Fast estimation of outcome probabilities for quantum circuits
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The task: Born rule probability estimation

Elementary description of U

Register a

Tqbt — feF Tc.“)z 'T¢1
(z|

G e ¢y o tosr

Register b

o Allowed gates: Cliffords + Ty where ¢ € (0,7/2) can be arbitrary.

(1 0
T¢:[0 e“b]

e For a given z € {0,1}", project first w qubits in computational basis state |x).

2

e Want classical estimate of p := H (x| T |0)5"] .
2

arXiv: 2101.12223



Overview

Elementary O _ (Xo, 0.1 W.G) x € Xo I
description of p ' (O1 1510 3 — 0, U, 7, W, —_— =

Small r / \Large r

RAWESTIM(S, L)

Code for algorithms availible at: https://github.com/or1426/Clifford-T-estimator
1. COMPRESS algorithm
2. COMPUTE algorithm
3. RAWESTIM algorithm

4. ESTIMATE algorithm
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COMPRESS algorithm:

Clifford + T circuit U

Register a
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TL) = |T0 ) ®...0|T)),  |T]):= —5(10) + exp(=i¢) 1))
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COMPRESS algorithm
Given an ‘elementary description of p’, COMPRESS efficiently outputs:

e ve{0,1,...,w}

e A subset {q1,...,q,} C |[w] (locations of deterministic outcome qubits) and specifes the
outcome.
e Stabilizer generating set G € G(t,t — r) p = ot~ rtv-wTy (HG|TQJL>(T;\)

e rc{0,1,..., min{t,n —w}}
2

e Elementary description of Clifford circuit W p =2t H (o** " W|T;> H
2
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COMPUTE algorithm
e Exactly computes p in time Tcoypurs = O(2077 (¢ — r)t).

e Using G =1{g1,...,9:—,} from COMPRESS:

p = bWy (HG|T;;><T;\) — o= (T H I+ g:)|T})
1=1

e r€{0,1,...,rmax Where ryp. = min{t,n — w}.

e 1 concentrates near r,,x for high Clifford count random circuits.

102 RCs o n = 99

n = 100 400 w =29

w = 20 B t =80

t=80 c=10°

c = 10° ) S runtime < 2 hrs
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RAWESTIM algorithm: Concentration

tfr+'uw

2

p=] O Wi | = )

e For y € {0,1}", we define unnormalized stabilizer states |1)(y)) and product probability
distribution ¢(y) s.t.

> a) [e(y) = |w) -

e Concentration: The s-sample average [1)) = 1 >7_, [¢;) concentrates around |u):

—s(\/p+ € — \/}3)2>
2(vVm+p)? )

Pr (] = ekl 2 ©) < 26%exp

where p = |||p)||3 and m > [|[¢(¥))]]5-

) 2 T. P. Hayes, A large-deviation inequality for vector-valued martingales, Combinatorics, Probability and Computing (2005).
e We show that £* > |||¢v(y))||5- .
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RAWESTIM algorithm: FNE and CH-form

" . —\ (12 : : :
e p is estimate of H W) H2 using L iterations of the BG fast norm
estimation algorithm.

e CH-form [BBCCGH] + tricks used to compute |1(y)) o< (0| ™" W |§)

— Instead of |§) — W |y) we use W ‘6t> — W |y)
— Factorization of CH-form: CHF(|0) ® |¢)) — CHF(|p))

13 Coek T T t 1.2
e Stabilizer extent: §* := ([T ) x ... x &(|Ty)) < 1.2%.
1.15
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RAWESTIM algorithm: performance

e For given s, L € NT computes p in time TrawEsrn = O(st?(t — r) + sLr?)
S.t. Vegor > 0, € € (0, €tot):

Pr (|5~ pl = €10r) < 2¢%exp (_3<%+— \}g)) . (_L (p +>)

—. 5(pa €toty €5 5, L)

o J(p,€tot, €, S, L) depends on unknown p

e Can UB §(p, €01, €, S, L) by setting p = 1 but this is very conservative.
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ESTIMATE algorithm

e ESTIMATE purpose: Pr (|p — p| > €tot) < Stot

e FSTIMATE will use RAWESTIM as a sub-routine

ESTIMATE(€tot,, Otot)

0

RawEsTIM(s, L)

e RAWESTIM gives: Pr(|p — p| > €ior) < (P, €tot, €, S, L)

e Defn: €*(p, dtot, T) is the minimal achievable additive error s.t. Trawrstu(s, L) < 7T and
FP < d¢ot

® Pl‘(‘ﬁ —p] Z e*(p, 51;01;77_)) S 5tot

o ¢*(p, 001, T ) is monotone increasing in p
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ESTIMATE algorithm

e Idea: for k = 1,2,..., compute €*(p, tot, 2% 7To) until we find €*(p, diot, 2570) < €tot
e Idea: for k=1,2,..., compute € := €*(p_,, 0, 2"To) until we find €*(p*, o, 2" 70) < €t
e py =1, pi = Pr + €, and

. _6b _
® 0 := —320tor €nsures y . 0 = Ogot

a b .
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ESTIMATE algorithm

e ESTIMATE gives: Pr(|p — p| > €tot) < Otot
e Runtime depends on p and is probabilistic.

e RUNTIME gives a probabilistic upper bound of Tgsrmare for any possible p.
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Outlook

Can we predict properties of COMPRESS output?
Practical applications for COMPUTE?
Can we apply some of these techniqges to improve sampling algorithms?

Can we adapt ESTIMATE to the mixed state formalism?

Thank you!
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