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Background and Motivation

e Quantum error correcting codes (QECs) will be required to protect large-

scale quantum computers from noise
e QECs correct errors by introducing redundancy

e Goal: use as little redundancy as possible to correct as many errors as

possible



The Surface Code

The surface code is the focus of efforts to build a
fault-tolerant quantum computer
Advantages:
* Four-qubit measurements
» Good threshold (~1%)
Challenges:
* Huge overhead (~1000x)
» Even weight-four checks can be too
large (crosstalk)

« Hardware currently above threshold

Dennis, et al. "Topological quantum memory." Journal of Mathematical Physics 43.9 (2002): 4452-4505.

Chamberland, et al. "Topological and subsystem codes on low-degree graphs with flag qubits." Physical Review X 10.1 (2020): 011022.
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Prior work reducing qubit overhead
* Promising Low-Density Parity Check (LDPC) code families:

 But...

2D and 4D Hyperbolic codes
Hypergraph (and homological) product codes

Fibre-bundle, lifted product and balanced product codes

All have high weight (>4) checks, and not clear how to schedule
them efficiently (gate errors can eliminate the advantage)
As a result, no code has previously been shown to outperform the

surface code under circuit-level depolarising noise



This work

1. Reduce check weight and qubit overhead relative to the surface code:
* Finite-rate quantum LDPC codes with three-qubit check operators
« Outperform the surface code under circuit-level depolarising noise
2. Improve thresholds, especially under biased noise:
* New technique for decoding subsystem codes

« Use gauge fixing in software to obtain more useful information



Stabilizer Codes

S C Pn

Code space is +1-eigenspace of elements of the stabiliser group:

C=1P) Vs €S :slY) =)}

Logical group is the centraliser of the stabiliser group:

L =C(S) o



Subsystem Codes

Subsystem codes defined by gauge group: g

Stabiliser group is the center of the gauge S = Z(g) — C(g) NG
group:

Essentially a stabiliser code where we choose not to store quantum information in a
subset of the logical qubits (the gauge qubits)

Poulin, “Stabilizer formalism for operator quantum error correction,” PRL 95, 230504 (2005)



Subsystem Codes: why?

Gauge qubits can help with syndrome measurement

(Some) Subsystem Codes:
Stabilizers are products of
low weight gauge operators

high weight low weight

Measure g; individually and multiply
the results to obtain measurement of s

Important facts:
1. Gauge operators generally do not
commute: their outcome is randomized

1= (+1)(=1)(+1)(~1)
+1 = (—1)(—|—1)(+1)(—1)

2. High-weight stabilizers provide
poor performance:
High-weight: less information

& more measurement errors
=g p g




Subsystem Code
Construction



LDPC Subsystem Construction

Example: hexagonal toric code

Stabilizer check weights are 3 and 6



LDPC Subsystem Construction: Merging

Three-qubit loop is a gauge operator

_/

All stabilizers still commute!

# encoded qubits = # physical qubits - # independent checks



Subsystem Surface Code
Qubits on vertices

Z
4 O O O 7z Z

Z stabilisers ZI IZ

7 A

A Z x
X stabilisers ﬁ
O X X % "

® O O XX
X X

Bravyi, Duclos-Cianci, Poulin, Suchara, “Subsystem surface codes with three-qubit check operators,” QIC 13, 963-985 (2013)



LDPC Subsystem Construction

Merge four vertices per face

Close cousin of toric code:
Hyperbolic Codes

2 2
k—<1————> n+ 2
r S

Obtain code with k = n/6 and weight-3 checks



LDPC Subsystem Construction

e stabilizer-weight 12 & gauge-weight 3
e all check operators are weight 3

e improved encoding rate



Distance of subsystem hyperbolic codes

e Multiplying logicals by gauge 12
operators can decrease
distance

e Dressed distance of

subsystem hyperbolic code at

Subsystem code distance

worst half that of stabiliser 4-

code derived from the same ‘ ‘ ‘ ‘ ‘ ‘

I
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Decoding subsystem toric and hyperbolic codes

e Each qubit is incident to two X-
type stabilisers (

e Can construct a matching graph V /
with:
e A vertex for each stabiliser

e An edge for each qubit
e Given a syndrome (set of defects), /
we decode by finding the
minimum-weight perfect matching )
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Bravyi, Duclos-Cianci, Poulin, Suchara, “Subsystem surface codes with three-qubit check operators,” QIC 13, 963-985 (2013)




Decoding with noisy syndrome measurements

e Repeat measurements O(L)
times

e Use the difference syndrome
(parity of consecutive
measurements)

e Measurement errors are now
time-like edges

e Find the minimum-weight
matching in the 3D matching
graph

e Code at: hitps://github.com/
oscarhiggott/PyMatching
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https://github.com/oscarhiggott/PyMatching
https://github.com/oscarhiggott/PyMatching
https://github.com/oscarhiggott/PyMatching

Summary

e Low check weight makes measurements much simpler to facilitate

e Hyperbolic tessellations allow for a better encoding rate

But: Gauge measurements have to be combined to a higher-weight stabilizer

= Do not expect improvement in threshold



Schedule-Induced
Gauge Fixing



Gauge-Fixing

Add commutative subset of gauge operators to stabilizer group

‘Change our mind’ about what constitutes a stabilizer

< remove Z partner

Introduced by Paetznick & Reichardt to implement logical gates

This work: improve error correction performance



Gauge fixes of the subsystem toric code

e Without gauge fixing, the X-type and Z-
type matching graphs are both a triangular

lattice, which has a threshold (using
MWPM) of 6.5% with perfect syndrome

measurements
e By fixing X-type gauge operators as
stabilisers (and removing Z-type), we

obtain a hexagonal surface code. This has
a Z threshold of 15.9% and an X threshold

of 6.5%
e This compares to the surface code

threshold of 10.3% under perfect
measurements

Fujii and Tokunaga "Error and loss tolerances of surface codes with general lattice structures." Physical Review A 86.2 (2012): 020303.



Schedule-Induced Gauge-Fixing

Example: Subsystem Surface Code
e Syndrome measurement

— = o Dots are gauge checks

o Ovals are stabilizer checks

o Errors occur on edges

—. o= e X-checks and Z-checks alternate

e \Values of gauge operators randomised




Schedule-Induced Gauge-Fixing

Consider schedule with repeated X/Z-checks

— . Gauge operators of different types
gﬁ. D generally do not commute
|
— @ Operators following same type (trivially) commute
|
R \ /

Can use gauge checks as if they were stabilizers

o 0 m=
@ = e o =—
= .



Schedule-Induced Gauge-Fixing

Different Schedules

repeating same Pauli-type several times
increase number of time steps where gauge
measurements can be used as stabilizers
average stabilizer weight decreases

average node degree decreases



Simulation: Scheduling
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Simulation: Circuit-Level Depolarising Noise
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e Changing schedule already improves threshold

Logical error rate

5292.2 42

e Two competing effects: 6348,2,46

o longer waits between “bursts” \ T
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o average check weight per round is lower Physical error rate 10-3

o vertex degree reduced

e Beyond 4 repetitions threshold decreases



Gauge-Fix Schedules

| Balanced vs Imbalanced:
—@&— — o= ‘ e balanced. repeat each Pauli-type the
| same number of times XaZa

e mbalanced: schedule of the form XaZb

o L — @D — witha #b
- T e e gather more syndrome for one Pauli-
—@ .EE. B —T type: biased noise [1]
ZX — =
ZX2

[1] Xu, Zhao, Yuan, Benjamin (2019). High-Threshold Code for Modular Hardware With Asymmetric Noise. Physical Review Applied, 12(6)



Simulation: Circuit-Level Biased Noise
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Scheduling Subsystem Hyperbolic Codes

Scheduling

e Schedule constructed from symmetry group

e First finite-rate code (k/n—1/6) with efficient
schedule (4 time steps)

e FEach data qubit adjacent to 4 gauge operators
— best we can hope for

e No hook errors

e Works for {4k,4} subsystem hyperbolic and

semi-hyperbolic codes




Semi-Hyperbolic Lattices

e Tile each face with a square lattice

e Distance scales as \/ﬁ

e Subsystem semi-hyperbolic code
derived from the dual of this lattice

[1] Breuckmann et al. "Hyperbolic and semi-hyperbolic surface codes for quantum storage." Quantum Science and Technology 2.3 (2017): 035007



Subsystem Semi-Hyperbolic vs Rotated Surface Code
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Subsystem {8,4} semi-hyperbolic (red) vs
rotated surface code (green)

e Outperforms similar-rate (distance 6)
rotated surface code below at least
p=0.43%

e 4.3x reduction in qubit overhead at
p=0.1%-0.2%

e Circuit-level depolarising noise

e /X schedule



Other applications of our techniques

e -

X AR \ e Inhomogeneous schedules: changing the
‘/\ \/ schedule in space can increase the Z distance
7
<& \
4 \/
ANLNLND
I ) ¢ e Lattice surgery: schedule-induced gauge fixing
P | can improve decoding for measurement-based
e H ) | . logical CNOT gates in the surface code [1]
merge ) /\7
[ Dol

[1] Vuillot, et al. "Code deformation and lattice surgery are gauge fixing." New Journal of Physics 21.3 (2019): 033028.



Future Work

« Decoders for a larger variety of LDPC codes
« Non-CSS
» different decoders from MWPM
» Generalise scheduling of measurement circuits
« Use fewer ancillas to reduce overhead further
» Schedule wider classes of LDPC codes
« More constructions
« Subsystem codes can be used as an ansatz to construct stabiliser codes via

permanently gauge fixing [1]

[1]Li, et al. "2d compass codes." Physical Review X 9.2 (2019): 021041.



Conclusion

e Schedule-Induced Gauge Fixing

—9 o— o all in software with same hardware weight-3 checks
/\ if \;j o increase threshold of subsystem toric code for isotropic noise (0.67%—0.81%)

- o biased noise: increase up to 2.2% for p, >> p,

o ideais general: will immediately apply to many other codes & decoders

e Finite Rate Subsystem Code

o rate k/n = 1/6 with weight-3 checks
o first example of a code outperforming the surface code under circuit-level

depolarising noise, reducing the overhead by 4.3x at ~0.2%



