

Eliminating Intermediate Measurements in Space-Bounded Quantum Computation

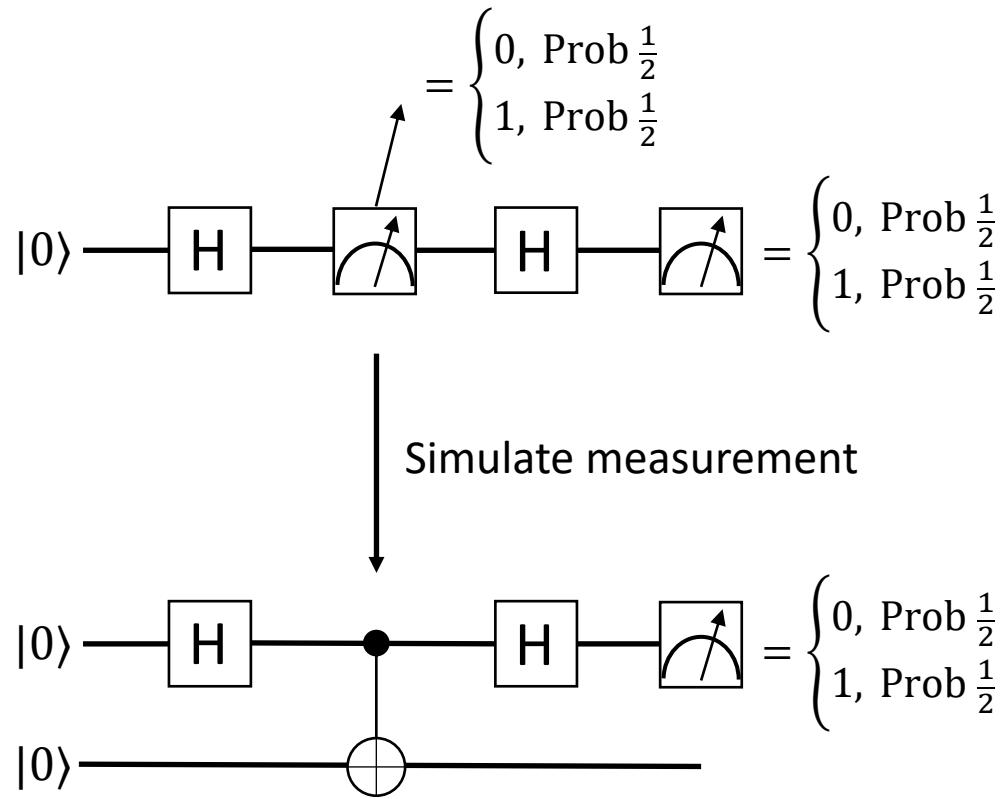
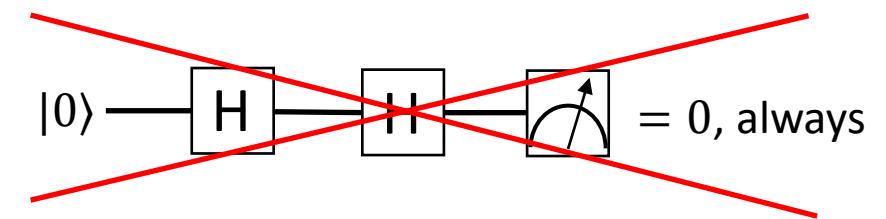
Bill Fefferman and Zack Remscrim (University of Chicago)

+

Quantum Logspace Algorithm for Powering Matrices with Bounded Norm

Uma Girish, Ran Raz and Wei Zhan (Princeton University)

Principle of Deferred Measurement



Okay if only care about **time**

Not okay if also care about **space**

Cost = 1 ancilla (space) per measurement

Ex: $\log(n)$ -space and $\text{poly}(n)$ -time

May have $\text{poly}(n)$ measurements

\Rightarrow **exponential blowup** to $\text{poly}(n)$ -space

Main Results

Can eliminate intermediate measurement without space blowup or time blowup

Quantum logspace algorithms and matching hardness results for many natural linear algebraic problems

For well-conditioned matrix A , approximate

$$\det(A)$$

$$A^{-1}$$

$$A^m$$

etc.

⇒ can eliminate intermediate measurements

Why is Space Important?

Current experimental quantum computers: Noisy Intermediate Scale era [Preskill'18]
Intermediate Scale = few qubits

IBM Q System
53 Qubits
Cost: >> \$400

Apple iPhone 7
128 GB
Cost: \$400

(somewhat unfair comparison)

Near-term quantum computers have few qubits \Rightarrow **space** is important

Why Eliminate Intermediate Measurements?

Measurements are a natural resource, just like time and space

Unitary computations (i.e., without intermediate measurements) are reversible

Undo computation: useful in design/analysis of algorithms

“Tidy” subroutine calling [Bennet-Bernstein-Brassard-Vazirani’97]

Quantum rewinding [Watrous’09]

No heat generation (Landauer’s Principle)

Shows definition of “quantum space $s(n)$ ” is robust

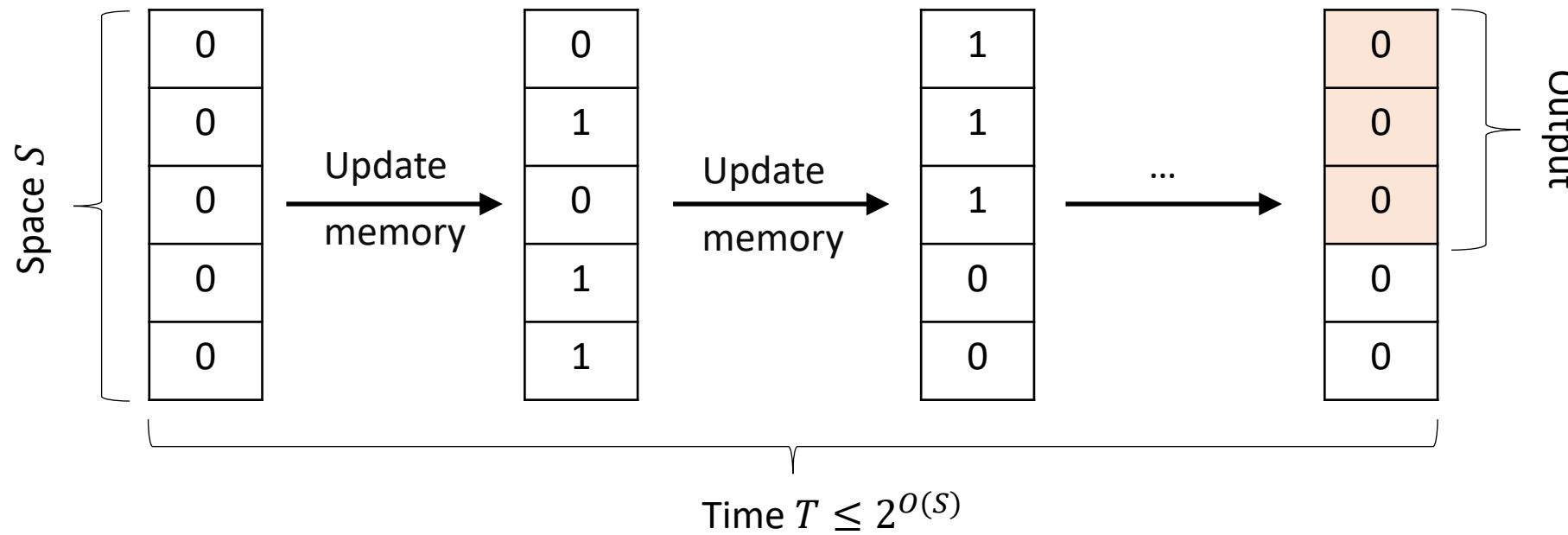
general = unitary

For probabilistic space

\subseteq general quantum (easy)

\subseteq unitary quantum (previously unknown)

Our Model of Space Bounded Computation



We require that there is a classical **deterministic space S** Turing Machine which on input $x \in \{0,1\}^*$, outputs the description of the update operations.

An algorithm **computes** a function $f: \{0,1\}^n \rightarrow \{0,1\}^m$ if the output of the algorithm is $f(x)$ (with probability at least $\frac{2}{3}$ if the algorithm is randomized/quantum).

Logspace Algorithms: Space $O(\log n)$ and Time $\text{poly}(n)$

Classical Logspace Algorithms:

L : Classical algorithms where the updates are deterministic transition matrices.
 BPL : Classical randomized algorithms where the updates are stochastic matrices.

Quantum Logspace Algorithms:

$BQ_U L$: (Unitary Quantum algorithms)

- Store qubits.
- Updates are by **unitary** quantum channels.
- The output is the outcome of measuring some qubits at the end of the computation.

$BQ_Q L$: (Pure Quantum algorithms)

- Updates are by **unital** quantum channels.

BQL : (Quantum algorithms)

- Updates are by **general** quantum channels.

Logspace Algorithms: Space $O(\log n)$ and Time $\text{poly}(n)$

$BQ_U L$ Unitary Logspace	$BQ_Q L$ Pure Quantum Logspace	$BQ L$ General Quantum Logspace
Unitary quantum channels	Unital quantum channels	General quantum channels
✓ Unitary operations.	✓ Unitary operations. ✓ Intermediate Measurements.	✓ Unitary operations. ✓ Intermediate Measurements. ✓ Reset qubits.
Purely quantum memory, Unitary Operations	Purely quantum memory, Unitary Operations + Intermediate Measurements	Quantum Memory, Unitary Operations, Intermediate Measurements + Classical Memory + Copy measurement outcome to classical memory

Our Result: Contraction Matrix Powering is in $\mathbf{BQ}_U\mathbf{L}$.

Given: An $n \times n$ real contraction matrix A (i.e., $\|A\| \leq 1$),
 $T \leq \text{poly}(n)$, $\epsilon \geq \frac{1}{\text{poly}(n)}$ and indices $s, t \in \{1, \dots, n\}$
Estimate $A^T[s, t]$ up to ϵ additive error.

We [Girish-Raz-Zhan'20] show that this problem can be solved in $\mathbf{BQ}_U\mathbf{L}$.
Equivalently, Iterated Contraction Matrix Multiplication is in $\mathbf{BQ}_U\mathbf{L}$.

It is not known if this problem can be solved in \mathbf{BPL} .

Applications: Eliminating Intermediate Measurements

We [Girish-Raz-Zhan'20] show that $\mathbf{BQ}_U L = \mathbf{BQ}_Q L$.

Measurements during computation don't give more power to quantum logspace algorithms with only quantum memory.

In general, we show that a pure quantum algorithm of space S and time T *with intermediate measurements*, can be simulated in space $O(S + \log T)$ and time $\text{poly}(T, 2^{O(S)})$ *without intermediate measurements*.

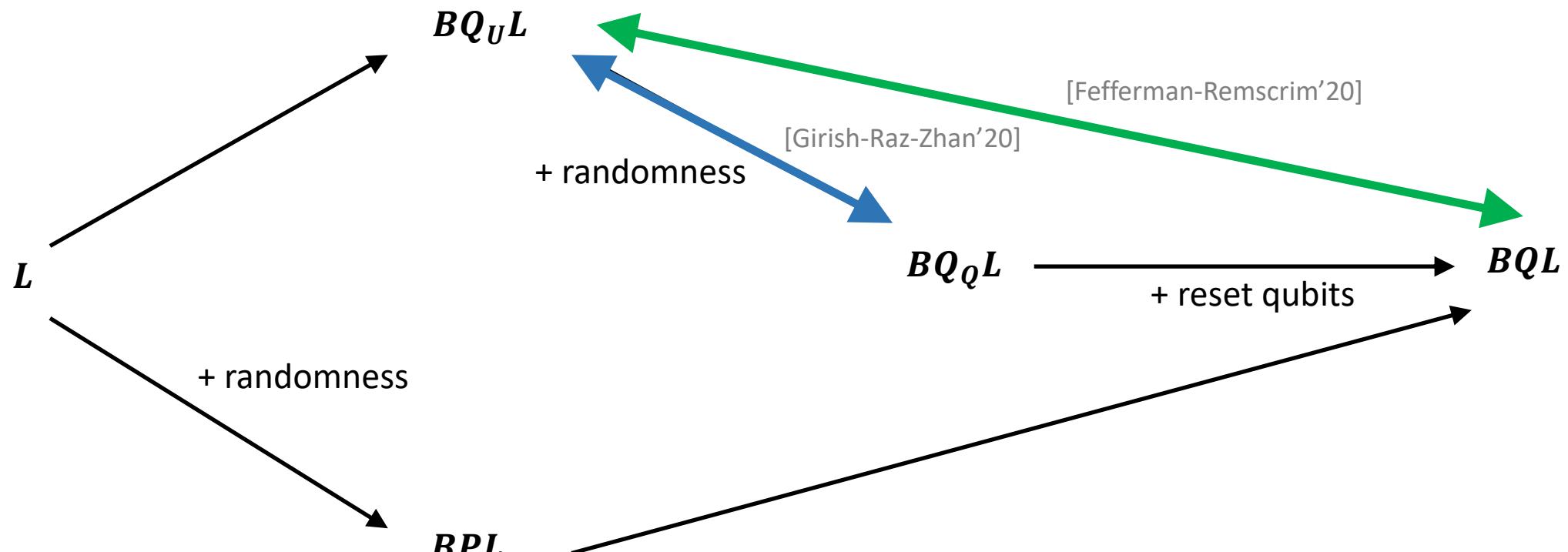
$\Rightarrow \mathbf{BQ}_U \mathbf{SPACE}(s(n)) = \mathbf{BQ}_Q \mathbf{SPACE}(s(n))$ for any space-constructible $s(n) = \Omega(\log(n))$.

[Fefferman-Remscrim'20] show that $\mathbf{BQ}_U L = \mathbf{BQ}_Q L = \mathbf{BQL}$.

$\Rightarrow \mathbf{BQ}_U \mathbf{SPACE}(s(n)) = \mathbf{BQSPACE}(s(n))$ for any space-constructible $s(n) = \Omega(\log(n))$.

The ability to do intermediate measurements or reset qubits doesn't give more power to quantum logspace algorithms.

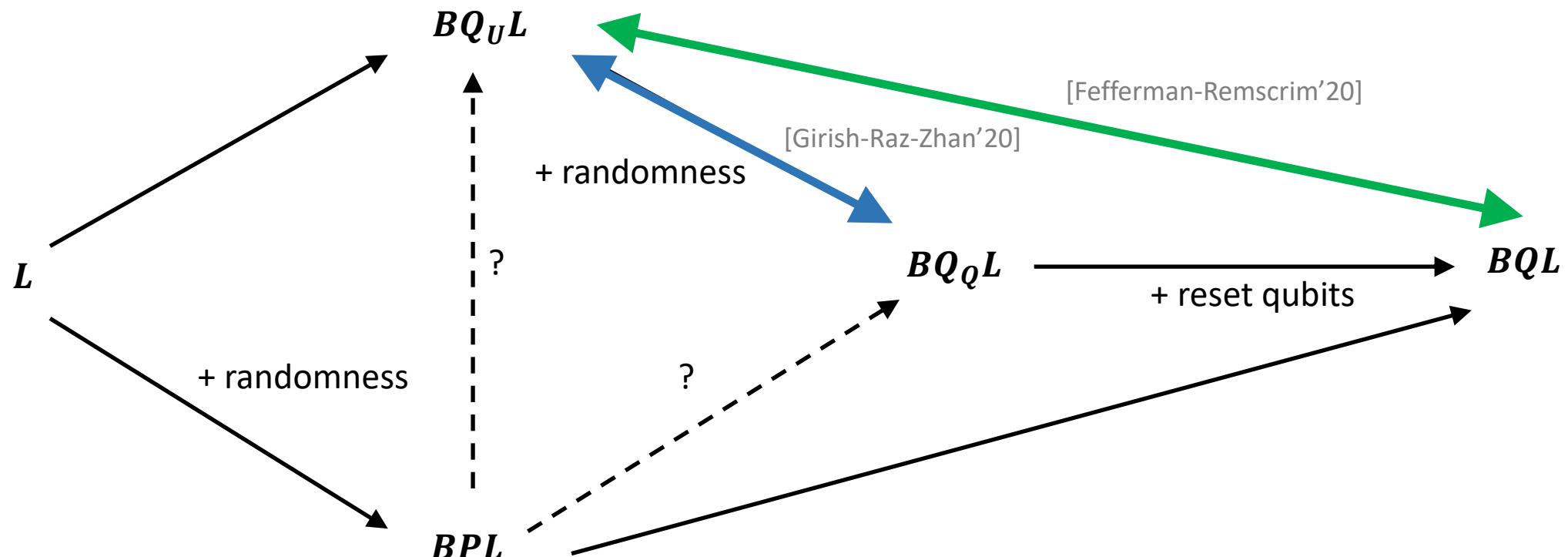
Applications: Derandomizing $BQQL$



$A \xrightarrow{\text{blue}} B$ denotes that B is at least as powerful as A .

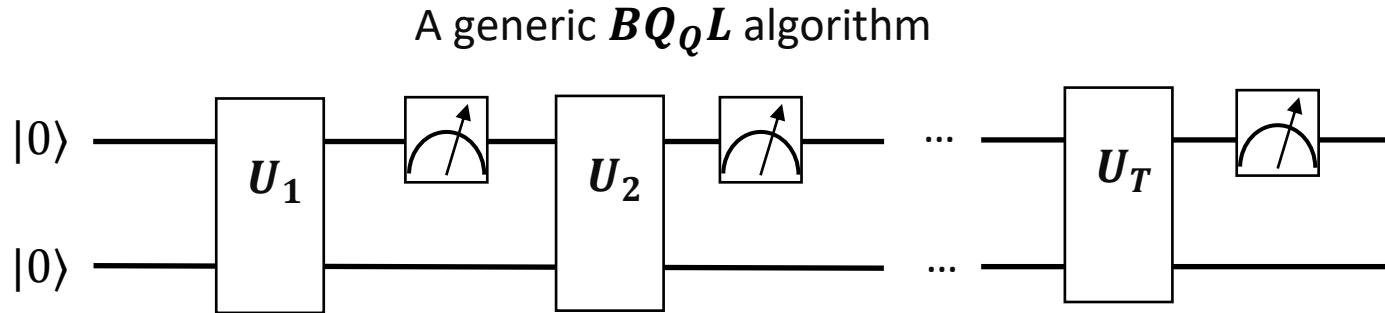
We show that $BQQL$ algorithms don't require randomness.

Applications: BPL versus $BQ_U L$



$A \xrightarrow{\text{blue}} B$ denotes that B is at least as powerful as A .

Connection between Contraction Matrix Multiplication and $\mathbf{BQ}_Q\mathbf{L}$



The probability that this circuit outputs 1 is precisely

$$\underbrace{\text{vec}(\Pi_1 \Pi_1^\dagger)^\dagger}_{\text{Vector}^\dagger} \underbrace{(\mathbf{U}_T \otimes \overline{\mathbf{U}_T})}_{\text{Unitary matrices}} \underbrace{\mathbf{M} \dots (\mathbf{U}_2 \otimes \overline{\mathbf{U}_2})}_{\text{Contraction matrices}} \underbrace{\mathbf{M} (\mathbf{U}_1 \otimes \overline{\mathbf{U}_1})}_{\text{Unitary matrices}} \underbrace{(\mathbf{v}_0 \otimes \mathbf{v}_0)}_{\text{Unit vector}} = \mathbf{a}^\dagger (\mathbf{A}_{\text{poly}(n)} \times \dots \times \mathbf{A}_1) \mathbf{b}$$

Π_1 = projection matrix onto $\{ |i\rangle : i_1 = 1 \}$

$\mathbf{v}_0 = |0^S\rangle$

\mathbf{M} = a diagonal matrix with diagonal entries in $\{0,1\}$.

Our Approach

Step 1. Embed each of the contraction matrices $\mathbf{A}_1, \dots, \mathbf{A}_T$ inside *unitary* logspace quantum circuits.

$$A \hookrightarrow \begin{bmatrix} A & \sqrt{\mathbb{I} - AA^\dagger} \\ \sqrt{\mathbb{I} - A^\dagger A} & -A^\dagger \end{bmatrix}$$

Step 2. Compose the quantum circuits carefully.

$$\begin{bmatrix} A & * & 0 \\ * & * & 0 \\ 0 & 0 & \mathbb{I} \end{bmatrix} \times \begin{bmatrix} B & 0 & * \\ 0 & \mathbb{I} & 0 \\ * & 0 & * \end{bmatrix} = \begin{bmatrix} AB & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$$

Step 3. Estimate $\mathbf{a}^\dagger \mathbf{M} \mathbf{b}$ using a quantum circuit that embeds \mathbf{M} .

An argument similar to Grover's search.

Well-Conditioned Matrix Inversion

Given: invertible $n \times n$ matrix A and indices $i, j \in \{1, \dots, n\}$

Approx $A^{-1}[i, j]$ to precision $1/\text{poly}(n)$

Difficulty depends on condition number $\kappa(A) = \frac{\sigma_1(A)}{\sigma_n(A)}$

$\sigma_1(A)$ = largest singular value, $\sigma_n(A)$ = smallest singular value

Well-conditioned: $\kappa(A) = \text{poly}(n)$,

Different params (sparse $2^n \times 2^n$ matrix) in **BQP** [Harrow-Hassidim-Lloyd'09]

in **BQL** [Ta-Shma'13]

is **$BQUL$** -complete [Fefferman-Lin'16]

Determinant

DET = problems reducible to computing $\det(A)$ [Cook'85]

$n \times n$ matrix A , entries are n -bit integers

Natural complete problems: Determinant, Matrix Inversion, Matrix Powering, Iterated Matrix Multiplication, etc.

poly-conditioned matrix inversion is \mathbf{BQUL} -complete [Fefferman-Lin'16]

We generalize: *poly*-conditioned **DET**-complete problems are \mathbf{BQUL} -complete

⇒ can eliminate intermediate measurements

Difficulty: “standard” reductions generally do not preserve being well-conditioned

Well-Conditioned Matrix Powering

Given: $n \times n$ matrix A , $t \leq \text{poly}(n)$, and indices $i, j \in \{1, \dots, n\}$

Approx $A^t[i, j]$ to precision $1/\text{poly}(n)$

Promise: $\|A^k\| \leq \text{poly}(n)$, $\forall k \in \{1, \dots, t\}$ (analogue of “poly-conditioned” for powering)

Simple reduction to *poly*-conditioned matrix inversion $\Rightarrow \in \mathbf{BQUL}$

$$B = \begin{array}{|c|c|c|c|c|c|} \hline I & -A & 0 & 0 & 0 & 0 \\ \hline 0 & I & -A & 0 & 0 & 0 \\ \hline 0 & 0 & I & -A & 0 & 0 \\ \hline 0 & 0 & 0 & I & -A & 0 \\ \hline 0 & 0 & 0 & 0 & I & -A \\ \hline 0 & 0 & 0 & 0 & 0 & I \\ \hline \end{array}$$
$$B^{-1} = \begin{array}{|c|c|c|c|c|c|} \hline I & A & A^2 & A^3 & A^4 & A^5 \\ \hline 0 & I & A & A^2 & A^3 & A^4 \\ \hline 0 & 0 & I & A & A^2 & A^3 \\ \hline 0 & 0 & 0 & I & A & A^2 \\ \hline 0 & 0 & 0 & 0 & I & A \\ \hline 0 & 0 & 0 & 0 & 0 & I \\ \hline \end{array}$$

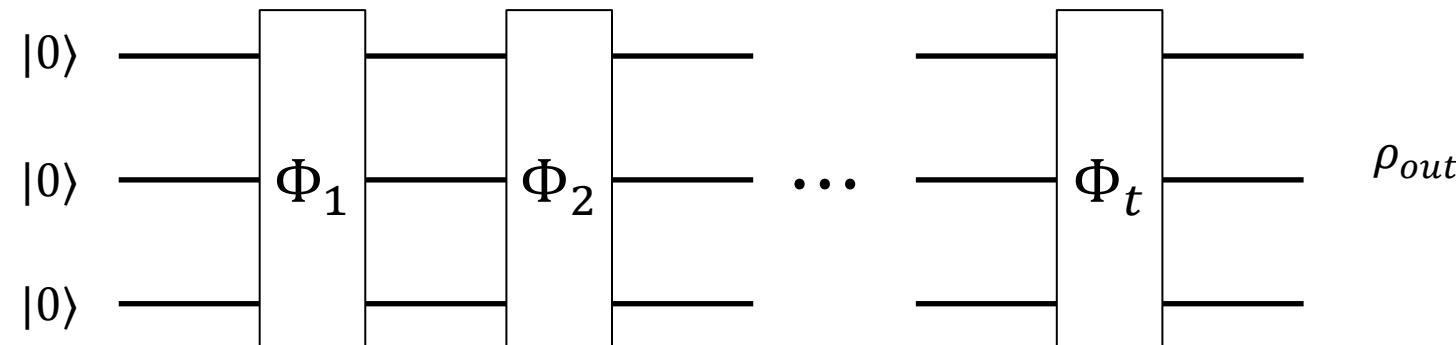
A^t appears in top-right block of B^{-1} and B is *poly*-conditioned

Well-Conditioned Iterated Matrix Product

Similar to powering: Now approx entry of $A_1 \cdots A_t$, $t \leq \text{poly}(n)$, $\|A_k \cdots A_h\| \leq \text{poly}(n)$, $\forall 1 \leq k \leq h \leq t$

Can reduce to poly -conditioned matrix inversion $\Rightarrow \in \mathbf{BQL}$

Is \mathbf{BQL} -hard: General quantum circuit is sequence of (arbitrary) quantum channels



$$\Rightarrow \mathbf{BQL} = \mathbf{BQL}$$

$$\Rightarrow \mathbf{BQSPACE}(s(n)) = \mathbf{BQLSPACE}(s(n)), \text{ any space-constructible } s(n) = \Omega(\log(n))$$

Also show results for \mathbf{RQL} and \mathbf{NQL} , and for “ \mathbf{QMA} ” and “ $\mathbf{DQC1}$ ” versions of \mathbf{BQL} , \mathbf{RQL} , and \mathbf{NQL}

Well-Conditioned Determinant

Given: $n \times n$ matrix A , $\kappa(A) = \text{poly}(n)$

Approx $\log(|\det(A)|)$ to precision $1/\text{poly}(n)$ (Approx $|\det(A)|$ to multiplicative factor $1 + 1/\text{poly}(n)$)

We show: is $\mathbf{BQL} (= \mathbf{BQ}_U \mathbf{L})$ -complete

Other well-conditioned \mathbf{DET} -complete also \mathbf{BQL} -complete

“Standard” reductions do not preserve well-conditioned (e.g. Berkowitz’s algorithm)

Our reductions: various power series approximations, quantum “instance compression”

[Boix-Adsera, Eldar, and Mehraban’19]: $\in \mathbf{DSPACE}(\log^2 n \text{ poly}(\log \log n))$

Used (different) power series approximations

Suggests source of quantum advantage

We show $\in \mathbf{DSPACE}(\log^2 n)$

Recall: $\mathbf{BQL} \subseteq \mathbf{DSPACE}(\log^2 n)$ [Watrous’03]

Improve dependence on $\kappa(A)$?

Would show $\mathbf{BQL} \subseteq \mathbf{DSPACE}(\log^{2-\delta} n)$