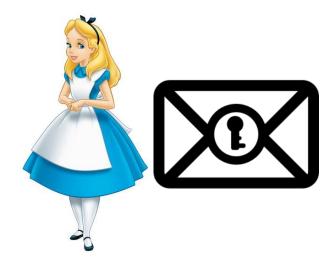
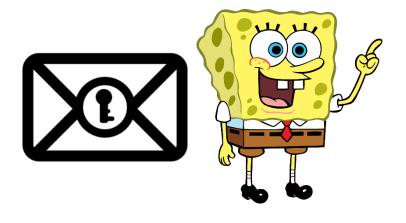
Quantum encryption with certified deletion

Anne Broadbent, Rabib Islam

(University of Ottawa)

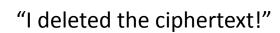






"I deleted the ciphertext!"

"How do I know?"



- With a classical ciphertext, Bob cannot prove deletion to Alice
 - Bob can always make a copy of the ciphertext that can be decrypted once the key is received

- With a classical ciphertext, Bob cannot prove deletion to Alice
 - Bob can always make a copy of the ciphertext that can be decrypted once the key is received
- Therefore, we must consider a non-classical solution

- A quantum ciphertext?
 - No-cloning theorem: there is no map that will create an identical copy of an arbitrary quantum state

- A quantum ciphertext?
 - No-cloning theorem: there is no map that will create an identical copy of an arbitrary quantum state
- But what would a proof of deletion look like?

- A quantum ciphertext?
 - No-cloning theorem: there is no map that will create an identical copy of an arbitrary quantum state
- But what would a proof of deletion look like?
- Entropic uncertainty relations: measurement in one basis can cause loss of information about what the measurement outcome in another basis would have been

- A quantum ciphertext?
 - No-cloning theorem: there is no map that will create an identical copy of an arbitrary quantum state
- But what would a proof of deletion look like?
- Entropic uncertainty relations: measurement in one basis can cause loss of information about what the measurement outcome in another basis would have been
- Conjugate coding (Wiesner/BB84 states) and measurements will be integral to our scheme

Context for the idea

• [Unruh 2013] "Revocable quantum timed-release encryption"

- [Unruh 2013] "Revocable quantum timed-release encryption"
- [Fu and Miller 2018] "Local randomness: Examples and application"

- [Unruh 2013] "Revocable quantum timed-release encryption"
- [Fu and Miller 2018] "Local randomness: Examples and application"
- [Bennett and Brassard 1984] "Quantum cryptography: Public key distribution and coin-tossing"
 - [Tomamichel and Leverrier 2017] "A largely self-contained and complete security proof for quantum key distribution"

- [Unruh 2013] "Revocable quantum timed-release encryption"
- [Fu and Miller 2018] "Local randomness: Examples and application"
- [Bennett and Brassard 1984] "Quantum cryptography: Public key distribution and coin-tossing"
 - [Tomamichel and Leverrier 2017] "A largely self-contained and complete security proof for quantum key distribution"
- [Coiteux-Roy and Wolf 2019] "Proving Erasure"

Scheme: parameters

Scheme: parameters

• *n*: length of the message

Scheme: parameters

- *n*: length of the message
- m: number of qubits used in the quantum encoding

- $\theta \leftarrow \{\theta \in \{0, 1\}^m \mid \omega(\theta) = k\}$, where k is less than m.
 - Basis for encoding qubits
 - Content of qubits: string of length m called r

- $\theta \leftarrow \{\theta \in \{0, 1\}^m \mid \omega(\theta) = k\}$, where k is less than m.
 - Basis for encoding qubits
 - Content of qubits: string of length m called r
- $r_{diag} \leftarrow \{0, 1\}^k$
 - Also called "check bits"

- $\theta \leftarrow \{\theta \in \{0, 1\}^m \mid \omega(\theta) = k\}$, where k is less than m.
 - Basis for encoding qubits
 - Content of qubits: string of length m called r
- $r_{diag} \leftarrow \{0, 1\}^k$
 - Also called "check bits"
- $u \leftarrow \{0, 1\}^n$

- $\theta \leftarrow \{\theta \in \{0, 1\}^m \mid \omega(\theta) = k\}$, where k is less than m.
 - Basis for encoding qubits
 - Content of qubits: string of length m called r
- $r_{diag} \leftarrow \{0, 1\}^k$
 - Also called "check bits"
- $u \leftarrow \{0, 1\}^n$
- $H \leftarrow \text{universal}_2$ family of hash functions
 - Domain: strings of length m k; codomain: strings of length n

Scheme: encryption

Scheme: encryption

• $r_{comp} \leftarrow \{0, 1\}^{m-k}$

Scheme: encryption

- $r_{comp} \leftarrow \{0, 1\}^{m-k}$
- $x \leftarrow H(r_{comp})$

- $r_{comp} \leftarrow \{0, 1\}^{m-k}$
- $x \leftarrow H(r_{comp})$
- Ciphertext: r encoded in basis θ , with $msg \bigoplus x \bigoplus u$.

ullet Measure qubits in basis heta to yield r, and hence r_{comp}

- ullet Measure qubits in basis heta to yield r, and hence r_{comp}
- Compute $H(r_{comp}) = x$.

- Measure qubits in basis heta to yield r, and hence r_{comp}
- Compute $H(r_{comp}) = x$.
- Compute $msg \bigoplus x \bigoplus u \bigoplus x \bigoplus u = msg$.

Scheme: delete

Scheme: delete

• Measure qubits in the Hadamard basis and obtain a certificate of deletion $\mathbf{y} \leftarrow \{0, 1\}^m$

Scheme: verification

Scheme: verification

• Using θ , take the substring of the received string that corresponds to the diagonal positions of the qubits (call the result y').

Scheme: verification

• Using θ , take the substring of the received string that corresponds to the diagonal positions of the qubits (call the result y').

• Accept if
$$\omega \Big(r_{diag} \bigoplus y' \Big) < \delta k$$
.

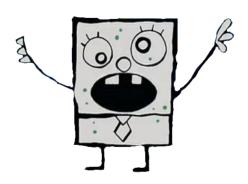
Error tolerance

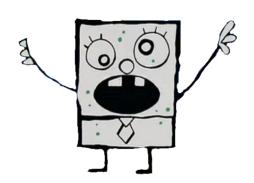
Error tolerance

We use linear error correcting codes and a hash function

Error tolerance

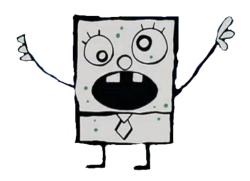
- We use linear error correcting codes and a hash function
- More details in the paper





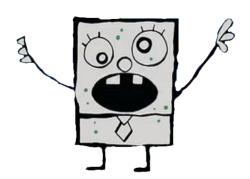
 msg_0

 msg_0



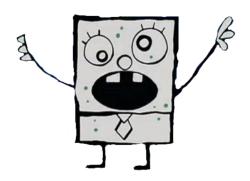
 msg_0

 θ , u, H, r_{diag}



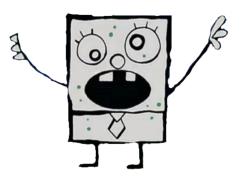
 msg_0

 θ , u, H, r_{diag}



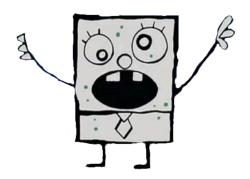
 msg_0

 $heta,\ u,\ H,$ r_{diag} ciphertext



 msg_0

 θ , u, H, r_{diag}

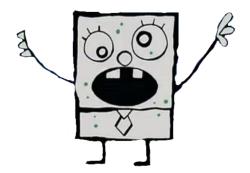


ciphertext

 msg_0

 θ , u, H, r_{diag}

y

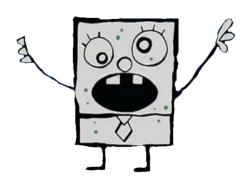


ciphertext

 msg_0

y

 θ , u, H, r_{diag}

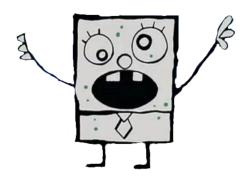


ciphertext

 msg_0

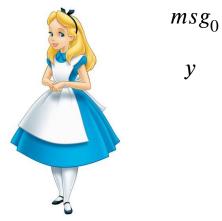
y

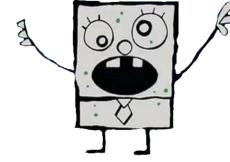
 θ , u, H, r_{diag}



ciphertext

b ok



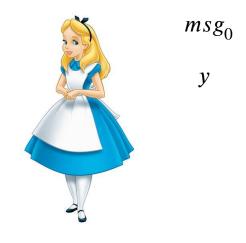


 θ , u, H,

 r_{diag}

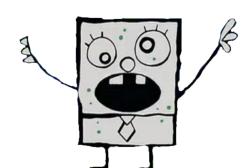
ciphertext

bok



 θ , u, H, r_{diag}

ciphertext



ok

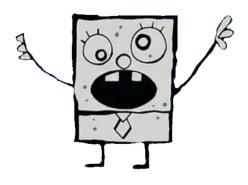
- Bob can be seen as having two goals:
 - 1. Determine whether his message was encrypted in the ciphertext
 - 2. Convince Alice that he deleted the ciphertext prior to receiving the key

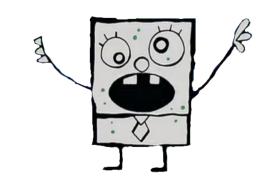
- Bob can be seen as having two goals:
 - 1. Determine whether his message was encrypted in the ciphertext
 - 2. Convince Alice that he deleted the ciphertext prior to receiving the key
- Scheme is secure if the probabilities of the following two events are negligibly close:
 - 1. Verification passes and Bob's guess of b is 1, in the case that Alice encrypted the string of zeros
 - 2. Verification passes and Bob's guess of b is 1, in the case that Alice encrypted the candidate message.

Game 1 is difficult to analyze

- Game 1 is difficult to analyze
- We developed a Game 2 which is based on an entanglement-based series of interactions

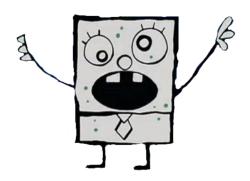
- Game 1 is difficult to analyze
- We developed a Game 2 which is based on an entanglement-based series of interactions
- A reduction shows that statements about Game 2 can translate into statements about Game 1
 - We thereby achieve bounds relevant to our scheme



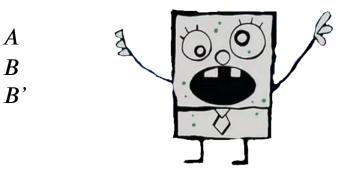


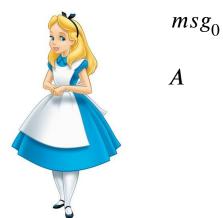
 msg_0

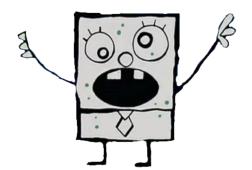
 msg_0



 msg_0

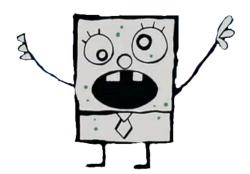


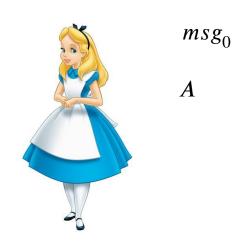


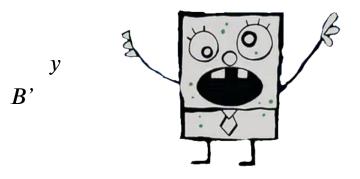


 msg_0

3,



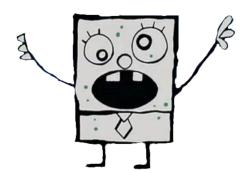


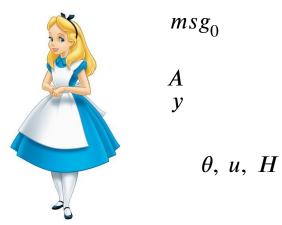


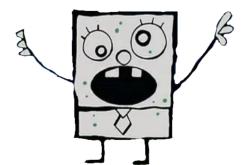
 msg_0

A v

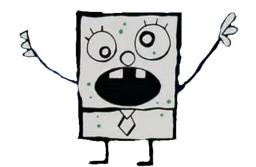
,

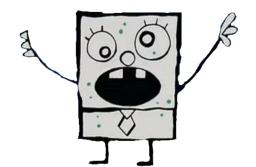


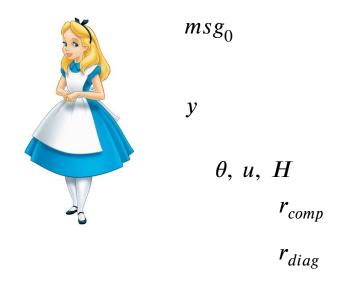


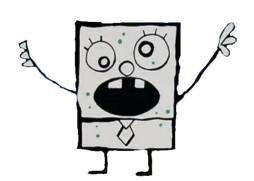


B

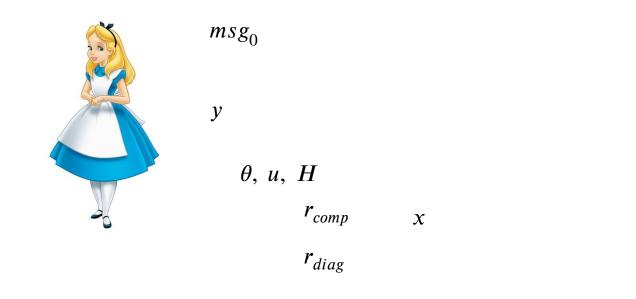


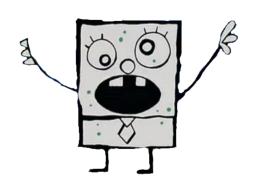




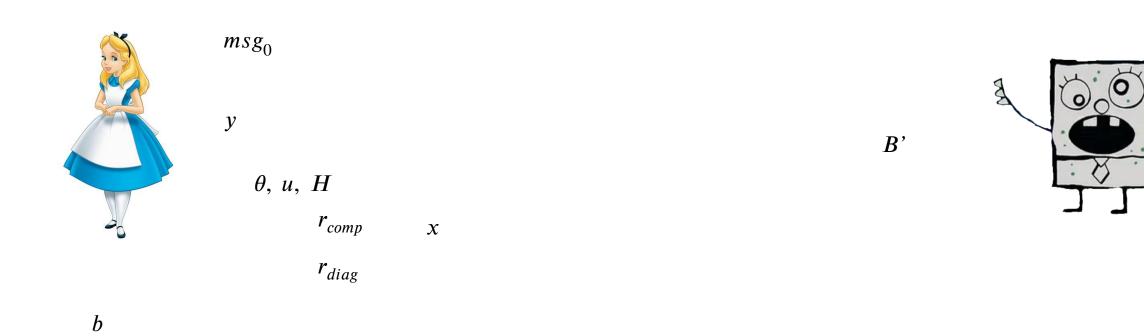


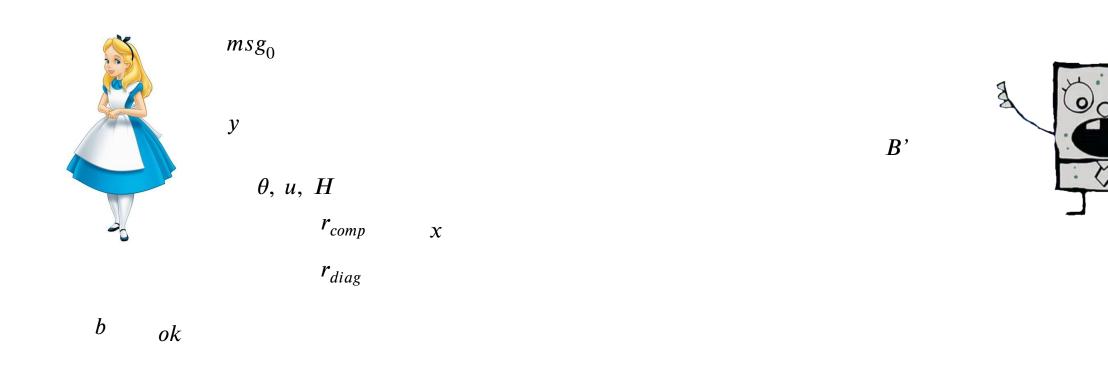
B

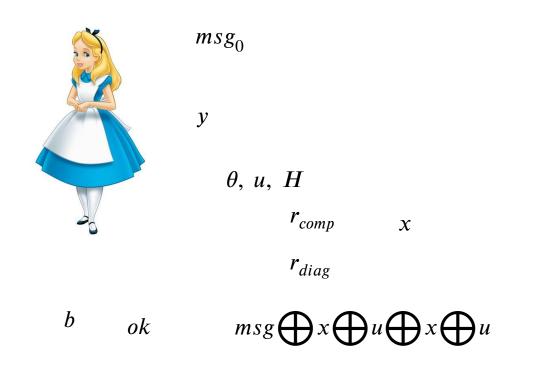


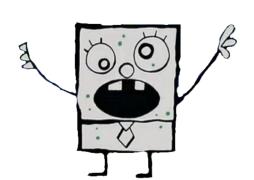


B

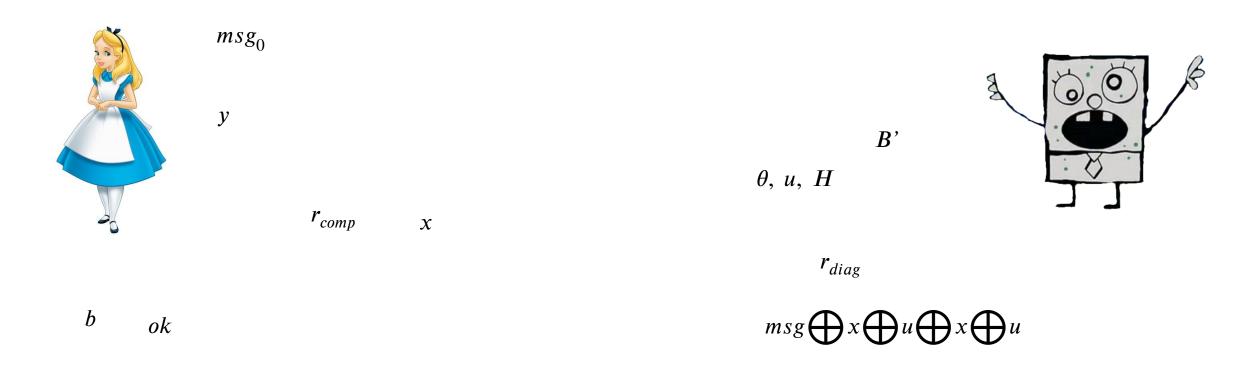


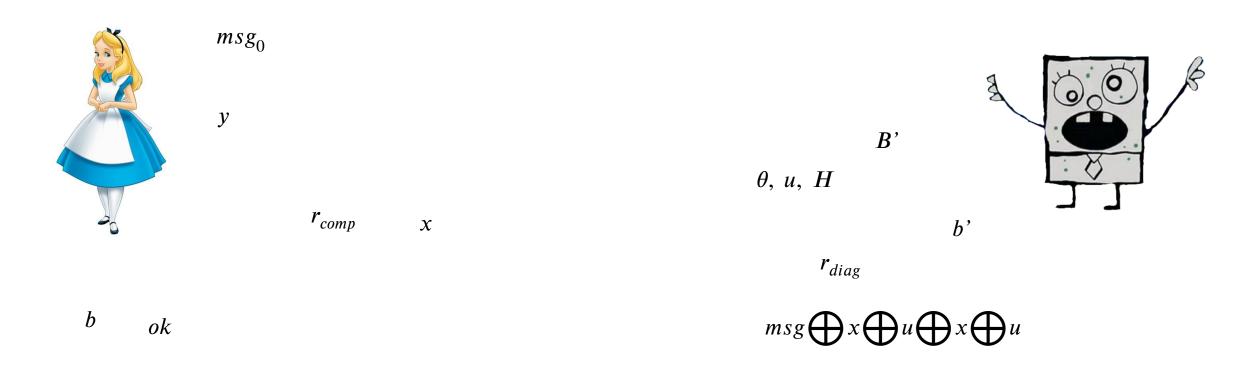






B





Certified deletion security: similarity

Certified deletion security: similarity

- Entanglement in Game 2 corresponds to Bob's measurement in Game
 - Measuring everything in the Hadamard basis in Game 1 is like fully entangling A and B in Game 2 this will give him r_{diag}
 - Measuring everything in the computational basis in Game 1 is like fully entangling A and B' in Game 2, and then measuring B' in the computational basis this will give him r_{comp}

 Entanglement-based setting allows use of entropic uncertainty relations

- Entanglement-based setting allows use of entropic uncertainty relations
- We use one from work by Tomamichel (arXiv: 1203.2142)

- Entanglement-based setting allows use of entropic uncertainty relations
- We use one from work by Tomamichel (arXiv: 1203.2142)
- Here, it can be used to describe the information trade-off that Bob is making in Game 2 using smooth min- and max-entropies.

- Entanglement-based setting allows use of entropic uncertainty relations
- We use one from work by Tomamichel (arXiv: 1203.2142)
- Here, it can be used to describe the information trade-off that Bob is making in Game 2 using smooth min- and max-entropies.
- Takeaway: if the verification test is passed: the information that Bob has access to about r_{comp} is low with high probability

Privacy amplification

Privacy amplification

The hash function accomplishes the task of privacy amplification

Privacy amplification

- The hash function accomplishes the task of privacy amplification
- Formalized using the Leftover Hashing Lemma from Renner
 - Lower bound on Bob's uncertainty about r_{comp} tells us how close x is to a uniformly random string from Bob's perspective
 - Bob is blocked from getting information about msg

Protection against key leakage

- Protection against key leakage
- Protection against data retention
 - EU regulation 2016/679

- Protection against key leakage
- Protection against data retention
 - EU regulation 2016/679
- Everlasting security
 - Transform long-term computational assumption into a temporary one

- Protection against key leakage
- Protection against data retention
 - EU regulation 2016/679
- Everlasting security
 - Transform long-term computational assumption into a temporary one
- Homomorphic encryption

Thank you!