

Composably secure device-independent encryption with certified deletion

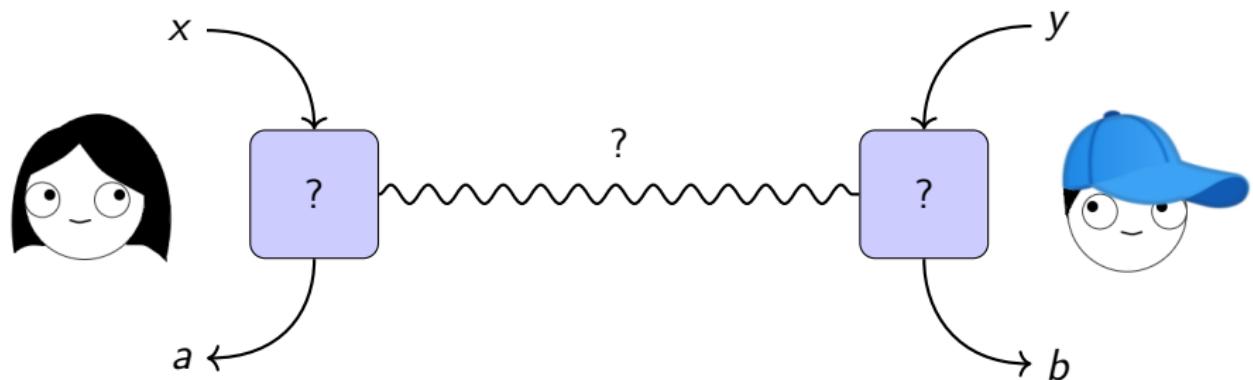
Srijita Kundu (CQT, Singapore)
Ernest Y.-Z. Tan (ETH Zürich, Switzerland)

03 Feb 2021

arXiv:2011.12704

Main results

- Modifications to [BI19] protocol
 - ▶ Device-independent (DI), i.e. measurements are untrusted
 - ▶ Security against eavesdropper
 - ▶ Composable security (operational)
- Existing DI proof techniques insufficient?
- Our approach: prove new parallel repetition threshold theorem
 - ▶ For games with multiple input-output rounds

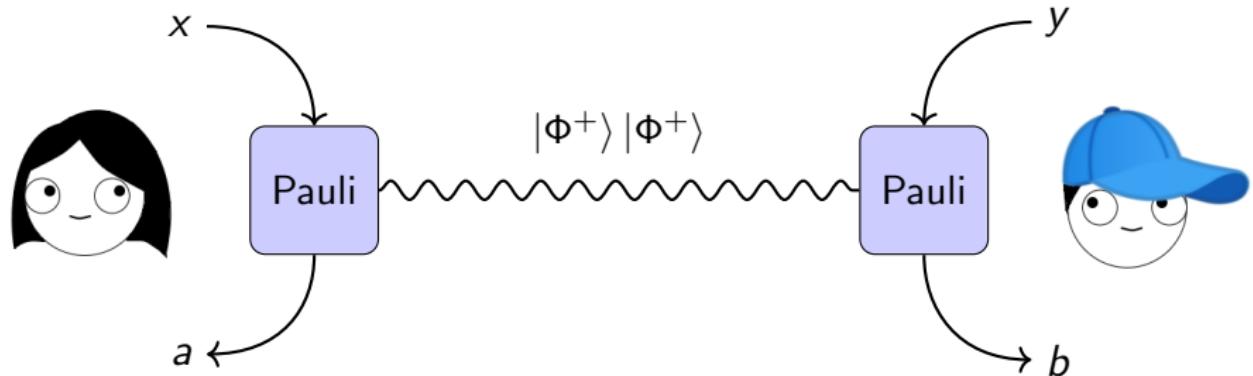

“Standard” quantum cryptography setting

- Example: [BI19] protocol
 - ▶ Prepare-and-measure: Alice knows the states she prepares
 - ▶ Entanglement-based: Alice knows the measurements she performs
- Can we weaken assumptions? “Device-independence”

Device-independent (DI) setting

Example: Magic square game (MS)

$x, y \in \mathbb{Z}_3$ and $a, b \in \mathbb{Z}_2^3$ with $\sum_j a_j = 0$, $\sum_j b_j = 1$; win condition $a_y = b_x$



Rigidity a.k.a. self-testing

Example: Magic square game (MS)

$x, y \in \mathbb{Z}_3$ and $a, b \in \mathbb{Z}_2^3$ with $\sum_j a_j = 0$, $\sum_j b_j = 1$; win condition $a_y = b_x$

If devices win with probability $1 - \delta$, then (δ -approximately)

2-round game

- Recap: e.g. suppose Alice measures σ_Z on $|\Phi^+\rangle$
- If Bob measures σ_X , erases his information
- Consider 2-round game MSB, roughly[†]:
 - ▶ Round 1: Play MS game (with inputs x, y)
 - ▶ Round 2: Bob tries to guess Alice's output $a_{y'}$ (given x and $y' \neq y$)
- In honest case, Bob's measurement in Round 1 erases info about $a_{y'}$
- [FM17] prove, via rigidity:
 - ▶ Suppose Round 1 winning probability is $1 - \delta$
 - ▶ Then Round 2 winning probability is $1/2 + O(\sqrt{\delta})$
- \implies MSB winning probability $< \kappa < 1$

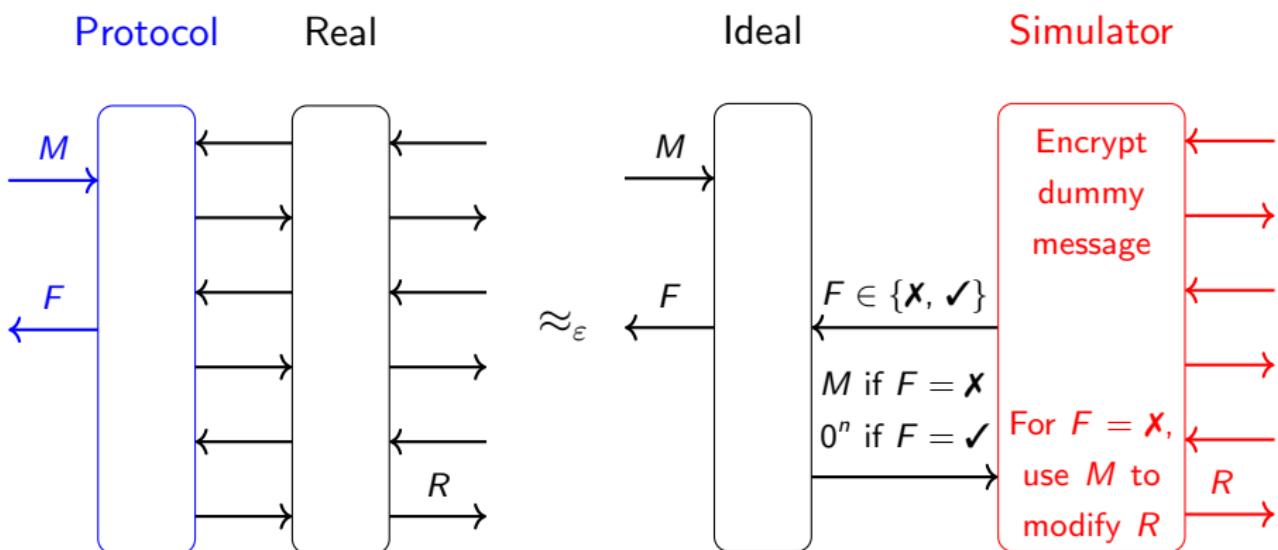
[†]Actual game involves *anchoring*

Parallel repetition theorem

- Our contribution: new parallel repetition threshold theorem, for *2-round product-anchored games* (includes MSB)
- I.e. for ℓ parallel instances of MSB (denote as MSB^ℓ), probability of winning $> t$ instances (for large enough t) decreases exponentially
- Technique: for a subset C , at least one of these holds:
 - ▶ Winning probability on C is already small
 - ▶ \exists instance $i \notin C$ with winning probability $< \kappa' < 1$

“Parallel security” from parallel repetition

- Idea: similar to [BI19] protocol, but use ℓ MS box pairs
- To certify deletion:
 - ▶ Alice challenges Bob to send box outputs
 - ▶ Accepts if they win MS in enough rounds
- Recap: security proof uses $H_{\min}^{\varepsilon}(\text{Alice's outputs} \mid \text{Bob's information})$
- (Similar to [Vid17]) Threshold theorem \rightarrow min-entropy bound, roughly:
 - ▶ Suppose Alice accepts (\sim Round 1 of MSB^{ℓ}) with high probability
 - ▶ \implies Bob's guessing probability (\sim Round 2 of MSB^{ℓ}) $\leq O(\tilde{\kappa}^{-\ell})$
 - ▶ $\implies H_{\min}^{\varepsilon}(\text{Alice's outputs} \mid \text{Bob's information}) \geq \Omega(\ell)$


Some remarks

- “Parallel security” seems important
 - ▶ Dishonest Bob may not use his inputs sequentially
 - ▶ Unclear how to apply previous approaches, e.g. entropy accumulation theorem
- If Bob is honest, what about eavesdropper?
 - ▶ We introduce QKD-like check to detect eavesdropping
 - ▶ Proof similar to parallel-DIQKD approaches [JMS20], [Vid17]

Composable security

- *Abstract Cryptography* framework
- Define ideal functionality
- Goal: show real protocol can “safely” replace ideal functionality (operational!)
 - ▶ **How?** Prove real and ideal are indistinguishable (sort of)
- Does not rely on dishonest parties’ “goals/incentives”
- Must describe in terms of resources
 - ▶ Instead of decryption key, define *temporarily private randomness source*
 - ▶ Supplies randomness R but publicly broadcasts it later

Simplified[†] outline (honest Alice and dishonest Bob only)

[†]Omits some features, e.g. security against eavesdropper

Some implications

- Minor variants follow from basically the same proof
- Suggests $|R| \geq |M|$ may be necessary
 - ▶ Indeed $|R| \geq |M|$ for [BI19] and our protocol
 - ▶ Proven necessary for tamper-evident storage [vdVCRŠ20]
- Suggests no “commitment” property is possible (if Alice dishonest)

Summary

- New parallel repetition threshold theorem
 - ▶ “Parallel security” seems important here
- Modified security arguments
 - ▶ Security against eavesdropper
 - ▶ Composable security
- Future prospects:
 - ▶ Other applications of threshold theorem
 - ▶ Combining with other protocols
 - ▶ For $|R|$, converse statements/improved efficiency