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Background and Motivation

● Quantum error correcting codes (QECs) will be required to protect large-

scale quantum computers from noise 

● QECs correct errors by introducing redundancy 

● Goal: use as little redundancy as possible to correct as many errors as 

possible



The Surface Code
The surface code is the focus of efforts to build a 

fault-tolerant quantum computer 

Advantages: 

• Four-qubit measurements 

• Good threshold (~1%) 

Challenges: 

• Huge overhead (~1000x) 

• Even weight-four checks can be too 

large (crosstalk) 

• Hardware currently above threshold
Dennis, et al. "Topological quantum memory." Journal of Mathematical Physics 43.9 (2002): 4452-4505. 
Chamberland, et al. "Topological and subsystem codes on low-degree graphs with flag qubits." Physical Review X 10.1 (2020): 011022.



Prior work reducing qubit overhead
• Promising Low-Density Parity Check (LDPC) code families: 

• 2D and 4D Hyperbolic codes  

• Hypergraph (and homological) product codes 

• Fibre-bundle, lifted product and balanced product codes 

• But… 

• All have high weight (>4) checks, and not clear how to schedule 

them efficiently (gate errors can eliminate the advantage) 

• As a result, no code has previously been shown to outperform the 

surface code under circuit-level depolarising noise



This work
1. Reduce check weight and qubit overhead relative to the surface code: 

• Finite-rate quantum LDPC codes with three-qubit check operators 

• Outperform the surface code under circuit-level depolarising noise 

2. Improve thresholds, especially under biased noise:  

• New technique for decoding subsystem codes 

• Use gauge fixing in software to obtain more useful information



Stabilizer Codes

Logical group is the centraliser of the stabiliser group:

Code space is +1-eigenspace of elements of the stabiliser group:
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Subsystem Codes

Subsystem codes defined by gauge group:

Stabiliser group is the center of the gauge 
group:
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Poulin, “Stabilizer formalism for operator quantum error correction,” PRL 95, 230504 (2005)

Essentially a stabiliser code where we choose not to store quantum information in a 
subset of the logical qubits (the gauge qubits)



Subsystem Codes: why?
Gauge qubits can help with syndrome measurement

(Some) Subsystem Codes: 
Stabilizers are products of 

low weight gauge operators

Measure gi individually and multiply 
the results to obtain measurement of s

high weight low weight

Important facts: 
1. Gauge operators generally do not 

commute: their outcome is randomized

2. High-weight stabilizers provide 
poor performance: 

High-weight: less information 
& more measurement errors



Subsystem Code 
Construction



LDPC Subsystem Construction 

Example: hexagonal toric code

Stabilizer check weights are 3 and 6



LDPC Subsystem Construction: Merging 

Three-qubit loop is a gauge operator

All stabilizers still commute! 

# encoded qubits = # physical qubits - # independent checks



Subsystem Surface Code 

Bravyi, Duclos-Cianci, Poulin, Suchara, “Subsystem surface codes with three-qubit check operators,” QIC 13, 963–985 (2013)
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LDPC Subsystem Construction 

Obtain code with k = n/6 and weight-3 checks
Close cousin of toric code: 

Hyperbolic Codes

Merge four vertices per face



LDPC Subsystem Construction 

Z-stabilizerX-stabilizer

● stabilizer-weight 12 & gauge-weight 3 

● all check operators are weight 3 

● improved encoding rate



Distance of subsystem hyperbolic codes

● Multiplying logicals by gauge 

operators can decrease 

distance 

● Dressed distance of 

subsystem hyperbolic code at 

worst half that of stabiliser 

code derived from the same 

tessellation
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Decoding subsystem toric and hyperbolic codes

● Each qubit is incident to two X-
type stabilisers 

● Can construct a matching graph V 
with: 
● A vertex for each stabiliser 
● An edge for each qubit 

● Given a syndrome (set of defects), 
we decode by finding the 
minimum-weight perfect matching 
in V

Bravyi, Duclos-Cianci, Poulin, Suchara, “Subsystem surface codes with three-qubit check operators,” QIC 13, 963–985 (2013)



Decoding with noisy syndrome measurements
● Repeat measurements O(L) 

times 
● Use the difference syndrome 

(parity of consecutive 
measurements) 

● Measurement errors are now 
time-like edges 

● Find the minimum-weight 
matching in the 3D matching 
graph 

● Code at: https://github.com/
oscarhiggott/PyMatching

time

https://github.com/oscarhiggott/PyMatching
https://github.com/oscarhiggott/PyMatching
https://github.com/oscarhiggott/PyMatching


Summary

● Low check weight makes measurements much simpler to facilitate 

● Hyperbolic tessellations allow for a better encoding rate 

But: Gauge measurements have to be combined to a higher-weight stabilizer 

⇒ Do not expect improvement in threshold



Schedule-Induced 
Gauge Fixing



Gauge-Fixing
Add commutative subset of gauge operators to stabilizer group 

‘Change our mind’ about what constitutes a stabilizer

Introduced by Paetznick & Reichardt to implement logical gates 

This work: improve error correction performance
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Gauge fixes of the subsystem toric code
● Without gauge fixing, the X-type and Z-

type matching graphs are both a triangular 
lattice, which has a threshold (using 
MWPM) of 6.5% with perfect syndrome 
measurements 

● By fixing X-type gauge operators as 
stabilisers (and removing Z-type), we 
obtain a hexagonal surface code. This has 
a Z threshold of 15.9% and an X threshold 
of 6.5% 

● This compares to the surface code 
threshold of 10.3% under perfect 
measurements

Fujii and Tokunaga "Error and loss tolerances of surface codes with general lattice structures." Physical Review A 86.2 (2012): 020303.



Schedule-Induced Gauge-Fixing

Example: Subsystem Surface Code 

● Syndrome measurement 

○ Dots are gauge checks 

○ Ovals are stabilizer checks 

○ Errors occur on edges 

● X-checks and Z-checks alternate 

● Values of gauge operators randomised

time



Schedule-Induced Gauge-Fixing
Consider schedule with repeated X/Z-checks

Gauge operators of different types 
generally do not commute

Operators following same type (trivially) commute

Can use gauge checks as if they were stabilizers

time



Schedule-Induced Gauge-Fixing

Different Schedules 

● repeating same Pauli-type several times 

● increase number of time steps where gauge 

measurements can be used as stabilizers 

● average stabilizer weight decreases 

● average node degree decreases

time



Simulation: Scheduling

(ZX)r Zr  or  Xr

weight-3 & gauge: no hook errors



Simulation: Circuit-Level Depolarising Noise

● Changing schedule already improves threshold 
● Two competing effects: 

○ longer waits between “bursts” 

○ average check weight per round is lower 

○ vertex degree reduced 

● Beyond 4 repetitions threshold decreases
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Gauge-Fix Schedules

Balanced vs Imbalanced: 

● balanced: repeat each Pauli-type the 

same number of times XaZa 

● imbalanced: schedule of the form XaZb 

with a ≠ b 

● gather more syndrome for one Pauli-

type: biased noise [1]
ZX

ZX2

[1]  Xu, Zhao, Yuan, Benjamin (2019). High-Threshold Code for Modular Hardware With Asymmetric Noise. Physical Review Applied, 12(6)



Simulation: Circuit-Level Biased Noise 

● Repeating X-measurements 

increases performance 

significantly 

● longer sequences where X-

gauge operators are fixed to 

stabilizers 

● upper bound: only measure X-

gauge operators (2.2%)0.5 1 1.5 2 2.5
·10�2
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Scheduling Subsystem Hyperbolic Codes

Scheduling 

● Schedule constructed from symmetry group 

● First finite-rate code (k/n→1/6) with efficient 

schedule (4 time steps) 

● Each data qubit adjacent to 4 gauge operators 

→ best we can hope for 

● No hook errors 

● Works for {4k,4} subsystem hyperbolic and 

semi-hyperbolic codes



Semi-Hyperbolic Lattices

● Tile each face with a square lattice 

● Distance scales as  

● Subsystem semi-hyperbolic code 
derived from the dual of this lattice

n

[1] Breuckmann et al. "Hyperbolic and semi-hyperbolic surface codes for quantum storage." Quantum Science and Technology 2.3 (2017): 035007 



Subsystem Semi-Hyperbolic vs Rotated Surface Code

Subsystem {8,4} semi-hyperbolic (red) vs 

rotated surface code (green) 

● Outperforms similar-rate (distance 6) 

rotated surface code below at least 

p=0.43% 

● 4.3x reduction in qubit overhead at 

p=0.1%-0.2% 

● Circuit-level depolarising noise 
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Other applications of our techniques

● Inhomogeneous schedules: changing the 
schedule in space can increase the Z distance 

● Lattice surgery: schedule-induced gauge fixing 
can improve decoding for measurement-based 
logical CNOT gates in the surface code [1]time

merge

split

[1] Vuillot, et al. "Code deformation and lattice surgery are gauge fixing." New Journal of Physics 21.3 (2019): 033028.



Future Work

• Decoders for a larger variety of LDPC codes 

• Non-CSS 

• different decoders from MWPM 

• Generalise scheduling of measurement circuits 

• Use fewer ancillas to reduce overhead further 

• Schedule wider classes of LDPC codes 

• More constructions 

• Subsystem codes can be used as an ansatz to construct stabiliser codes via 

permanently gauge fixing [1]

[1] Li, et al. "2d compass codes." Physical Review X 9.2 (2019): 021041.



Conclusion

● Schedule-Induced Gauge Fixing 
○ all in software with same hardware weight-3 checks 

○ increase threshold of subsystem toric code for isotropic noise (0.67%→0.81%) 

○ biased noise:  increase up to 2.2% for pz >> px 

○ idea is general:  will immediately apply to many other codes & decoders

● Finite Rate Subsystem Code 
○ rate k/n = 1/6 with weight-3 checks 

○ first example of a code outperforming the surface code under circuit-level 

depolarising noise, reducing the overhead by 4.3x at ~0.2%


