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While fully scalable, fault-tolerant quantum computers may still be far from fruition, we have now
entered an exciting period in which impressive but resource constrained quantum experiments are being
implemented in many academic and industrial labs. As the field transitions from “proof of principle”
demonstrations of provable quantum advantage to solving useful problems on near-term experiments, it
is particularly critical to characterize the algorithmic power of feasible models of quantum computations
that have restrictive resources such as “time” (i.e., the number of gates in the circuit) and “space” (i.e.,
the number of qubits on which the circuit operates) and to understand how these resources can be
traded-off.

A foundational question in this area asks if it is possible to space-efficiently eliminate intermediate
measurements in a quantum computation (see e.g., [11,14,19,22,26,30-32]). While a classic result known
as the “principle of safe storage” states that it is always possible to time-efficiently defer intermediate
measurements to the end of a computation [1,21], this procedure uses extra ancilla qubits, and so is
not generally space efficient. More specifically, if a quantum circuit ¢ acts on s qubits and performs
m intermediate measurements, the circuit @’ constructed using this principle operates on s + poly(m)
qubits; if, for example, s = O(logt) and m = O(t), this entails an exponential blowup in the amount of
needed space.

Our main result solves this problem. We show that every problem solvable by a “general” quantum
algorithm, which may make arbitrary use of quantum measurements, can also be solved, using the
same amount of space, by a “unitary” quantum algorithm, which may not perform any intermediate
measurements. As an immediate corollary, this shows that, in the space-bounded setting, unitary
quantum algorithms are at least as powerful as probabilistic algorithms, resolving a longstanding open
problem [19, 31].

In the process of proving this result, we also obtain the following result, which is likely of inde-
pendent interest: approximating the solution of the “well-conditioned” versions of various standard
linear-algebraic problems, such as the determinant problem, the matrix inversion problem, or the ma-
trix powering problem, is complete for the class of bounded-error logspace quantum algorithms. These
are a new class of natural problems on which quantum computers seem to outperform their classical
counterparts.

1 Eliminating Intermediate Measurements

Before proceeding further, it is worthwhile to briefly discuss why it is desirable to be able to eliminate
intermediate measurements. Firstly, quantum measurements are a natural resource, much as time and
space are. In addition to the general desirability of using as few resources as possible in any sort of
computational task, it is especially desirable to avoid intermediate measurements, due to the technical
challenges involved in implementing such measurements and resetting qubits to their initial states [8].
Secondly, unitary computations are reversible, whereas quantum measurement is an inherently irre-
versible process. The ability to “undo” a unitary subroutine, by running it in reverse, is routinely used
in the design and analysis of quantum algorithms [3,10,11,18,20,25,33]. Moreover, reversible computa-
tions may be performed without generating heat [16]. Thirdly, by demonstrating that unitary quantum
space and general quantum space are equivalent in power, we show that the definition of quantum space
is quite robust. Allowing intermediate measurements, or even general quantum operations, does not
provide any additional power in the space-bounded setting.
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Let BQuSPACE(s(n)) (resp. BQSPACE(s(n))) denote the class of promise problems recognizable
with two-sided bounded-error by a uniform family of unitary (resp. general) quantum circuits, where,
for each input of length n, there is a corresponding circuit that operates on O(s(n)) qubits and has
20(s(n)) gates. Note that it is standard to require that the running time of a computation is at most
exponential in its space bound; see, for instance, [19,23,30,32] for the importance of this restriction in
quantum and/or probabilistic space-bounded computation. Furthermore, let QMASPACE(s(n)) denote
those promise problems recognized by a quantum Merlin-Arthur protocol that operates in space O(s(n))
and time 296 Our main result is:

Theorem 1. For any space-constructible function s : N — N, where s(n) = Q(logn), we have
BQuSPACE(s(n)) = BQSPACE(s(n)) = QMASPACE(s(n)).

We also study the one-sided (bounded-error and unbounded-error) analogues of the aforementioned
two-sided bounded-error space-bounded quantum complexity classes. We establish analogous results
concerning the relationship between the unitary and general versions of these classes.

2 Exact and Approximate Linear Algebra

Let intDET denote the problem of computing the determinant of an n x n integer-valued matrix, and,
following its original definition by Cook [6], let DET* denote the class of problems NC! (Turing) reducible
to intDET. Let BQuL = BQySPACE(log(n)), BQL = BQSPACE(log(n)), and BPL = BPSPACE(log(n))
denote the bounded-error quantum and probabilistic logspace classes. Before our work, the following
relationships were known [30,32]: BQuyL € BQL C DET* and BPL C BQL. Many natural linear-
algebraic problems are complete for DET*, including intDET, intMATINV (the problem of computing a
single entry of the inverse of a matrix), and intI TMATPROD (the problem of computing a single entry
of the product of polynomially-many matrices). It seems rather unlikely that any such DET*-complete
problem is in the class BQL, as this would imply BQL = DET*, and, therefore, NL C BQL.

We next consider the problem of approxzimating the answer to such linear-algebraic problems. In
particular, let poly-conditioned-MATINV denote the promise problem of approximating, to additive
1/poly(n) accuracy, a single entry of the inverse of an n x n matrix A with condition number x(A) =
poly(n). Ta-Shma [26], building on the landmark result of Harrow, Hassidim, and Lloyd [13], showed
poly-conditioned-MATINV € BQL. Fefferman and Lin [11] improved upon this result by presenting a
unitary quantum logspace algorithm and proving a matching BQyL-hardness result, thereby exhibiting
the first known natural BQyL-complete (promise) problem. We further extend this line of research by
proving the following theorem, which demonstrates an intriguing relationship between BQyL and DET*:

Theorem 2. (Informal) All of the poly-conditioned versions of the “standard” DET*-complete problems
are BQuL-complete.

This shows that several natural linear-algebraic problems are in BQyL, and, moreover, are not in BPL
(unless BQyL = BPL). In particular, the above theorem shows poly-conditioned-ITMATPROD € BQyL.
We also show that this problem is BQL-hard, which implies BQL = BQuL; Theorem 1, which states the
more general equivalence for any larger space bound, then follows from a standard padding argument.

We next exhibit several other applications of this theorem. Firstly, we consider fully logarithmic
approximation schemes, whose study was initiated by Doron and Ta-Shma [9]. Using the preceding
theorem, we show that the BQL vs. BPL question is equivalent to several distinct questions involving the
relative power of quantum and probabilistic fully logarithmic approximation schemes. Secondly, consider
k(n)-conditioned-DET, the problem of approximating, to within a multiplicative factor 1 4+ 1/poly(n),
the determinant of an n x n matrix with condition number x(n). Boix-Adsera, Eldar, and Mehraban
[5] recently showed that k(n)-conditioned-DET € DSPACE(log(n)log(x(n))poly(loglogn)). They also
raised the following question: is poly-conditioned-DET BQL-complete? As an immediate consequence
of Theorem 2, we answer their question in the affirmative.

Corollary 2.1. poly-conditioned-DET is BQuL-complete (and, therefore, BQL-complete).



To see the significance of the previous corollary, recall the well-known “dequantumization” result
given by Watrous [32]: BQL C DSPACE(log?n). It is natural to ask if a stronger upper bound on
BQL can be established. We note that the strongest currently known “derandomization” result of
this type, given by Saks and Zhou [24], states BPL C DSPACE(log% n). Note that the statement
BQL C DSPACE(log* ¢ n) would follow from either a small improvement in the result of Boix-Adsera,
Eldar, and Mehraban (i.e., proving a stronger upper bound on the needed amount of deterministic
space in terms of x(n)) or from a small improvement in our result (i.e., proving x(n)-conditioned-DET
remains BQL-hard for subpolynomial r(n)). Therefore, if BQL € DSPACE(log> ¢ n), Ve > 0, then both
our result and their result are essentially optimal.

Next, we study well-conditioned versions of the “standard” C_L-complete problems. We establish a
result, very much analogous to Theorem 2, which shows that these problems are complete for the one-
sided error versions of space-bounded quantum complexity classes. This enables us to prove results,
analogous to Theorem 1, concerning the relative power of unitary and general quantum space in the
one-sided error cases. Finally, we establish the BQyL-completeness of “scaled-down” versions of certain
QMA-complete problems and certain DQC1l-complete [15] problems, thereby showing that the space-
bounded analogues of DQC1, BQP, and QMA all coincide. This result is especially intriguing as each of
the inclusions DQC1 C BQP C QMA of time-bounded classes are generally believed to be proper.

3 Techniques

We now briefly discuss the techniques used to prove Theorem 2, which states that the poly-conditioned
versions of the “standard” DET*-complete problems are BQuL-complete. As discussed earlier, Fefferman
and Lin [11] showed that poly-conditioned-MATINV is BQyL-complete. In order to establish the BQyL-
completeness of the other poly-conditioned problems, we exhibit a long cycle of reductions through these
problems. We note that reductions between the standard versions of these problems (i.e., where there is
no assumption of being well-conditioned) are well-known [2,4,6,7,17,27-29]. However, these reductions,
generally, do not preserve the property of being poly-conditioned. Therefore, we must exhibit reductions
that are rather different from the “standard” reductions.

As a motivating example, consider poly-conditioned-DET™ and poly-conditioned-SUMITMATPROD.
Note that, while Berkowitz’s algorithm [4] provides a reduction from DET" to SUMITMATPROD, this
reduction does not preserve the property of being poly-conditioned. We now provide a brief sketch
of a reduction which does preserve this property. Consider a positive definite n x n matrix H, with
o01(H) <1 and k(H) = poly(n). We wish to obtain an additive 1/poly(n) approximation of In(det(H)).
By Jacobi’s formula, In(det(H)) = tr(In(H)), where In(H) denotes the matrix logarithm. We have

o0
o1(I — H) <1—1/poly(n) < 1, which implies that the series — ) @ converges to In(H). There-

k=1
(o]
fore, In(det(H)) = — kzl M Moreover, as o1(I — H) < 1—1/poly(n), the aforementioned series
. oo e _ . K tr((I—H)F) .
converges “quickly,” which implies that, for some m = poly(n), the quantity — > ——7—— is a suf-
k=1

ficiently good approximation of In(det(H)). Estimating this quantity corresponds to an instance of
poly-conditioned-SUMITMATPROD.

4 Related Work

Simultaneously and independently of our work, Girish, Raz, and Zhan [12] proved the following weaker
version of our Theorem 2: contraction-MATPOW € BQuL, where contraction-MATPOW is a special case
of our poly-conditioned-MATPOW. We note that the techniques used in their proof differed substantially
from ours. As a consequence of this result, they then obtain the following weaker version of our
Theorem 1: BQyL = BQqL, where BQqL C BQL is a version of quantum logspace that allows a special
type of intermediate measurements to be performed, but does not allow using the (classical) result of
earlier measurements to control (in a general fashion) later steps of the computation.
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