Eliminating Intermediate Measurements in
Space-Bounded Quantum Computation

Bill Fefferman and Zack Remscrim (University of Chicago)

|

Quantum Logspace Algorithm for Powering
Matrices with Bounded Norm

Uma Girish, Ran Raz and Wei Zhan (Princeton University)

Principle of Deferred Measurement

B {O, Prob%
1, Prob%
/ 0, Prob 2 \‘
|0> H /7& H /ﬁ - {1’ PI‘Obg |O>/H

\/
x
/1

= 0, always

Simulate measurement
Okay if only care about time

1
|0) H -§- H fﬁ — 0 Pmbg Not okay if also care about space
, Prob 3 Cost = 1 ancilla (space) per measurement
|0) C) Ex: log(n)-space and poly(n)-time

May have poly(n) measurements
= exponential blowup to poly(n)-space

Possible without space blowup? [Watrous’01, Watrous'03, van Melkebeek-Watson’12, Ta-Shma’13, Fefferman-Lin’16, etc.]

Main Results

Can eliminate intermediate measurement without space blowup or time blowup

Quantum logspace algorithms and matching hardness results for many natural linear algebraic problems
For well-conditioned matrix A, approximate
det(4)
A—l
Am
etc.
= can eliminate intermediate measurements

Why is Space Important?

Current experimental quantum computers: Noisy Intermediate Scale era [Preskill’18]
Intermediate Scale = few qubits

ey T

Apple iPhone 7 |

IBM Q System :
53 Qubits 128 GB
Cost: > $400 Cost: $400

(somewhat unfair comparison)

Near-term quantum computers have few qubits = space is important

Why Eliminate Intermediate Measurements?

Measurements are a natural resource, just like time and space

Unitary computations (i.e., without intermediate measurements) are reversible
Undo computation: useful in design/analysis of algorithms
“Tidy” subroutine calling [Bennet-Bernstein-Brassard-Vazirani’S7]
Quantum rewinding [Watrous'09]
No heat generation (Landauer’s Principle)

Shows definition of “quantum space s(n)” is robust
general = unitary
For probabilistic space
C general quantum (easy)
C unitary guantum (previously unknown)

Our Model of Space Bounded Computation

0 0 1 0
@)
0 1 1 0 — =
2 Update Update c
S — 0 » | O > 1 > 0
Q memory memory _
9 0 1 0 0
0 1 0 0

|
Time T < 290

We require that there is a classical deterministic space S Turing Machine which on input x € {0,1}%,
outputs the description of the update operations.

An algorithm computes a function f: {0,1}" — {0,1}™ if the output of the algorithm is f(x)
(with probability at least % if the algorithm is randomized/quantum).

Logspace Algorithms:
Space O(logn) and Time poly(n)

Classical Logspace Algorithms:

L: Classical algorithms where the updates are deterministic transition matrices.
BPL : Classical randomized algorithms where the updates are stochastic matrices.

Quantum Logspace Algorithms:

BQyL : (Unitary Quantum algorithms)

* Store qubits.

* Updates are by unitary quantum channels.

* The output is the outcome of measuring some qubits at the end of the computation.
BQgL: (Pure Quantum algorithms)

* Updates are by unital qguantum channels.
BQL: (Quantum algorithms)

* Updates are by general quantum channels.

Logspace Algorithms:

Space O(logn) and Time poly(n)

BQyL
Unitary Logspace

BQgyL
Pure Quantum Logspace

BQL
General Quantum Logspace

Unitary quantum channels

Unital quantum channels

General quantum channels

v’ Unitary operations.

v Unitary operations.
v" Intermediate Measurements.

v Unitary operations.
v Intermediate Measurements.
v Reset qubits.

Purely quantum memory,
Unitary Operations

Purely quantum memory,
Unitary Operations
+ Intermediate Measurements

Quantum Memory,
Unitary Operations,
Intermediate Measurements
+ Classical Memory
+ Copy measurement outcome
to classical memory

Our Result:
Contraction Matrix Poweringisin BQylL.

Given: Ann X n real contraction matrix 4 (i.e., [|A]| < 1),

T < poly(n),e = pol;(n) and indices s, t € {1, ..., n}

Estimate A'[s, t] up to € additive error.

We [Girish-Raz-Zhan’20] show that this problem can be solved in BQyL.
Equivalently, Iterated Contraction Matrix Multiplication is in BQyL.

It is not known if this problem can be solved in BPL.

Applications:
Eliminating Intermediate Measurements

We [Girish-Raz-Zhan’20] show that BQyL = BQgL.
Measurements during computation don’t give more power to quantum logspace algorithms with only quantum memory.

In general, we show that a pure quantum algorithm of space S and time T with intermediate measurements,
can be simulated in space O(S + log T) and time poly(T, 2°)) without intermediate measurements.
= BQUSPACE(s(n)) = BQySPACE(s(n)) for any space-constructible s(n) = Q(log(n)).

[Fefferman-Remscrim’20] show that BQyL = BQqoL = BQL.
= BQUSPACE(S(n)) = BQSPACE(s(n)) for any space-constructible s(n) = Q(log(n)).

The ability to do intermediate measurements or reset qubits doesn’t give more power to quantum logspace algorithms.

Applications:
Derandomizing BQgqL

BQyL) .

[Fefferman-Remscrim’20]

[Girish-Raz-Zhan’20]
+ randomness

~>

BQgyL : » BQL
+ reset qubits

+ randomness

BPL

A —>» B denotes that B is at least as powerful as A.

We show that BQ L algorithms don’t require randomness.

Applications:
BPL versus BQyL

BQyL) .
f [Fefferman-Remscrim’20]
| [Girish-Raz-Zhan’20]
: + randomness
I *
[
? BQL _ » BQL
: v + reset qubits
[

+ randomness :

[
[
I

BPL

A —>» B denotes that B is at least as powerful as A.

Connection between
Contraction Matrix Multiplication and BQ gL

A generic BQgqL algorithm

|0)—U1 A , A - A

10y —— . —

The probability that this circuit outputs 1 is precisely

Unitary matrices

" ! ™~

vec(IL) (Ur @ Up) M ... (U @ Uz) M (U; ® Up) (vy ® vg) = aJr(Apoly(n)x X Aq)b
\ Y J \—Y—J
Vector™ Contraction matrices Unit vector

[1, = projection matrixonto { |i):i; =1}
vy = |0°)
M = a diagonal matrix with diagonal entries in {0,1}.

Our Approach

Step 1. Embed each of the contraction matrices A4, ..., At inside unitary logspace quantum circuits.

A JI— AAt
VI — ATA —AT

Ao

Step 2. Compose the quantum circuits carefully.

A * 0 B 0 = AB x x
* * 0OIX|10 I O=] =« * ok
O O 1 * (0 % * * %

Step 3. Estimate a'Mb using a quantum circuit that embeds M.

An argument similar to Grover’s search.

Well-Conditioned Matrix Inversion

Given: invertible n X n matrix A and indices i,j € {1, ...,n}
Approx A~1[i, j] to precision 1/poly(n)

g1(4)
on(4)
01(A) = largest singular value, g,,(A) = smallest singular value

Difficulty depends on condition number k(A) =

Well-conditioned: k(A) = poly(n),
Different params (sparse 2™ X 2™ matrix) in BQP [Harrow-Hassidim-Lloyd’09]
in BQL [Ta-Shma’13]
is BQyL-complete [Fefferman-Lin"16]

Determinant

DET = problems reducible to computing det(4) [Cook’85]
n X n matrix 4, entries are n-bit integers

Natural complete problems: Determinant, Matrix Inversion, Matrix Powering, lterated Matrix Multiplication, etc.
poly-conditioned matrix inversion is BQyL-complete [Fefferman-Lin’16]
We generalize: poly-conditioned DET-complete problems are BQyL-complete

= can eliminate intermediate measurements
Difficulty: “standard” reductions generally do not preserve being well-conditioned

Well-Conditioned Matrix Powering

Given: n X n matrix 4, t < poly(n), and indices i,j € {1, ...,n}
Approx At[i, j] to precision 1/poly(n)
Promise: ||Ak|| < poly(n),Vk € {1, ..., t} (analogue of “poly-conditioned” for powering)

Simple reduction to poly-conditioned matrix inversion = € BQyL

I A 0| 0]0]O I | A | A2 A3 | A% | A°

O| 7 |-4; 0|00 0|1 |A |A%|A3]A*

o0 |71 |4 0|0 00|11 |A |A?]A3
B = B—l —

O|0|0] T |—-40 0|00 |1 |A]|A?

o0, 0]0]| 1T -A 0|0, 0]0]| 1| A

0|0 0|0 01 OO0, 0]0] 0|1

At appears in top-right block of B~! and B is poly-conditioned

Well-Conditioned lterated Matrix Product

Similar to powering: Now approx entry of A; -+ A¢, t < poly(n), ||A - Apll < poly(n),V1<k<h<t
Can reduce to poly-conditioned matrix inversion = € BQyL

Is BQL-hard: General quantum circuit is sequence of (arbitrary) guantum channels

10)

10) q)l CDZ .. q)t Pout

10)

= BQL = BQyL
= BQSPACE(S(n)) = BQySPACE(s(n)), any space-constructible s(n) = Q(log(n))

Also show results for RQL and NQL, and for “QMA” and “DQC1” versions of BQL, RQL, and NQL

Well-Conditioned Determinant

Given: n X n matrix 4, k(A) = poly(n)
Approx log(|det(A4)|) to precision 1/poly(n) (Approx |det(A4)| to multiplicative factor 1 + 1/poly(n))

We show: is BQL(= BQyL)-complete
Other well-conditioned DET-complete also BQL-complete
“Standard” reductions do not preserve well-conditioned (e.g. Berkowitz’s algorithm)
Our reductions: various power series approximations, quantum “instance compression”

[Boix-Adsera, Eldar, and Mehraban’19]: € DSPACE (log? npoly(loglogn))
Used (different) power series approximations
Suggests source of quantum advantage
We show € DSPACE (log? n)
Recall: BQL € DSPACE(log? n) [Watrous’03]
Improve dependence on k(4)?
Would show BQL € DSPACE(log?~° n)

