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(Good protection vs. easy computation

- We want to process quantum information in a fault-tolerant way.
ion f -to-impl
goo§ proteF:tlon rom easy to-imp ement
noisy environment logical operations

- Transversal gates do not spread errors!

- Can we find a non-trivial quantum error-correcting code w/ transversal
gates forming a universal set of logical gates?

- Eastin-Knill theorem [ZCCO07,EKO09]: nope!

- Can we avoid this no-go result? How fundamental is E-K theorem?

Zeng+07;Eastin&Knill’09;



Main result & outline

Main result: a simple proof of the approximate E-K theorem.
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1. Setting the stage: quantum error correction.
2. The approximate E-K theorem.
3. Tools needed: quantum metrological bounds.

4. Our proof.



Quantum error correction

- Quantum code = a subspace of the Hilbert space.

E
L IR Mw A = A1 ® A2 ®...Q An

n<oo & dim(H.) < oo

- Given a set of errors { K, K, ...}, can we correct them?

- Knill-Laflamme condition [KL97]: there exists a recovery &£ s.t.

%o (KXl K) = Xl = Wl KKy =6,

- We correct errors exactly! Any linear combination of K’s is correctable!

- Code & _, 4 has distance 2¢ + 1 if any error of weight < ¢ is correctable.

Knill&Laflamme’97;



Approximate quantum error correction

- Allowing for negligible error in recovery can lead to surprisingly better
codes [LNCY97,CGS05].

- Setting: for given noise ./, can choose code &; _, , & recovery &£ ,_,;.

Usua”y WA — ®l’/’/Al
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- [BO09]: code &;_, , is e-correctable under noise ./, if there exists
recovery R, _; st Ad(RB ;o N 40 E;_4,1d;) L €.

Leung+97;Crepeau+05;Beny&Oreshkov’09;



Main result & outline

2. The approximate E-K theorem.



Avoiding E-K theorem

- E-K theorem: no quantum code w/ a universal set of transversal gates.

- Loosen transversality: const-depth,
different partitions [JL14], ...

........

P2 Prace(p®)

- Employ non-unitary operators:
state distillation [BK0O3], ...

- Use different codes: code switching,
gauge fixing [PR13,B15], ...

; Iw'fk rro'r': approxiate‘antu' |
i error correction [FNASPHP19,WA19], ... §
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Jochym-O’Connor&Laflamme’14;Bravyi&Kitaev’05;Paetznick&Reichardt’13;Bombin’15;Hayden+’17;Faist+’19;
Woods&Alhambra’19



What if recovery IS approximate?

- Rephrasing E-K theorem:

approxmate

‘ corrable under A 4= ®
;quantum code %L

w/ transversal unjyereetgates
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« U(1l)-covariance is a weaker assumption than a universal gate set:
rotation along the Z axis vs. rotations along the X, Y and Z axes.



The approximate E-K theorem

- Theorem: let &;_,, be a U(l)-covariant code w/ transversal logical

gates UY = ¢7"11_Ifitis e-correctable under noise J/, = N 4, then
L A (Y7 A

bound on the quantum Fisher info

eigenvalue spread of 1T°
k of any metrological protocol

* Price to pay: code’s quality is limited!

- Easy to evaluate for relevant noise models (erasure or depolarizing):
F'= 3, (AT,)’g(N 5) with g(N 1) = (1 = p)/p;

- A different version: if &;_,, encodes one qubit into n qudits & has

a transversal universal gate set, then € > [3\/6 Zi (dA,- — 1)2g(/VAi)]_1.



Main result & outline

3. Tools needed: quantum metrological bounds.
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Quantum metrology

- Channel estimation problem:

™~

|¢>O* U; 4Q‘¢¢>‘HQ—> unbiased

estimator (%)

- Quantum Fisher information useful for bounding
the variance via the quantum Cramer-Rao inequality.

- Quantum Fisher info for pure states is given by

Pl = 1 (el - | lvi)] )

- For a unitary evolution [¢:) = e*"'*|¢)) | time-energy uncertainty relation!

Fle) = A(0IH[9) — (0 H[$)") —> A% >
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Metrological bounds

- Parameter estimation w/ NV uses of the channel, e.g.

»

W

- Scaling of quantum Fisher info [GLMOG6,FI08,DKG12,DM14,...]:
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. In the presence of noise /# = (X)..//;, quantum Fisher info may scale

only linearly in the number /N of uses of the parameter-encoding unitary!
max F(|'¥,) < F' = 4% ming, | ¥, KZKY, .

Kraus representation of J'; 0 % , s.t. Zk K?”;Kf”k =0

Giovannetti+’06;Fujiwara&imai’08;Demkowicz-Dobrzanski+’12;Demkowicz-Dobrzanski&Maconne’14; 12



Main result & outline

4. Our proof.

13



The a

roximate E-K theorem

- Theorem: let &;_,, be a U(l)-covariant code w/ transversal logical

gates UY = ¢7"11_Ifitis e-correctable under noise J/, = N 4, then
L T A (Y7 A
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- Intuition: if &; _, , performed too well under /¥ ,, then we would be able

to construct a protocol based on &;_ , and &£ ,_,; violating quantum
metrological bounds on the precision of parameter estimation!
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Sketch of our proof
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+ The tightest bound on € for m = SFT/(Q(ATL)Q). (1= 8m”e")(mATL)
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A couple of comments

« Compared w/ previous works [FNASPHY19,WA19]. simple proof, same
scaling 1/n, applicable beyond the erasure noise!

- Corollary (Eastin-Knill): there does not exist a finite-dimensional

SU(d; )-covariant code w/ transversal gates and distance D > 1.
Proof by contradiction: for the erasure noise
D (ATL)?
€ X < X
p 3VGFT p

for sufficiently small p

- |f quantum Fisher info scales quadratically, then we get a trivial bound!
Consistent with the 3-qubit repetition code: corrects any bit-flip error and

] _i0~Z . ] o VA VA VA
has logical gates U = ¢~'%L implemented via Ug = ¢ o +0or+03)

Faist+'19;Woods&Alhambra'19



Summary

-+ Tension between error correction and fault-tolerant computation.
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