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Studying ground states
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Exactly what many quantum 
algorithms aim to do!

How feasible is this for 
general Hamiltonians?
- Complexity theory (hardness)
- Algorithms (easiness)
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Hamiltonian complexity
• Local Hamiltonian problem

• Input: a description of an 𝑛-qubit Hamiltonian 𝐻 = σ𝑖 ℎ𝑖 , where 
each term ℎ𝑖 acts on at most 𝑘 qubits

• Output: ground-state energy of 𝐻

• Kitaev’s result1,2: QMA-hard to 1/poly(𝑛) additive error

• QMA a quantum generalisation of NP: unlikely that quantum 
computers can solve this problem in general

• More recent work3: PSPACE-hard for 1/exp additive error
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1 Kitaev, Shen, Vyalyi (2002)
2 Kempe, Kitaev, Regev, arXiv:quant-ph/0406180.

3 Fefferman and Lin, arXiv:1601.01975, arXiv:1604.01384

“Precise regime”



Algorithms

• Efficient algorithms for special 
cases
• 1D + spectral gap1

• Given state with high overlap + 
spectral gap2,3 [Friday 4B]

• Heuristic algorithms have been 
developed for other cases (most 
notably, VQE4)

How do these results fit in with 
hardness?

5
4 A. Peruzzo et al., Nat. Comm. 5, 4213 (2014)

1 Landau, Vazirani, Vidick, Nat. Phys. (2015) 3 Lin and Tong, Quantum 4, 372 (2020)
2 Ge, Tura, and Cirac, J. Math. Phys. (2019)



Bridging easiness/hardness 
results

• Original hardness result is too general

• Hardness persists even for 
Hamiltonians with restrictions1-4

• qudits in 1D1

• qubits in 2D2

• Translation-invariant Hamiltonians*3

• Particular models4 (Heisenberg, Bose-
Hubbard5, etc.)

• Identify structural property
• Void generic hardness results

• Exploitable by algorithms

6
1Aharonov et al. arXiv:0705.4077

2 Oliveira and Terhal, arXiv:quant-ph/0504050

3 Gottesman and Irani, arXiv:0905.2419

4 Cubitt and Montanaro, arXiv:1311.3161

5 Childs, Gosset, and Webb, arXiv:1311.3297
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HardEasy
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Results: two ways of adding 
structure
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Structural property 1: spectral gap
• Many “interesting” Hamiltonians have a spectral gap

• Often associated with tensor networks and area laws1 (proven in 1D)

• Easiness
• Adiabatic algorithm (minimum spectral gap)

• Efficient computation of ground-state energies2 in 1D

• Hardness
• More generally, do not know if hardness results can be made to survive 

even a Ω(1/poly) spectral gap3,4,5

• Clock construction not malleable

• Our work6: initial piece of evidence that spectral gap makes problem easier 
in general
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3 González-Guillén and Cubitt, arXiv:1810.06528
4 Crosson and Bowen, arXiv:1703.10133

5 Aharonov et al., arXiv:0810.4840
6 A. D., Gorshkov, and Fefferman, arXiv:2007.11582

1 M. Hastings, J. Stat. Mech., 08024 (2007)
2 Landau, Vazirani, Vidick, Nat. Phys. (2015)



• Δ = 0 case (no promise): PSPACE-complete1

• We show: Δ = Ω(1/poly) case is PP-complete.

*: from very, very hard (PSPACE) to very hard (PP)

• Weak evidence it’s true in general
9

• Provable setting where the spectral gap affects the complexity

• Informally: compute ground-state energy of Δ-gapped 
Hamiltonian to inverse-exponential precision

Main result 1

BQPPNP

PP

PSPACE

QMA

NPPP
Result 1

The spectral gap provably makes 
the problem easier* in this setting

1 Fefferman and Lin, arXiv:1601.01975, arXiv:1604.01384



Structural property 2: classical 
description of ground state

• In condensed-matter physics, we often want nontrivial, poly-size
classical descriptions of ground states from which we can 
efficiently compute properties.
• Tensor-network descriptions

• Circuit to prepare ground state

• Do such descriptions always exist for local 
Hamiltonians?

• If yes, then QMA=QCMA

• Oracle evidence that they are different1,2

• How rich is the set of states with polynomial
circuit complexity?
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Image: ya-webdesign.com

1 Aaronson and Kuperberg, arXiv:quant-ph/0604056 2 Fefferman and Kimmel, arXiv:1510.06750 



Main result 2
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• How important is a classical description if there’s also a  1/poly 
spectral gap?

• Not important (again in regime of inverse-exponential precision)

• In particular, Δ = Ω(1/poly) + classical-description case is again 
PP-complete.

BQPPNP

PP

PSPACE

QMA

NPPP
Result 2

Promise of low circuit-complexity 
makes no difference if spectral-
gap promise is already present

1 Fefferman and Lin, arXiv:1604.01384 3 Gharibian et al., arXiv:1805.111392 Morimae and Nishimura, arXiv:1704.01514



An interesting conjecture

• A candidate explanation for Result 2

• Conjecture implies most natural Hamiltonians have short 
circuits to prepare their ground states!

• Would explain why variational algorithms seem to perform well

• Conjecture would imply QMA=QCMA in presence of spectral 
gap
• (We have proved this for the Precise- versions of these classes)
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Conjecture
Spectral gap of Ω(1/poly) implies (nonuniform) 

polynomial-size circuit to prepare low-energy state



Proof ideas
• PP upper bound

• Prepare a thermal state at low enough temperature

• Spectral gap ensures exponentially good overlap

• Feynman path integral can be computed in PP

• PP lower bound
• Modification of Aharonov et al. construction for universality of adiabatic 

quantum computing

• Small-penalty clock construction

• Small-penalty clock construction: a technique that allows one to 
use perturbation theory, keep track of eigenvalues, and lower-
bound spectral gap of the full Hamiltonian
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Outlook

• Spectral gap can make the problem easier

• Conjecture: spectral gap implies polynomial-size circuit?

• Would explain why VQE works so well in practice!

• Open questions
• Constant spectral gap

• Non-precise regime

• Connections to area-laws, tensor-network representations

Spectral gap (𝚫) Classical witness Quantum witness

Δ = 1/poly PP-complete PP-complete

Δ = 0 NPPP-complete PSPACE-complete



Poll
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Which way do you lean on the conjecture displayed here?
(a) True
(b) False
(c) Undecided
(d) Not so interesting

Please go to ter.ps/sdx and vote there

Conjecture
Spectral gap of Ω(1/poly) implies (nonuniform) 

polynomial-size circuit to prepare low-energy state

https://ter.ps/sdx




Thank you!
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Appendix
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PGQMA and PrecisePGQMA

• GQMA[𝑐, 𝑠, 𝑑1, 𝑑2]: QMA but with further promises

• Define 𝑄 = 0 ⊗𝑚Πin𝑈
∗ Πout𝑈Πin⟨0|

⊗𝑚, operator on proof register

• Eigenvalues of 𝑄 (𝜆1 ≥ 𝜆2 ≥ ⋯) are accept probabilities of a complete 
basis of proof states

• If YES, 𝜆1 ≥ 𝑐 and 𝜆2 ≤ 𝜆1 − 𝑑1

• If NO, 𝜆1 ≤ 𝑠 and 𝜆2 ≤ 𝜆1 − 𝑑2

• Polynomially gapped QMA: PGQMA = ∪𝑐−𝑠≥1/polyGQMA[𝑐, 𝑠, 1/poly, 1/poly]

• Precise variant: PrecisePGQMA = ∪𝑐−𝑠≥1/expGQMA[𝑐, 𝑠,1/poly, 1/poly]

18



QMA-hardness of Local Hamiltonian
• i.e. If one can solve LocalHamiltonian in general, one can also solve any

QMA problem

• Proof strategy: given a QMA protocol, convert it into a Hamiltonian such 
that its ground state energy encodes the answer (“reduce from QMA to 
LocalHamiltonian”)

• Feynman’s idea: construct a counter (clock), and look at the “clock 
Hamiltonian” 

𝐻 = 𝐻in +𝐻prop +𝐻out +𝐻clock

• Clock has states 0 , 1 , 2 , … |𝑇⟩ (𝑇 = poly is the size of the circuit)
19

YES: ∃ 𝜓 : Pr 1 ≥ 𝑐
NO: ∀ 𝜓 : Pr 1 ≤ 𝑠



Clock construction
• 𝐻prop = −σ𝑗𝑈𝑗 ⊗ 𝑗 𝑗 − 1 clock + h. c.

• 𝐻in = σ𝑖 |1⟩⟨1|𝑖 ⊗ |0⟩⟨0|clock + σ𝑗≠0 |𝑗⟩⟨𝑗|clock to penalise bad 
input

• 𝐻clock to penalise bad clock states

• 𝐻out = |0⟩⟨0|out ⊗ |𝑇⟩⟨𝑇|clock to penalise computations giving 
“NO” at the end of the circuit

𝐻 has low-energy states if they are valid computations and have 
high probability of being accepted at output

• YES case: ground state energy ≤
1−𝑐

𝑇+1

• NO case: ground state energy is always ≥
1−𝑠

2𝑇3
20



Small-penalty clock construction
• 𝐻prop = −σ𝑗𝑈𝑗 ⊗ 𝑗 𝑗 − 1 clock + h. c.

• 𝐻in = σ𝑖 |1⟩⟨1|𝑖 ⊗ |0⟩⟨0|clock + σ𝑗≠0 |𝑗⟩⟨𝑗|clock to penalise bad 
input

• 𝐻clock to penalise bad clock states

• 𝐻out = 𝜀|0⟩⟨0|out ⊗ |𝑇⟩⟨𝑇|clock to penalise computations giving 
“NO” at the end of the circuit

Low-energy subspace is close to that of 𝐻prop +𝐻in +𝐻clock =:𝐻0.

Ground space of 𝐻0: span{
1

𝑇+1
σ𝑖𝑈𝑖 …𝑈1𝑈0 0

⊗𝑚 |𝜙⟩|𝑖⟩ , 𝜙

arbitrary}

𝐻out is what creates the (spectral as well as promise) gaps
21



Small-penalty clock construction
• 𝐻out adds frustration and breaks degeneracies according to 

accept probabilities

• Lowest-lying eigenvalues of 𝐻 related to those of 𝑄, up to 1/poly
disturbances

• Perturbation theory/Schrieffer-Wolff to analyse low-energy states 
for 𝜀 ≪ spectral gap of 𝐻0.

• Eigenvalues given by 
𝜀

𝑇+1
1 − 𝜆𝑖 + 𝑂(𝜀2)

• 𝜆𝑖: Probability that 𝑖th eigenstate of 𝑄 is accepted at output

22



PP upper bound for PrecisePGQMA
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• “Power method”: if you take repeated powers of 𝑄, behaviour is 
dominated by largest eigenvalue

• Spectral gap controls efficacy

𝑇𝑟 𝑄𝑞 = 𝜆1
𝑞

1 +
𝜆2
𝜆1

𝑞

+⋯ ≤ 𝜆1
𝑞
+ 𝜆1

𝑞
1 −

Δ

𝜆1

𝑞

× 𝑑

• In PP, can compute trace of polynomially large powers of 𝑄
(even for exponentially large 𝑄, but other conditions exist)

• Write trace as path integral



PP lower bound for gapped Local 
Hamiltonian

24

• Use PP = PreciseBQP

• Clock Hamiltonian for regular quantum computation, i.e. without 
a witness

• Aharonov et al1. showed 1/poly spectral gap for this 
Hamiltonian (to show that adiabatic quantum computing is 
universal)

• Use modified clock Hamiltonian: estimating energy more 
precisely can decide PreciseBQP (= PP)

• Proof that modified Hamiltonian also has spectral gap largely 
the same

1Aharonov et al., arXiv:quant-ph/0405098



PP lower bound for gapped Local 
Hamiltonian with classical description
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• Use PP = PreciseBQP

• Clock Hamiltonian for regular quantum computation, i.e. without 
a witness

• Aharonov et al1. showed 1/poly spectral gap for this 
Hamiltonian (to show that adiabatic quantum computing is 
universal)

• Observation: one can classically describe a circuit to prepare a 
history state (since initial state is a classical bit-string).

• Same Hamiltonian and hence same spectral gap

1Aharonov et al., arXiv:quant-ph/0405098



Summary
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Spectral gap (𝚫) (𝜹, 𝚫)-GS-Description-LocalHamiltonian (𝜹, 𝚫)-LocalHamiltonian

𝛿 = 1/poly 𝛿 = 1/exp 𝛿 = 1/poly 𝛿 = 1/exp

Δ = 1/poly QCMA PP PGQMA PP

Δ = 1/exp QCMA NP^PP ? PSPACE

Δ = 0 QCMA NP^PP QMA PSPACE
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