preserving
linear map R(a1 + ib1, . . . , ad + ibd) = (a1, b1, . . . , ad, bd). For s ∈ N, we define the random variable Ys ∈ R2d as
follows: Y0 = (0, . . . , 0) and for s > 0:

Ys :=
s√

m+
√
p
R
(∣∣ψ〉− |µ〉) , (D2)

where we note that
∣∣ψ〉 depends on s as per Eq. (52).

We now note that Ys is a very-weak martingale since Y0 = 0 and

E [‖Ys‖2] =
s√

m+
√
p
E
[√(〈

ψ
∣∣− 〈µ|) (∣∣ψ〉− |µ〉)] <∞, (D3)



30

as well as

E [Ys | Ys−1] = E
[
Ys−1 +

1√
m+

√
p
R (|ψxs〉 − |µ〉) | Ys−1

]
= Ys−1. (D4)

Additionally, we note that ‖Ys − Ys−1‖2 ≤ 1, since:

‖Ys − Ys−1‖2 =

∥∥∥∥ 1√
m+

√
p
R (|ψxs〉 − |µ〉)

∥∥∥∥
2

(D5)

=
1√

m+
√
p

√
〈ψxs |ψxs〉 − 〈ψxs |µ〉 − 〈µ|ψxs〉+ 〈µ|µ〉 (D6)

≤ 1√
m+

√
p

√
m+ 2

√
mp+ p = 1. (D7)

Hence, by Theorem 13:

Pr (‖Ys‖2 ≥ a) = Pr

(∥∥∣∣ψ〉− |µ〉∥∥
2
≥
a(
√
m+

√
p)

s

)
< 2e2 exp

(
−a2/2s

)
. (D8)

Substituting ε = a(
√
m+

√
p)/s proves Eq. (53).

To prove Eq. (54), we define:

|∆〉 := |µ〉 −
∣∣ψ〉 , (D9)

and note that ∥∥∣∣ψ〉〈ψ∣∣− |µ〉〈µ|∥∥
1

= ‖|µ〉〈∆|+ |∆〉〈µ| − |∆〉〈∆|‖1 ≤ ‖|µ〉〈∆|‖1 + ‖|∆〉〈µ|‖1 + ‖|∆〉〈∆|‖1 (D10)

= 2 ‖|µ〉‖2 ‖|∆〉‖2 + ‖|∆〉‖22 = ‖|∆〉‖2 (‖|∆〉‖2 + 2
√
p). (D11)

Now, employing the above, if ‖|∆〉‖2 ≤ ε then
∥∥∣∣ψ〉〈ψ∣∣− |µ〉〈µ|∥∥

1
≤ ε(ε + 2

√
p). Applying this observation to the

already proven Eq. (53) yields:

Pr
(∥∥∣∣ψ〉〈ψ∣∣− |µ〉〈µ|∥∥

1
≥ ε(ε+ 2

√
p)
)
≤ 2e2 exp

(
−sε2

2(
√
m+

√
p)2

)
.

We can now define a new variable ε = ε(ε + 2
√
p) and solve this quadratic equation for ε. Taking only the positive

solution gives ε =
√
p+ ε−√p, which immediately leads to Eq. (54).

Appendix E: CH form

Following the formalism developed in Ref. [30], any stabilizer state |σ〉 of n qubits can be written as

|σ〉 = ωUCUH |s〉 , (E1)

where UC is the control type operator (in our case effectively meaning that it consists of products of S, CX and
CZ gates), UH is the Hadamard-type operator (consisting only of products of H gates), s is a bit string of length n
representing one of the computational basis states, and ω is a complex number. The unitary UC is fully specified by
three n× n matrices F,G,M with entries in Z2 and a phase vector γ of length n with entries in Z4. Together, they
describe the action of UC on Pauli matrices:

U†CZjUC =

n∏
k=1

Z
Gjk
k , U†CXjUC = iγj

n∏
k=1

X
Fjk
k Z

Mjk

k , (E2)

where Xj and Zj are Pauli matrices acting on the j-th qubit. The unitary UH is fully specified by a bit string v of
length n, with vj = 1 if UH acts with a Hadamard on the j-th qubit. Thus, a general stabilizer state |σ〉 of n qubits
is described by a tuple {F,G,M, γ, v, s, ω}.



31

The initial state is represented by the following tuple

|0〉⊗n ⇐⇒ {F = 1, G = 1,M = 0, γ = 0, v = 0, s = 0, ω = 1}. (E3)

The authors of Ref. [30] found an efficient way to find the tuple {F ′, G′,M ′, γ′, v′, s′, ω′} representing V |0〉⊗n for an
arbitrary Clifford unitary V . The run-time of this evolution subroutine scales polynomially with the total number of
qubits n: the “C-type” gates (S, CX, CZ) have linear time complexity O(n), while applying a Hadamard gate takes
O(n2) steps. For completeness, we include the update rules for left, L[Γ], and right, R[Γ], multiplication of UC by
a C-type unitary Γ. All phase vector updates are performed modulo four, and each update containing the symbol p
should be read as applying to all p ∈ {1, . . . , n} in turn.

R[Sq] :

{
Mp,q ← Mp,q ⊕ Fp,q
γp ← γp − Fp,q

L[Sq] :

{
Mq,p ← Mq,p ⊕Gq,p
γq ← γq − 1

(E4a)

R[CZq,r] :

 Mp,q ← Mp,q ⊕ Fp,r
Mp,r ← Mp,r ⊕ Fp,q
γp ← γp + 2Fp,qFp,r

L[CZq,r] :

{
Mq,p ← Mq,p ⊕Gr,p
Mr,p ← Mr,p ⊕Gq,p

(E4b)

R[CXq,r] :

 Gp,q ← Gp,q ⊕Gp,r
Fp,r ← Fp,r ⊕ Fp,q
Mp,q ← Mp,q ⊕Mp,r

L[CXq,r] :


γq ← γq + γr + 2(MFT )q,r

Gr,p ← Gr,p ⊕Gq,p
Fq,p ← Fq,p ⊕ Fr,p
Mq,p ← Mq,p ⊕Mr,p

(E4c)

We note a slight difference to the update rules as presented by the authors of Ref. [30]: in the update rule for L[CXq,r]
we update γ before updating F and M to emphasise that γ must be updated based on the old values of F and
M , rather than the new. It will be significant that the action of the operation L[CXq,r] on the F matrix is column
addition and that, since this addition is modulo two, the right-action of the swap gate, CXq,rCXr,qCXq,r, on F is just
to swap the columns r and q.

We will also employ the equation given in Ref. [30] to compute inner products between CH-form stabiliser states
and computational basis states,

〈x|UCUH |s〉 = 〈0|⊗n
(

n∏
p=1

U−1C Xxp
p UC

)
UH |s〉 = 2−

|v|
2 iµ

∏
j: vj=1

(−1)ujsj
∏

j: vj=0

〈uj |sj〉 , (E5)

where uj = xF , and µ = x · γ + 2k for a constant k ∈ {0, 1} which may be computed in quadratic time given x and
the CH-form data. Indeed, some algebra demonstrates that k may be determined by the relation

n∏
p=1

U−1C Xxp
p UC = ix·γ

∏
p: xp=1

n∏
j=1

X
Fpj
j Z

Mpj

j = ix·γ(−1)k
n∏
j=1

∏
p: xp=1

Z
Mpj

j X
Fpj
j . (E6)

Appendix F: Proof of Lemma 9

The proof splits into two parts. First, we show in Lemma 14 that if the CH-form describing the initial (n+1)-qubit
state |0〉⊗ |σ〉 has a certain form, then a CH-form describing |σ〉 may be obtained by simply deleting the first row and
column of each F , G and M , and the first element of γ, v and s. We assume the deletion operation takes quadratic
time to leading order as an implementation is likely to simply allocate a new O(n2) sized block of memory and then
copy the required values across. Second, we give an algorithm which takes an arbitrary CH-form representing |0〉⊗|σ〉
and outputs in quadratic time a CH-form representing the same state, but in the form required by Lemma 14. We
show, in Lemmas 15 and 16, how the CH-form representing such a product state can be brought into a form with at
most one qubit k with vk = 0, sk = 1. This is important because we can insert CX gates controlled on any qubit
with vk = 0, sk = 0 between UC and UH in the CH-form without changing the state (a CX controlled on |0〉 does
nothing). Finally, in Lemma 17, we show that if the CH-form is in the form produced by Lemmas 15 and 16, then
inserting CX gates controlled on |0〉 qubits can bring the CH-form into the form required by Lemma 14.

We label computational basis vectors with bit-strings, denote bitwise addition modulo-2 with the symbol ⊕, bitwise
multiplication with juxtaposition, and use the operator : to denote concatenation of bitstrings, e.g., if a = 01 then
0:a = 001 and a :0 = 010. The first part of the proof is then captured by the following.



32

Lemma 14. Consider a stabiliser state |0〉⊗|σ〉 with CH-form F = {F,G,M, γ, v, s, ω} such that: the first column of
F has a 1 in the first element and zeros elsewhere, and s1 = v1 = 0. Then, the CH-form F ′ = {F ′, G′,M ′, γ′, v′, s′, ω},
where F ′, G′ and M ′ are formed by deleting the first row and column of F , G and M , respectively, and γ′ v′ and s′

are formed by deleting the first element of γ, v and s, respectively, is a CH-form for |σ〉.

Proof. Choose an arbitrary n-qubit computational-basis vector |a〉 and use Eq. (E5) to compute

〈a|σ〉 = 〈0|0〉 〈a|σ〉 = 〈0:a| |0〉 ⊗ |σ〉 = ω 〈0:a|UCUH |s〉 = (−1)kωiu·γ 〈0n|X(u)UH |s〉 (F1)

= (−1)kωiu·γ2−|v|/2
∏

j: vj=1

(−1)ujsj
∏

j: vj=0

〈uj |sj〉 , (F2)

where k is a bit we have introduced to count whether we have swapped an even or odd number of Xj with their Zj to
arrive at the final equality in Eq. (F1). We recall that u = (0:a)F . If F ′ is the matrix obtained from F by removing
the first row and column, then one can verify that u = 0:(aF ′); in particular u1 = 0. In addition, we define γ′, v′

and s′ by deleting the first element of γ, v and s, respectively, and we let u′ = aF ′. Ignoring k for the moment we go
through the rest of the terms in turn. First, since u1 = 0

u′ · γ′ = u · γ. (F3)

Next, since we have v1 = 0,

|v′| = |v| (F4)

and ∏
j: v′j=1

(−1)u
′
js
′
j =

∏
j: vj=1

(−1)ujsj . (F5)

Finally, since 〈u1|s1〉 = 1, ∏
j: v′j=0

〈
u′j
∣∣s′j〉 =

∏
j: j>1,vj=0

〈uj |sj〉 =
∏

j: vj=0

〈uj |sj〉 . (F6)

We now turn to the calculation of k. For conciseness we write x = 0:a, and want to simplify

X(x)UC = UC
∏

p: xp=1

iγk∏
j

X
Fpj
j Z

Mpj

j

 . (F7)

In particular, we will commute all the Z’s to the back to write

X(x)UC = (−1)kiu·γUCZ(t)X(u). (F8)

The bit k may be calculated by the following algorithm. First initialise k := 0 and set t to be a length n vector of
zeros. Then, for each p with xp = 1, we want to compute the product∏

j

X
Fpj
j Z

Mpj

j )

Z(t)X(u). (F9)

We update t by adding (mod-2) the pth row of M (i.e., we combine the adjacent Z-type operators), then we commute
each Xj through the new Z(t), which gives a (−1) for each j for which both Fpj and tj are non-zero. More explicitly,
we update k to be k + Fp · t(mod 2), where Fp is the pth row vector of F .

Since the first column of F has a 1 in the first element and 0 in all others, each Fp for p > 1 starts with a zero.
Therefore, k is not sensitive to the first bit of t except when p = 1 (since the first element of F1 is 1). However
x = (0:a), so x1 = 0 and so the case p = 1 does not appear in the product in Eq. (F7). We will therefore compute
the same k bit with the “trimmed” data as we would with the original data.

In order to present the second part of the proof we will need a few lemmas. First, we will prove a useful constraint
on the CH-form of a state in the form |0〉 ⊗ |σ〉.



33

Lemma 15. Given a stabiliser state,

|0〉 ⊗ |σ〉 = ωUCUH |s〉 , (F10)

where the CH-form on the right is defined by the data F = {F,G,M, γ, v, s, ω}, at least one of the following is true:

1. ω = 0;

2. ∃q such that vq = sq = 0;

3. ∃q, r (q 6= r) such that sq = sr = 1 and vq = vr = 0.

Proof. We consider the inner product

(〈1| ⊗ 〈a|) (|0〉 ⊗ |σ〉) = 〈1|0〉 〈a|σ〉 = 0, (F11)

where a ∈ {0, 1}n defines a computational basis vector. We thus have that for all a:

0 = ω 〈1:a|UCUH |s〉 . (F12)

If ω = 0 we are in case 1, otherwise we divide by ω to get

0 = 〈1:a|UCUH |s〉 . (F13)

Applying Eq. (E5) we obtain

0 = 〈0|⊗nX((1 :a)F )UH |s〉 , (F14)

where X(b) denotes the tensor-product unitary applying Xbi to qubit i.The above is equivalent to

0 =
∏

j: vj=0

〈[(1 :a)F ]j |sj〉 . (F15)

We therefore have at least one j such that vj = 0. We first consider the case where there is exactly one j such that
vj = 0. Then, for this j, we have ∀a ∈ {0, 1}n

〈[(1 :a)F ]j |sj〉 = 0. (F16)

Choosing a = 00 . . . 0 and computing the matrix multiplication (1:a)F we obtain

F1j 6= sj . (F17)

Now choosing (for each k individually) ak = δkj , we obtain

F1j + Fkj 6= sj . (F18)

This implies that for k > 1 we have Fkj = 0, and since the column F:,j cannot consist of entirely zeros as F is
invertible (indeed the inverse of F is the transpose of G), we have

F1j = 1 =⇒ sj = 0. (F19)

We are therefore in case 2. We note that the assumption that exactly one of the vj is equal to zero is necessary in
the above, to allow us to change the bitstring a without the j in Eq. (F16) changing.

Finally we consider the case where there exist distinct j, k such that vj = vk = 0. If either of sj or sk equals 0 we
are in case 2, otherwise both are equal to 1 and we are in case 3.

In what follows we will neglect case 1 since if ω = 0 the state is independent of the rest of the CH-form and all
computations are trivial. We now provide two lemmas that show that any CH-form for a tensor-product state |0〉⊗|σ〉
may be efficiently brought into a convenient form.

Lemma 16. Given ω 6= 0 and

|0〉 ⊗ |σ〉 = ωUCUH |s〉 , (F20)

where the CH-form on the right is given by F = {F,G,M, γ, v, s, ω}, we can compute F ′ = {F ′, G′,M ′, γ′, v′, s′, ω′}
defining the same state such that there is at most one index j with v′j = 0, s′j = 1.



34

Proof. Assume there are multiple indices j such that vj = 0 and sj = 1. We recall that the controlled X gate, CXp,q,
is its own inverse, so we have

ωUCUH |s〉 = ωUCCXp,qCXp,qUH |s〉 , (F21)

for all p 6= q. Let a be the least index such that va = 0 and sa = 1. Then, for all b > a such that vb = 0 and sb = 1,
we insert a pair of controlled X gates controlled on a and targeted on b. Since CXa,b is its own inverse, this insertion
does not change the quantum state we are representing. We then let the left hand CXa,b act on UC in accordance with
the update rules given in Eqs.(E4a)-(E4c), while the right hand CXa,b acts on the state UH |s〉. Since va = vb = 0
and sa = sb = 1, the action of this is to flip sb to 0.

Lemma 17. Consider ω 6= 0 and

|0〉 ⊗ |σ〉 = ωUCUH |s〉 , (F22)

where the CH-form on the right is given by F = {F,G,M, γ, v, s, ω}, and assume there is at most one j such that
vj = 0, and sj = 1. Then, the first row of G is non-zero only for elements G1p for which sp = vp = 0.

Proof. First assume there is no j such that vj = 0 while sj = 1. Let p be an index such that G1p = 1 and let
x = epG

T , where ep is the vector which has 1 in the pth entry and 0 in all other entries. We consider the inner product
of 〈x| (|0〉 ⊗ |σ〉). Since G1p = 1, we have that x0 = 1, so the inner product equals 0. From Eq. (E5) we read

0 =
∏

j: vj=0

〈(xF )j |0〉 =
∏

j: vj=0

〈
(epG

TF )j
∣∣0〉 =

∏
j: vj=0

〈(ep)j |0〉 =⇒ vp = 0, (F23)

since GTF is the identity matrix and (ep)j = δpj .
Now assume there exists a single index k such that vk = 0, sk = 1. Consider the inner product〈

ekG
T
∣∣ (|0〉 ⊗ |σ〉) = a

∏
j: vj=0

〈
(ekG

TF )j
∣∣sj〉 = a

∏
j: vj=0

〈(ek)j |sj〉 = a
∏

j 6=k: vj=0

〈(ep)j |0〉 · 〈(ek)k|1〉 = a, (F24)

where a 6= 0 is a constant given by Eq. (E5). Since a 6= 0 we have
〈
ekG

T
∣∣ |0〉 |σ〉 6= 0, which implies (ekG

T )1 = 0, and
therefore G1k = 0.

Finally, for a p 6= k such that G1p = 1 consider x = (ep + ek)GT . Since G1k = 0 and G1p = 1, we have x1 = 1 and
hence

0 = 〈x| (|0〉 ⊗ |σ〉) =
∏

j: vj=0

〈
((ek + ep)G

TF )j
∣∣sj〉 =

∏
j: vj=0

〈(ek + ep)j |sj〉

=
∏

j 6=k: vj=0

〈(ep + ek)j |0〉 · 〈(ep + ek)k|1〉 =
∏

j 6=k: vj=0

〈(ep)j |0〉 =⇒ vp = 0. (F25)

We now have all the ingredients to present the last part of the proof. We first ensure that G11 = 1. If this not the
case, we choose a q such that G1q = 1 (such a q exists since G is invertible) and insert a pair of swap gates using the
identity

ωUCUH |s〉 = ωUCSWAP1,qSWAP1,qUH |s〉 , (F26)

multiply the left hand SWAP onto UC (where it swaps the first and qth column of G), and apply the right hand one
to UH |s〉 (where it swaps the first bit of v with the qth bit of v and the first bit of s with the qth bit of s).

The formula GTF = I implies that (the sums below are mod 2)∑
p

G1pF:,p =
∑

p:G1p=1

F:,p = eT1 , (F27)

since eT1 is the first column of the identity matrix. We now consider all the indices p > 1 such that G1p = 1., Lemma 17
implies that for such a p the equation

ωUCUH |s〉 = ωUCCXp,1UH |s〉 (F28)



35

holds, since vp = sp = 0 implies the pth qubit of UH |s〉 is in the state |0〉. Right-multiplying this CXp,1 onto UC
causes the pth column of the F matrix to be added onto the 1st column. The right-multiplication does not alter the
first row of the G matrix. We therefore have the identity

ωUCUH |s〉 = ωUC
∏

p:G1p=1

CXp,1UH |s〉 , (F29)

resulting in the update to the F matrix

F:,1 ←
⊕

p:G1p=1

F:,p = eT1 . (F30)

Appendix G: Optimizing magic state count

By analysing the stabilisers we obtain it is possible to reduce the T gate count of a circuit. The size of the
improvement depends on the circuit in question, but for some circuits this optimisation can have a significant impact.

We recall equation (33b), which expresses the probability of interest as the expectation value of a product Stabilizer
state projectors

p = 2v−w〈T †φ|
t−r∏
i=1

(I + gi)|T †φ〉, (G1)

where the gi are an independent set of t qubit Pauli operators. We can multiply the generators between themselves
to obtain equivalent generating sets, and use this freedom to put the stabiliser table in ZX(j) form for any qubit
number j.

Recall that in ZX(j) form at most two of the generators are non-identity on qubit j and either

1. All generators are identity on qubit j

2. A single generators is non identity on qubit j that generators’s action on qubit j may be

(a) Xj

(b) Yj

(c) Zj

3. Two generators are non-identity on qubit j, one has action Xj on qubit j and one has action Zj .

We focus on the case where in ZX(j) form there is a single stabiliser generator gk which acts non-trivially on qubit j
and that generator has action Zj on qubit j. Of course this generator may also act non-trivially on other qubits. We
rewrite equation (G1)

p = 2v−w〈T †φ|(I + gk)
∏
i 6=k

(I + gi)|T †φ〉, (G2)

since |gk|j = Z, for all i 6= k |gi|j = I and each of the states in the tensor product |T †φ〉 are equatorial we have

〈T †φ|gk
t−r∏
i 6=k

(I + gi)|T †φ〉 = 〈T †φj |gk|T
†
φj
〉 (G3)

= 0 (G4)

and therefore

p = 2v−w〈T †φ|
∏
i 6=k

(I + gi)|T †φ〉. (G5)

We may therefore remove generator k from our set of generators without changing p. All remaining generators
have |gi|j = I, and since products of generators happen component-wise this column of identities will remain in the
stabiliser tableau regardless of subsequent changes in the generating set.



36

We therefore have a simple algorithm to reduce the number of generators needed in our generating set.

Algorithm 4 Magic-Constrain Given a stabilizer generating set 〈G〉 returns a stabilizer generating set 〈G′〉 such

that |G′| ≤ |G| 〈T †φ|
∏
g∈G′(I + g)|T †φ〉 = 〈T †φ|

∏
g∈G(I + g)|T †φ〉.

Input: A stabilizer generating set G = {g1, . . . , gk} ∈ G(t, k).
Output: A stabilizer generating set G = {g1, . . . , gk} ∈ G(t, k).

1: count ← 0
2: while count < t− r do
3: count ← count +1
4: j ← 1
5: while j ≤ t− r do
6: G← ZX-Form(G, j)
7: if G has a leading Z generator and no leading X generator then
8: delete the leading Z generator.
9: r ← r + 1

10: end if
11: j ← j + 1
12: end while
13: end while

We note that the result of applying algorithm 4 is a set of stabiliser generators with some number 0 ≤ q qubits
for which the action of every generator on that qubit is the identity. Examining equation (G1) again we see that if
qubit k has the property that every stabiliser generator g satisfies the equation |g|k = I then this qubit contributes
an overall factor of

〈T †φk |I|T
†
φk
〉 = 1 (G6)

to the probability p. We may therefore delete this qubit from our stabiliser tableau without changing p.
The impact of imposing the region c constraints is therefore to reduce the stabiliser generator count by from t− r

to t − r − q, while simultaneously reducing the qubit count by q so r is unchanged. If in addition there are qubits
on which every stabiliser generator is the identity arising from the region a and b constraints we can also delete
these, reducing t − r but increasing r. The impact of this change is less clear since the run-time of RawEstim has
components which scale in t− r and in r but we expect it to be a net positive.

[1] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
[2] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203 (2017).
[3] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A.

Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler,
C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov,
F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant,
X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C.
Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D.
Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Quantum
supremacy using a programmable superconducting processor, Nature 574, 505 (2019).

[4] H.-S. Zhong et al., Quantum computational advantage using photons, Science 370, 1460 (2020).
[5] S. T. Flammia and Y.-K. Liu, Direct fidelity estimation from few Pauli measurements, Phys. Rev. Lett. 106, 230501 (2011).
[6] M. Kliesch, Lecture notes: Characterization, verification, and validation of quantum systems, (2019).
[7] V. Havĺıcek, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning

with quantum-enhanced feature spaces, Nature 567, 209 (2019).
[8] A. Fatima and I. L. Markov, Faster Schrödinger-style simulation of quantum circuits, arXiv:2008.00216 (2020).
[9] H. De Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito, S. Yuan, and K. Michielsen, Massively parallel quantum

computer simulator, eleven years later, Comput. Phys. Commun. 237, 47 (2019).
[10] I. Markov and Y. Shi, Simulating quantum computation by contracting tensor networks, SIAM J. Comput. 38, 963 (2008).
[11] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold, M. Richter, T. Lippert, H. Watanabe, and N. Ito, Massively

parallel quantum computer simulator, Comput. Phys. Commun. 176, 121 (2007).
[12] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, Quantum supremacy is both closer and farther than it appears,

arXiv:1807.10749 (2018).

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/nature23458
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.106.230501
http://www.mkliesch.eu/docs/lecture_QCVV.pdf
https://doi.org/10.1038/s41586-019-0980-2
https://arxiv.org/abs/2008.00216
https://doi.org/10.1016/j.cpc.2018.11.005
https://doi.org/10.1137/050644756
https://doi.org/10.1016/j.cpc.2006.08.007
https://arxiv.org/abs/1807.10749


37

[13] D. Gottesman, The Heisenberg representation of quantum computers, arXiv quant-ph/9807006 (1998).
[14] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, Efficient classical simulation of continuous variable

quantum information processes, Phys. Rev. Lett. 88, 097904 (2002).
[15] B. M. Terhal and D. P. DiVincenzo, Classical simulation of noninteracting-fermion quantum circuits, Phys. Rev. A 65,

032325 (2002).
[16] S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Phys. Rev. A 70, 052328 (2004).
[17] R. Jozsa and A. Miyake, Matchgates and classical simulation of quantum circuits, Proc. R. Soc. A 464, 3089 (2008).
[18] P. Rall, D. Liang, J. Cook, and W. Kretschmer, Simulation of qubit quantum circuits via Pauli propagation, Phys. Rev.

A 99, 062337 (2019).
[19] H. Pashayan, S. D. Bartlett, and D. Gross, From estimation of quantum probabilities to simulation of quantum circuits,

Quantum 4, 223 (2020).
[20] H. Pashayan, On the classical simulability of quantum circuits, Ph.D. thesis, University of Sydney (2019).
[21] M. Howard and E. Campbell, Application of a resource theory for magic states to fault-tolerant quantum computing, Phys.

Rev. Lett. 118, 090501 (2017).
[22] J. R. Seddon, B. Regula, H. Pashayan, Y. Ouyang, and E. T. Campbell, Quantifying quantum speedups: improved classical

simulation from tighter magic monotones, arXiv:2002.06181 (2020).
[23] H. Pashayan, J. J. Wallman, and S. D. Bartlett, Estimating outcome probabilities of quantum circuits using quasiproba-

bilities, Phys. Rev. Lett. 115, 070501 (2015).
[24] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, Negative quasi-probability as a resource for quantum computation, New

J. Phys. 14, 113011 (2012).
[25] A. Mari and J. Eisert, Positive Wigner functions render classical simulation of quantum computation efficient, Phys. Rev.

Lett. 109, 230503 (2012).
[26] H. J. Garcia, I. L. Markov, and A. W. Cross, Efficient inner-product algorithm for stabilizer states, arXiv:1210.6646 (2012).
[27] H. J. Garćıa, I. L. Markov, and A. W. Cross, On the geometry of stabilizer states, Quant. Inf. and Comp. 14, 683 (2014).
[28] S. Bravyi, G. Smith, and J. A. Smolin, Trading classical and quantum computational resources, Phys. Rev. X 6, 021043

(2016).
[29] S. Bravyi and D. Gosset, Improved classical simulation of quantum circuits dominated by Clifford gates, Phys. Rev. Lett.

116, 250501 (2016).
[30] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and M. Howard, Simulation of quantum circuits by low-rank

stabilizer decompositions, Quantum 3, 181 (2019).
[31] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan, On universal and fault-tolerant quantum computing:

a novel basis and a new constructive proof of universality for Shor’s basis, in 40th Annual Symposium on Foundations of
Computer Science (Cat. No.99CB37039) (1999) pp. 486–494.

[32] C. Ferrie and J. Emerson, Frame representations of quantum mechanics and the necessity of negativity in quasi-probability
representations, J. Phys. A 41, 352001 (2008).

[33] D. Gross, Hudson’s theorem for finite-dimensional quantum systems, J. Math. Phys. 47, 122107 (2006).
[34] K. Gibbons, M. Hoffman, and W. Wootters, Discrete phase space based on finite fields, Phys. Rev. A 70 (2004).
[35] O. Reardon-Smith, Clifford-T-estimator (2020).
[36] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. Cabrera-Hernández, J. Carballo-

Franquis, A. Chen, C. Chen, et al., Qiskit: An open-source framework for quantum computing, (2019).
[37] G. Duclos-Cianci and D. Poulin, Reducing the quantum-computing overhead with complex gate distillation, Phys. Rev. A

91, 042315 (2015).
[38] D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and

single-qubit operations, Nature 402, 390 (1999).
[39] X. Zhou, D. W. Leung, and I. L. Chuang, Methodology for quantum logic gate construction, Phys. Rev. A 62, 052316

(2000).
[40] T. P. Hayes, A large-deviation inequality for vector-valued martingales, Combinatorics, Probability and Computing (2005).

https://arxiv.org/abs/quant-ph/9807006v1
https://doi.org/10.1103/PhysRevLett.88.097904
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1103/PhysRevA.99.062337
https://doi.org/10.1103/PhysRevA.99.062337
https://doi.org/10.22331/q-2020-01-13-223
https://ses.library.usyd.edu.au/handle/2123/21526
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.118.090501
https://arxiv.org/abs/2002.06181
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1088/1367-2630/14/11/113011/meta
https://doi.org/10.1088/1367-2630/14/11/113011/meta
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://arxiv.org/abs/1210.6646
http://www.rintonpress.com/xxqic14/qic-14-78/0683-0720.pdf
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.1109/SFFCS.1999.814621
https://doi.org/10.1109/SFFCS.1999.814621
https://doi.org/10.1088/1751-8113/41/35/352001
https://doi.org/10.1063/1.2393152
https://doi.org/10.1103/PhysRevA.70.062101
https://github.com/or1426/Clifford-T-estimator
https://doi.org/10.1103/PhysRevA.91.042315
https://doi.org/10.1103/PhysRevA.91.042315
https://doi.org/10.1038/46503
https://doi.org/10.1103/PhysRevA.62.052316
https://doi.org/10.1103/PhysRevA.62.052316
https://www.cs.unm.edu/~hayes/papers/VectorAzuma/VectorAzuma20030207.pdf

	Fast estimation of outcome probabilities for quantum circuits
	Abstract
	I Introduction
	II Overview
	A Statement of problem
	B Related research
	C Summary of results
	1 The Compress algorithm
	2 The Compute algorithm
	3 The Estimate algorithm

	D Discussion of the performance of our algorithms

	III The compress and compute algorithms
	A Step 1: Gadgetization
	B Step 2: Constraining stabilisers
	C Step 3: Gate sequence construction

	IV The RawEstim algorithm
	A Step 1: Stabiliser decomposition and sampling
	B Step 2: State evolution
	C Step 3: Norm estimation

	V The Estimate algorithm
	VI Conclusions and outlook
	 Acknowledgements
	A Proof of Lemma 4
	B Proof of Lemma 5
	C Proof of Lemma 6
	D Proof of Lemma 7
	E CH form
	F Proof of Lemma 9
	G Optimizing magic state count
	 References


