
Eliminating Intermediate Measurements in
Space-Bounded Quantum Computation

Bill Fefferman and Zack Remscrim (University of Chicago)

+

Quantum Logspace Algorithm for Powering
Matrices with Bounded Norm

Uma Girish, Ran Raz and Wei Zhan (Princeton University)

Principle of Deferred Measurement

H H|0〉 H H|0〉 = 0, always

= ቐ
0, Prob 1

2

1, Prob 1
2

Okay if only care about time

Not okay if also care about space
Cost = 1 ancilla (space) per measurement
Ex: log(𝑛)-space and 𝑝𝑜𝑙𝑦(𝑛)-time

May have 𝑝𝑜𝑙𝑦(𝑛) measurements
⇒ exponential blowup to 𝑝𝑜𝑙𝑦(𝑛)-space

= ቐ
0, Prob 1

2

1, Prob 1
2

Possible without space blowup? [Watrous’01, Watrous’03, van Melkebeek-Watson’12, Ta-Shma’13, Fefferman-Lin’16, etc.]

= ቐ
0, Prob 1

2

1, Prob 1
2

|0〉

H H|0〉

Simulate measurement

Main Results

Can eliminate intermediate measurement without space blowup or time blowup

Quantum logspace algorithms and matching hardness results for many natural linear algebraic problems
For well-conditioned matrix 𝐴, approximate

det(𝐴)
𝐴−1

𝐴𝑚

etc.
⇒ can eliminate intermediate measurements

Why is Space Important?

Current experimental quantum computers: Noisy Intermediate Scale era [Preskill’18]
Intermediate Scale = few qubits

IBM Q System
53 Qubits
Cost: ≫ $400

Apple iPhone 7
128 GB
Cost: $400

(somewhat unfair comparison)

Near-term quantum computers have few qubits ⇒ space is important

Why Eliminate Intermediate Measurements?

Measurements are a natural resource, just like time and space

Unitary computations (i.e., without intermediate measurements) are reversible
Undo computation: useful in design/analysis of algorithms

“Tidy” subroutine calling [Bennet-Bernstein-Brassard-Vazirani’97]
Quantum rewinding [Watrous’09]

No heat generation (Landauer’s Principle)

Shows definition of “quantum space 𝑠 𝑛 ” is robust
general = unitary
For probabilistic space

⊆ general quantum (easy)
⊆ unitary quantum (previously unknown)

Our Model of Space Bounded Computation

We require that there is a classical deterministic space 𝑺 Turing Machine which on input 𝑥 ∈ 0,1 ∗,
outputs the description of the update operations.

An algorithm computes a function 𝑓: 0,1 𝑛 → 0,1 𝑚 if the output of the algorithm is 𝑓(𝑥)

(with probability at least
2

3
if the algorithm is randomized/quantum).

0

0

0

0

0

0

1

0

1

1

1

1

1

0

0

0

0

0

0

0

Update

memory

Update

memory

…

Time 𝑇 ≤ 2𝑂(𝑆)

Sp
ac

e
𝑆

O
u

tp
u

t

Logspace Algorithms:
Space 𝑂(log 𝑛) and Time poly(𝑛)

Classical Logspace Algorithms:

𝑳: Classical algorithms where the updates are deterministic transition matrices.
𝑩𝑷𝑳 : Classical randomized algorithms where the updates are stochastic matrices.

Quantum Logspace Algorithms:

𝑩𝑸𝑼𝑳 : (Unitary Quantum algorithms)
• Store qubits.
• Updates are by unitary quantum channels.
• The output is the outcome of measuring some qubits at the end of the computation.

𝑩𝑸𝑸𝑳 : (Pure Quantum algorithms)

• Updates are by unital quantum channels.
𝑩𝑸𝑳 : (Quantum algorithms)

• Updates are by general quantum channels.

Logspace Algorithms:
Space 𝑂(log 𝑛) and Time poly(𝑛)

𝑩𝑸𝑼𝑳
Unitary Logspace

𝑩𝑸𝑸𝑳

Pure Quantum Logspace

𝑩𝑸𝑳
General Quantum Logspace

Unitary quantum channels Unital quantum channels General quantum channels

✓ Unitary operations. ✓ Unitary operations.
✓ Intermediate Measurements.

✓ Unitary operations.
✓ Intermediate Measurements.

✓ Reset qubits.

Purely quantum memory,
Unitary Operations

Purely quantum memory,
Unitary Operations

+ Intermediate Measurements

Quantum Memory,
Unitary Operations,

Intermediate Measurements
+ Classical Memory

+ Copy measurement outcome
to classical memory

Our Result:

Contraction Matrix Powering is in 𝑩𝑸𝑼𝑳.

Given: An 𝑛 × 𝑛 real contraction matrix 𝐴 (i.e., 𝐴 ≤ 1),

𝑇 ≤ poly(𝑛), 𝜖 ≥
1

poly(𝑛)
and indices 𝑠, 𝑡 ∈ 1, … , 𝑛

Estimate AT[𝑠, 𝑡] up to 𝜖 additive error.

We [Girish-Raz-Zhan’20] show that this problem can be solved in 𝑩𝑸𝑼𝑳.
Equivalently, Iterated Contraction Matrix Multiplication is in 𝑩𝑸𝑼𝑳.

It is not known if this problem can be solved in 𝑩𝑷𝑳.

Applications:

Eliminating Intermediate Measurements
We [Girish-Raz-Zhan’20] show that 𝑩𝑸𝑼𝑳 = 𝑩𝑸𝑸𝑳.

Measurements during computation don’t give more power to quantum logspace algorithms with only quantum memory.

In general, we show that a pure quantum algorithm of space 𝑆 and time 𝑇 with intermediate measurements,

can be simulated in space 𝑂(𝑆 + log𝑇) and time poly(𝑇, 2𝑂(𝑆)) without intermediate measurements.

⇒ 𝑩𝑸𝑼𝑺𝑷𝑨𝑪𝑬 𝑠 𝑛 = 𝑩𝑸𝑸𝑺𝑷𝑨𝑪𝑬(𝑠 𝑛) for any space-constructible 𝑠 𝑛 = Ω(log 𝑛).

[Fefferman-Remscrim’20] show that 𝑩𝑸𝑼𝑳 = 𝑩𝑸𝑸𝑳 = 𝑩𝑸𝑳.

⇒ 𝑩𝑸𝑼𝑺𝑷𝑨𝑪𝑬 𝑠 𝑛 = 𝑩𝑸𝑺𝑷𝑨𝑪𝑬(𝑠 𝑛) for any space-constructible 𝑠 𝑛 = Ω(log 𝑛).

The ability to do intermediate measurements or reset qubits doesn’t give more power to quantum logspace algorithms.

Applications:

Derandomizing 𝑩𝑸𝑸𝑳

𝑨 𝑩 denotes that 𝑩 is at least as powerful as 𝑨.

We show that 𝑩𝑸𝑸𝑳 algorithms don’t require randomness.

𝑳

𝑩𝑸𝑼𝑳

𝑩𝑷𝑳

𝑩𝑸𝑸𝑳 𝑩𝑸𝑳

+ randomness

+ randomness

+ reset qubits

[Girish-Raz-Zhan’20]

[Fefferman-Remscrim’20]

Applications:

𝑩𝑷𝑳 versus 𝑩𝑸𝑼𝑳

𝑨 𝑩 denotes that 𝑩 is at least as powerful as 𝑨.

𝑳

𝑩𝑸𝑼𝑳

𝑩𝑷𝑳

𝑩𝑸𝑸𝑳 𝑩𝑸𝑳

+ randomness

+ randomness

+ reset qubits

[Girish-Raz-Zhan’20]

[Fefferman-Remscrim’20]

?

?

Connection between
Contraction Matrix Multiplication and 𝑩𝑸𝑸𝑳

|0〉

|0〉

𝑼𝟏 𝑼𝟐
𝑼𝑻

…

…

A generic 𝑩𝑸𝑸𝑳 algorithm

The probability that this circuit outputs 1 is precisely

vec(𝚷𝟏𝚷𝟏
†)† 𝑼𝑻 ⊗𝑼𝑻 𝑴… 𝑼𝟐 ⊗𝑼𝟐 𝑴 𝑼𝟏 ⊗𝑼𝟏 (𝒗𝟎 ⊗𝒗𝟎)

Π1 = projection matrix onto 𝑖⟩ ∶ 𝑖1 = 1 }
𝑣0 = 0𝑆

𝑀 = a diagonal matrix with diagonal entries in 0,1 .

Unitary matrices

Contraction matrices Unit vectorVector†

= 𝒂†(𝑨poly(𝒏)×⋯× 𝑨𝟏)𝒃

Our Approach
Step 1. Embed each of the contraction matrices 𝑨𝟏, … , 𝑨𝑻 inside unitary logspace quantum circuits.

𝐴 ↪
𝐴 𝕀 − 𝐴𝐴†

𝕀 − 𝐴†𝐴 −𝐴†

Step 2. Compose the quantum circuits carefully.

𝐴 ∗ 0
∗ ∗ 0
0 0 𝕀

×
𝐵 0 ∗
0 𝕀 0
∗ 0 ∗

=
𝐴𝐵 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Step 3. Estimate 𝒂†𝑴𝒃 using a quantum circuit that embeds 𝑴.

An argument similar to Grover’s search.

Well-Conditioned Matrix Inversion

Given: invertible 𝑛 × 𝑛 matrix 𝐴 and indices 𝑖, 𝑗 ∈ 1, … , 𝑛
Approx 𝐴−1[𝑖, 𝑗] to precision 1/𝑝𝑜𝑙𝑦 𝑛

Difficulty depends on condition number 𝜅 𝐴 =
𝜎1(𝐴)

𝜎𝑛(𝐴)

𝜎1 𝐴 = largest singular value, 𝜎𝑛 𝐴 = smallest singular value

Well-conditioned: 𝜅 𝐴 = 𝑝𝑜𝑙𝑦 𝑛 ,
Different params (sparse 2𝑛 × 2𝑛 matrix) in 𝑩𝑸𝑷 [Harrow-Hassidim-Lloyd’09]
in 𝑩𝑸𝑳 [Ta-Shma’13]
is 𝑩𝑸𝑼𝑳-complete [Fefferman-Lin’16]

Determinant

𝑫𝑬𝑻 = problems reducible to computing det(𝐴) [Cook’85]
𝑛 × 𝑛 matrix 𝐴, entries are 𝑛-bit integers

Natural complete problems: Determinant, Matrix Inversion, Matrix Powering, Iterated Matrix Multiplication, etc.

𝑝𝑜𝑙𝑦-conditioned matrix inversion is 𝑩𝑸𝑼𝑳-complete [Fefferman-Lin’16]

We generalize: 𝑝𝑜𝑙𝑦-conditioned 𝑫𝑬𝑻-complete problems are 𝑩𝑸𝑼𝑳-complete
⇒ can eliminate intermediate measurements

Difficulty: “standard” reductions generally do not preserve being well-conditioned

Well-Conditioned Matrix Powering
Given: 𝑛 × 𝑛 matrix 𝐴, 𝑡 ≤ 𝑝𝑜𝑙𝑦(𝑛), and indices 𝑖, 𝑗 ∈ 1, … , 𝑛

Approx 𝐴𝑡[𝑖, 𝑗] to precision 1/𝑝𝑜𝑙𝑦 𝑛

Promise: 𝐴𝑘 ≤ 𝑝𝑜𝑙𝑦 𝑛 , ∀𝑘 ∈ 1,… , 𝑡 (analogue of “poly-conditioned” for powering)

Simple reduction to 𝑝𝑜𝑙𝑦-conditioned matrix inversion ⇒∈ 𝑩𝑸𝑼𝑳

𝐼 −𝐴 0 0 0 0

0 𝐼 −𝐴 0 0 0

0 0 𝐼 −𝐴 0 0

0 0 0 𝐼 −𝐴 0

0 0 0 0 𝐼 −𝐴

0 0 0 0 0 𝐼

𝐵 =

𝐼 𝐴 𝐴2 𝐴3 𝐴4 𝐴5

0 𝐼 𝐴 𝐴2 𝐴3 𝐴4

0 0 𝐼 𝐴 𝐴2 𝐴3

0 0 0 𝐼 𝐴 𝐴2

0 0 0 0 𝐼 𝐴

0 0 0 0 0 𝐼

𝐵−1 =

𝐴𝑡 appears in top-right block of 𝐵−1 and 𝐵 is 𝑝𝑜𝑙𝑦-conditioned

Well-Conditioned Iterated Matrix Product

Similar to powering: Now approx entry of 𝐴1⋯𝐴𝑡, 𝑡 ≤ 𝑝𝑜𝑙𝑦(𝑛), 𝐴𝑘⋯𝐴ℎ ≤ 𝑝𝑜𝑙𝑦 𝑛 , ∀ 1 ≤ 𝑘 ≤ ℎ ≤ 𝑡

Can reduce to 𝑝𝑜𝑙𝑦-conditioned matrix inversion ⇒∈ 𝑩𝑸𝑼𝑳

Is 𝑩𝑸𝑳-hard: General quantum circuit is sequence of (arbitrary) quantum channels

⇒ 𝑩𝑸𝑳 = 𝑩𝑸𝑼𝑳

⇒ 𝑩𝑸𝑺𝑷𝑨𝑪𝑬 𝑠 𝑛 = 𝑩𝑸𝑼𝑺𝑷𝑨𝑪𝑬(𝑠 𝑛), any space-constructible 𝑠 𝑛 = Ω(log 𝑛)

Also show results for 𝑹𝑸𝑳 and 𝑵𝑸𝑳, and for “𝑸𝑴𝑨” and “𝑫𝑸𝑪𝟏” versions of 𝑩𝑸𝑳,𝑹𝑸𝑳, and 𝑵𝑸𝑳

Φ1

|0〉

|0〉

|0〉

Φ2 Φ𝑡⋯ 𝜌𝑜𝑢𝑡

Well-Conditioned Determinant

Given: 𝑛 × 𝑛 matrix 𝐴, 𝜅 𝐴 = 𝑝𝑜𝑙𝑦(𝑛)
Approx log(det 𝐴) to precision 1/𝑝𝑜𝑙𝑦 𝑛 (Approx det 𝐴 to multiplicative factor 1 + 1/𝑝𝑜𝑙𝑦 𝑛)

We show: is 𝑩𝑸𝑳(= 𝑩𝑸𝑼𝑳)-complete
Other well-conditioned 𝑫𝑬𝑻-complete also 𝑩𝑸𝑳-complete
“Standard” reductions do not preserve well-conditioned (e.g. Berkowitz’s algorithm)
Our reductions: various power series approximations, quantum “instance compression”

[Boix-Adsera, Eldar, and Mehraban’19]: ∈ 𝑫𝑺𝑷𝑨𝑪𝑬(log2 𝑛 𝑝𝑜𝑙𝑦(log log 𝑛))
Used (different) power series approximations

Suggests source of quantum advantage
We show ∈ 𝑫𝑺𝑷𝑨𝑪𝑬(log2 𝑛)

Recall: 𝑩𝑸𝑳 ⊆ 𝑫𝑺𝑷𝑨𝑪𝑬(log2 𝑛) [Watrous’03]
Improve dependence on 𝜅 𝐴 ?

Would show 𝑩𝑸𝑳 ⊆ 𝑫𝑺𝑷𝑨𝑪𝑬(log2−𝛿 𝑛)

