

The importance of the spectral gap in estimating ground-state energies

Abhinav Deshpande

QIP, Feb 3rd, 2021

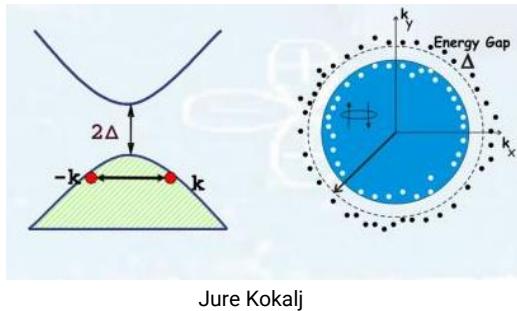
Joint work with Alexey Gorshkov and Bill Fefferman

arXiv: 2007.11582

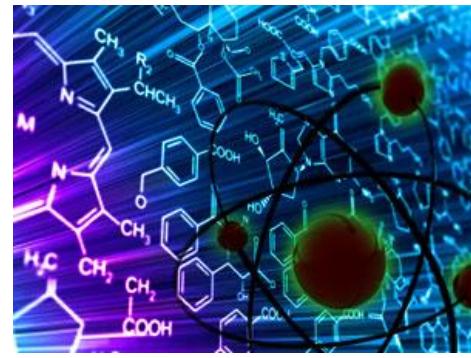
JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

Motivation

Studying ground states

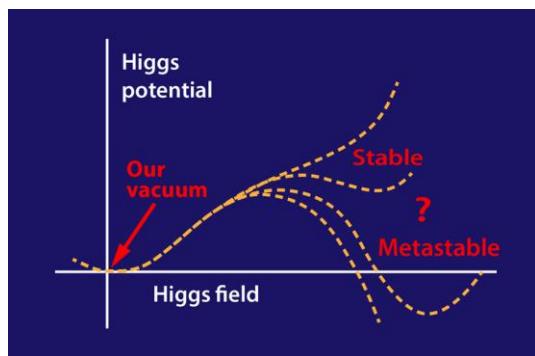


Condensed-matter physics



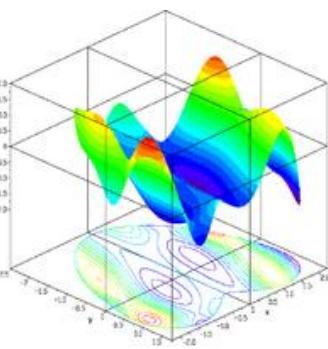
Licensed under [CC BY-SA-NC](#)

Quantum chemistry



High-energy physics

APS/Alan Stonebraker



Licensed under [CC BY-SA](#)

Optimisation

Exactly what many quantum algorithms aim to do!

How feasible is this for general Hamiltonians?

- Complexity theory (hardness)
- Algorithms (easiness)

Hamiltonian complexity

- Local Hamiltonian problem
- Input: a description of an n -qubit Hamiltonian $H = \sum_i h_i$, where each term h_i acts on at most k qubits
- Output: ground-state energy of H
- Kitaev's result^{1,2}: QMA-hard to $1/\text{poly}(n)$ additive error
- QMA a quantum generalisation of NP: unlikely that quantum computers can solve this problem in general
- More recent work³: PSPACE-hard for $1/\exp$ additive error

“Precise regime”

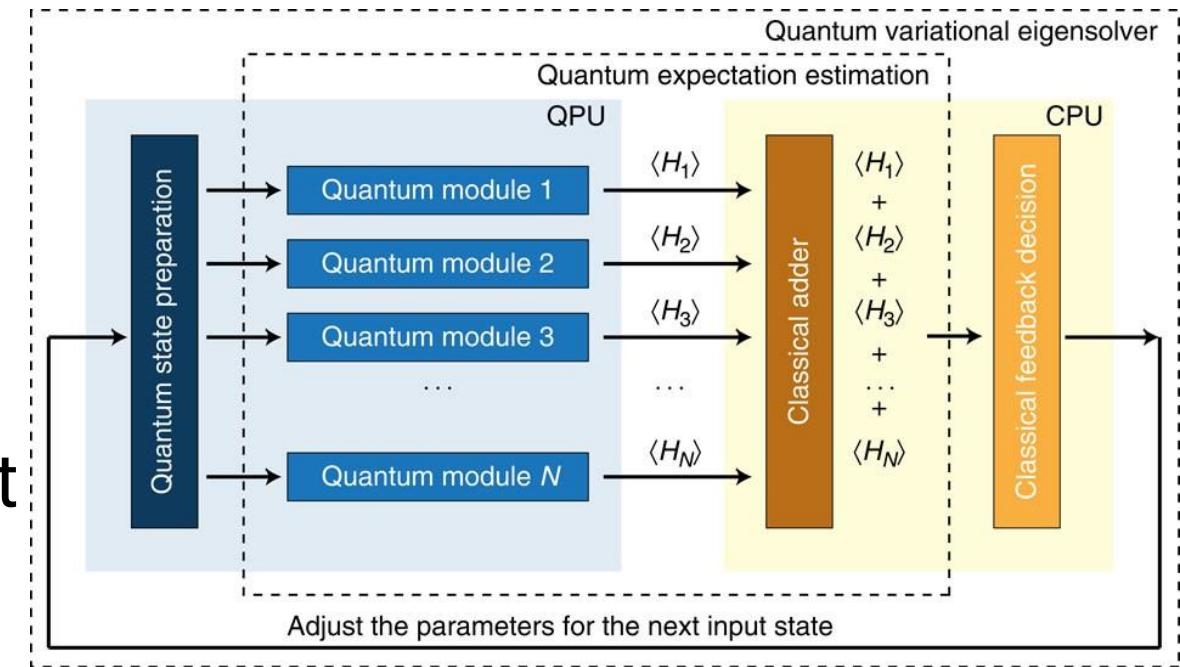
¹ Kitaev, Shen, Vyalyi (2002)

² Kempe, Kitaev, Regev, arXiv:quant-ph/0406180.

³ Fefferman and Lin, arXiv:1601.01975, arXiv:1604.01384

Algorithms

- Efficient algorithms for special cases
 - 1D + spectral gap¹
 - Given state with high overlap + spectral gap^{2,3} [Friday 4B]
- Heuristic algorithms have been developed for other cases (most notably, VQE⁴)



How do these results fit in with hardness?

¹ Landau, Vazirani, Vidick, Nat. Phys. (2015)

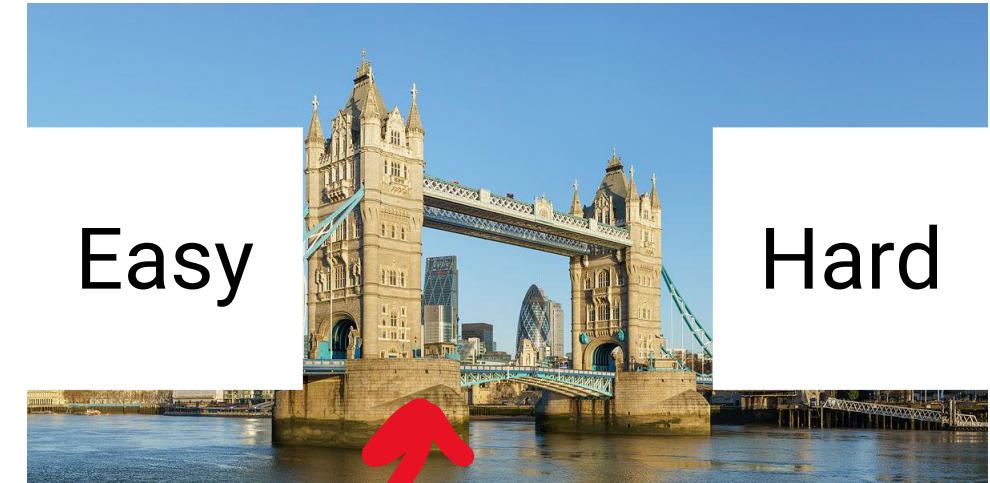
² Ge, Tura, and Cirac, J. Math. Phys. (2019)

³ Lin and Tong, Quantum 4, 372 (2020)

⁴ A. Peruzzo et al., Nat. Comm. 5, 4213 (2014)

Bridging easiness/hardness results

- Original hardness result is too general
- Hardness persists even for Hamiltonians with restrictions¹⁻⁴
 - qudits in 1D¹
 - qubits in 2D²
 - Translation-invariant Hamiltonians^{*3}
 - Particular models⁴ (Heisenberg, Bose-Hubbard⁵, etc.)
- Identify structural property
 - Void generic hardness results
 - Exploitable by algorithms



¹Aharonov et al, arXiv:0705.4077

³ Gottesman and Irani, arXiv:0905.2419

⁵ Childs, Gosset, and Webb, arXiv:1311.3297

² Oliveira and Terhal, arXiv:quant-ph/0504050

⁴ Cubitt and Montanaro, arXiv:1311.3161

Results: two ways of adding structure

Structural property 1: spectral gap

- Many “interesting” Hamiltonians have a spectral gap
- Often associated with tensor networks and area laws¹ (proven in 1D)
- Easiness
 - Adiabatic algorithm (minimum spectral gap)
 - Efficient computation of ground-state energies² in 1D
- Hardness
 - More generally, do not know if hardness results can be made to survive even a $\Omega(1/\text{poly})$ spectral gap^{3,4,5}
 - Clock construction not malleable
 - Our work⁶: initial piece of evidence that spectral gap makes problem easier in general

¹ M. Hastings, J. Stat. Mech., 08024 (2007)

² Landau, Vazirani, Vidick, Nat. Phys. (2015)

³ González-Guillén and Cubitt, arXiv:1810.06528

⁴ Crosson and Bowen, arXiv:1703.10133

⁵ Aharonov et al., arXiv:0810.4840

⁶ A. D., Gorshkov, and Fefferman, arXiv:2007.11582

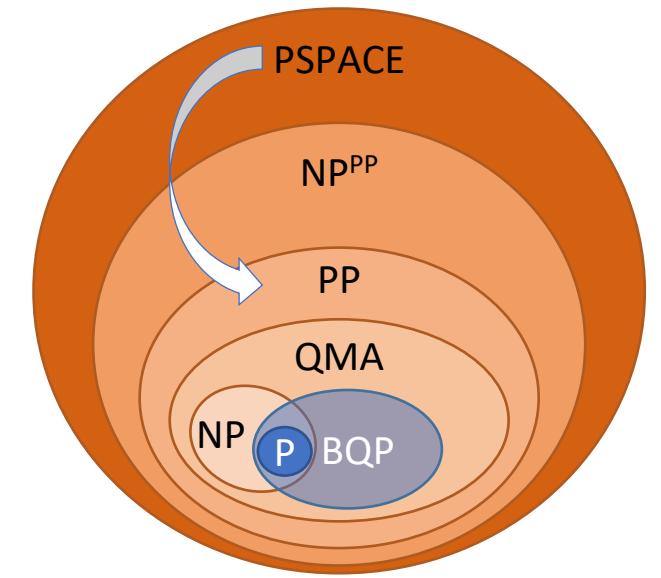
Main result 1

- Provable setting where the spectral gap affects the complexity
- Informally: compute ground-state energy of Δ -gapped Hamiltonian to inverse-exponential precision
- $\Delta = 0$ case (no promise): PSPACE-complete¹
- We show: $\Delta = \Omega(1/\text{poly})$ case is PP-complete.

Result 1
The spectral gap provably makes the problem easier* in this setting

*: from very, very hard (PSPACE) to very hard (PP)

- Weak evidence it's true in general



¹Fefferman and Lin, arXiv:1601.01975, arXiv:1604.01384

Structural property 2: classical description of ground state

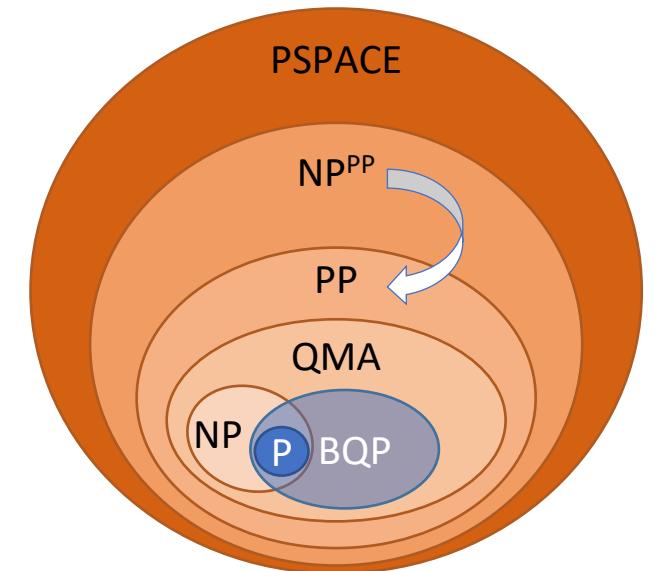
- In condensed-matter physics, we often want *nontrivial*, poly-size classical descriptions of ground states from which we can efficiently compute properties.
 - Tensor-network descriptions
 - Circuit to prepare ground state
- Do such descriptions always exist for local Hamiltonians?
- If yes, then $\text{QMA}=\text{QCMA}$
- Oracle evidence that they are different^{1,2}
- How rich is the set of states with polynomial circuit complexity?

Image: ya-webdesign.com

Main result 2

- How important is a classical description if there's also a $1/\text{poly}$ spectral gap?
- Not important (again in regime of inverse-exponential precision)
- In particular, $\Delta = \Omega(1/\text{poly})$ + classical-description case is again PP-complete.

Result 2
Promise of low circuit-complexity
makes no difference if spectral-
gap promise is already present



An interesting conjecture

- A candidate explanation for Result 2

Conjecture

Spectral gap of $\Omega(1/\text{poly})$ implies (nonuniform) polynomial-size circuit to prepare low-energy state

- Conjecture implies most natural Hamiltonians have short circuits to prepare their ground states!
- Would explain why variational algorithms seem to perform well
- Conjecture would imply QMA=QCMA in presence of spectral gap
 - (We have proved this for the Precise- versions of these classes)

Proof ideas

- PP upper bound
 - Prepare a thermal state at low enough temperature
 - Spectral gap ensures exponentially good overlap
 - Feynman path integral can be computed in PP
- PP lower bound
 - Modification of Aharonov et al. construction for universality of adiabatic quantum computing
 - Small-penalty clock construction
- Small-penalty clock construction: a technique that allows one to use perturbation theory, keep track of eigenvalues, and lower-bound spectral gap of the full Hamiltonian

Outlook

Spectral gap (Δ)	Classical witness	Quantum witness
$\Delta = 1/\text{poly}$	PP-complete	PP-complete
$\Delta = 0$	NP^{PP} -complete	PSPACE -complete

- Spectral gap can make the problem easier
- Conjecture: spectral gap implies polynomial-size circuit?
- Would explain why VQE works so well in practice!
- Open questions
 - Constant spectral gap
 - Non-precise regime
 - Connections to area-laws, tensor-network representations

Poll

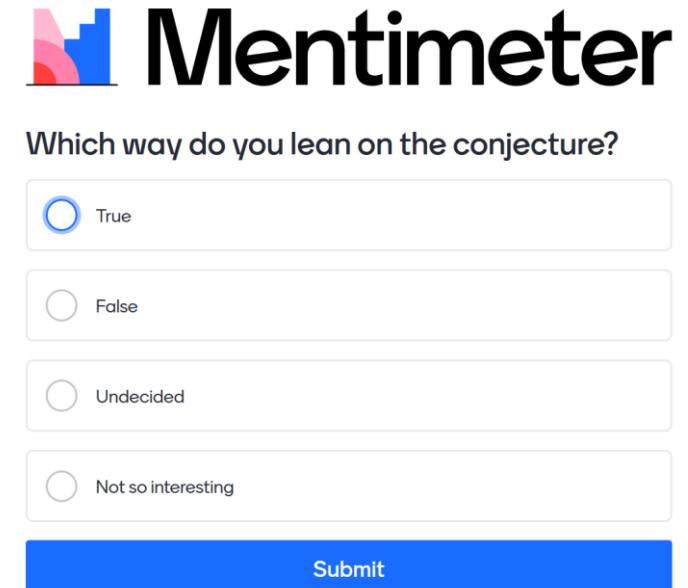
Conjecture

Spectral gap of $\Omega(1/\text{poly})$ implies (nonuniform) polynomial-size circuit to prepare low-energy state

Which way do you lean on the conjecture displayed here?

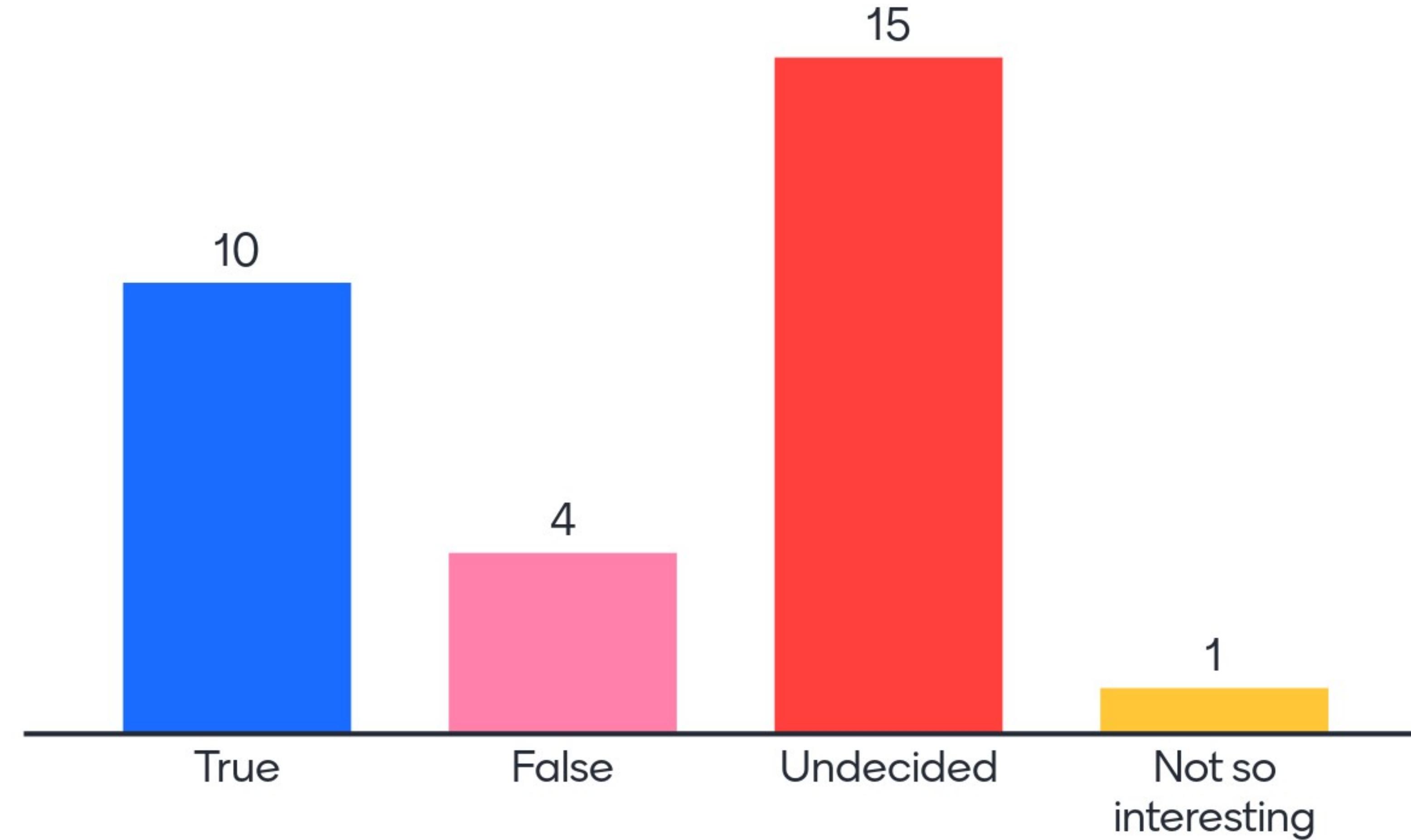
- (a) True
- (b) False
- (c) Undecided
- (d) Not so interesting

Please go to ter.ps/sdx and vote there



The image shows a Mentimeter poll interface. At the top, the word "Mentimeter" is displayed with a small bar chart icon. Below the title, the question "Which way do you lean on the conjecture?" is shown. There are four radio button options: "True" (selected), "False", "Undecided", and "Not so interesting". Each option is accompanied by a small input field. At the bottom is a large blue "Submit" button.

Which way do you lean on the conjecture?



Thank you!

Appendix

PGQMA and PrecisePGQMA

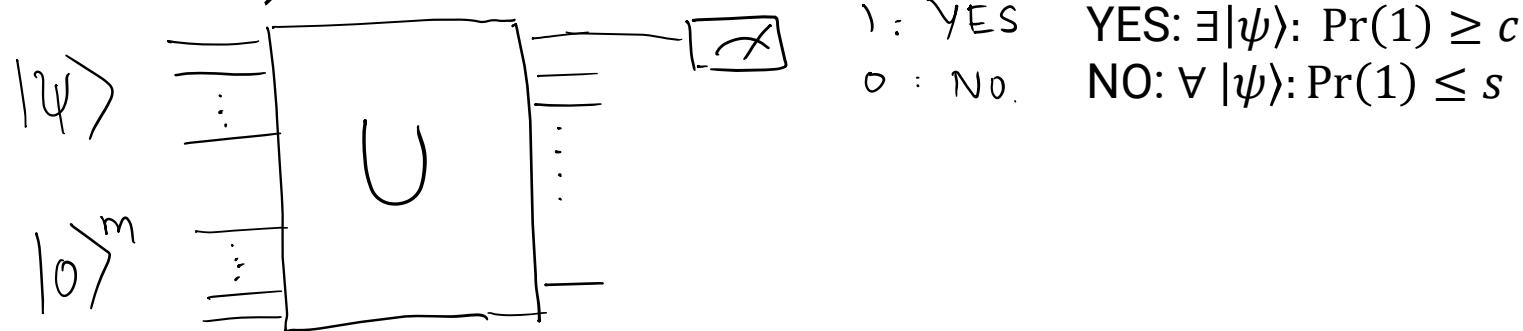
- GQMA[c, s, d_1, d_2]: QMA but with further promises
- Define $Q = |0\rangle^{\otimes m} \Pi_{\text{in}} U^* \Pi_{\text{out}} U \Pi_{\text{in}} \langle 0|^{\otimes m}$, operator on proof register
- Eigenvalues of Q ($\lambda_1 \geq \lambda_2 \geq \dots$) are accept probabilities of a complete basis of proof states

- If YES, $\lambda_1 \geq c$ and $\lambda_2 \leq \lambda_1 - d_1$
- If NO, $\lambda_1 \leq s$ and $\lambda_2 \leq \lambda_1 - d_2$
- Polynomially gapped QMA: PGQMA = $\bigcup_{c-s \geq 1/\text{poly}} \text{GQMA}[c, s, 1/\text{poly}, 1/\text{poly}]$

- Precise variant: PrecisePGQMA = $\bigcup_{c-s \geq 1/\exp} \text{GQMA}[c, s, 1/\text{poly}, 1/\text{poly}]$

QMA-hardness of Local Hamiltonian

- i.e. If one can solve LocalHamiltonian in general, one can also solve *any* QMA problem
- Proof strategy: given a QMA protocol, convert it into a Hamiltonian such that its ground state energy encodes the answer (“reduce from QMA to LocalHamiltonian”)



- Feynman’s idea: construct a counter (clock), and look at the “clock Hamiltonian”

$$H = H_{\text{in}} + H_{\text{prop}} + H_{\text{out}} + H_{\text{clock}}$$

- Clock has states $|0\rangle, |1\rangle, |2\rangle, \dots |T\rangle$ ($T = \text{poly}$ is the size of the circuit)

Clock construction

- $H_{\text{prop}} = -\sum_j U_j \otimes |j\rangle\langle j-1|_{\text{clock}} + \text{h. c.}$
- $H_{\text{in}} = \sum_i |1\rangle\langle 1|_i \otimes |0\rangle\langle 0|_{\text{clock}} + \sum_{j \neq 0} |j\rangle\langle j|_{\text{clock}}$ to penalise bad input
- H_{clock} to penalise bad clock states
- $H_{\text{out}} = |0\rangle\langle 0|_{\text{out}} \otimes |T\rangle\langle T|_{\text{clock}}$ to penalise computations giving “NO” at the end of the circuit

H has low-energy states if they are valid computations and have high probability of being accepted at output

- YES case: ground state energy $\leq \frac{1-c}{T+1}$
- NO case: ground state energy is always $\geq \frac{1-s}{2T^3}$

Small-penalty clock construction

- $H_{\text{prop}} = -\sum_j U_j \otimes |j\rangle\langle j-1|_{\text{clock}} + \text{h. c.}$
- $H_{\text{in}} = \sum_i |1\rangle\langle 1|_i \otimes |0\rangle\langle 0|_{\text{clock}} + \sum_{j \neq 0} |j\rangle\langle j|_{\text{clock}}$ to penalise bad input
- H_{clock} to penalise bad clock states
- $H_{\text{out}} = \varepsilon |0\rangle\langle 0|_{\text{out}} \otimes |T\rangle\langle T|_{\text{clock}}$ to penalise computations giving “NO” at the end of the circuit

Low-energy subspace is close to that of $H_{\text{prop}} + H_{\text{in}} + H_{\text{clock}} =: H_0$.

Ground space of H_0 : $\text{span}\{\frac{1}{\sqrt{T+1}} \sum_i U_i \dots U_1 U_0 |0\rangle^{\otimes m} |\phi\rangle |i\rangle, |\phi\rangle$
arbitrary}

H_{out} is what creates the (spectral as well as promise) gaps

Small-penalty clock construction

- H_{out} adds frustration and breaks degeneracies according to accept probabilities
- Lowest-lying eigenvalues of H related to those of Q , up to 1/poly disturbances
- Perturbation theory/Schrieffer-Wolff to analyse low-energy states for $\varepsilon \ll$ spectral gap of H_0 .
- Eigenvalues given by $\frac{\varepsilon}{T+1} (1 - \lambda_i) + O(\varepsilon^2)$
- λ_i : Probability that i th eigenstate of Q is accepted at output

PP upper bound for PrecisePGQMA

- “Power method”: if you take repeated powers of Q , behaviour is dominated by largest eigenvalue
- Spectral gap controls efficacy

$$Tr(Q^q) = \lambda_1^q \left(1 + \left(\frac{\lambda_2}{\lambda_1} \right)^q + \dots \right) \leq \lambda_1^q + \lambda_1^q \left(1 - \left(\frac{\Delta}{\lambda_1} \right)^q \right) \times d$$

- In PP, can compute trace of polynomially large powers of Q (even for exponentially large Q , but other conditions exist)
- Write trace as path integral

PP lower bound for gapped Local Hamiltonian

- Use PP = PreciseBQP
- Clock Hamiltonian for regular quantum computation, i.e. without a witness
- Aharonov et al¹. showed 1/poly spectral gap for this Hamiltonian (to show that adiabatic quantum computing is universal)
- Use modified clock Hamiltonian: estimating energy more precisely can decide PreciseBQP (= PP)
- Proof that modified Hamiltonian also has spectral gap largely the same

PP lower bound for gapped Local Hamiltonian with classical description

- Use PP = PreciseBQP
- Clock Hamiltonian for regular quantum computation, i.e. without a witness
- Aharonov et al¹. showed 1/poly spectral gap for this Hamiltonian (to show that adiabatic quantum computing is universal)
- Observation: one can classically describe a circuit to prepare a history state (since initial state is a classical bit-string).
- Same Hamiltonian and hence same spectral gap

Summary

Spectral gap (Δ)	(δ, Δ) -GS-Description-LocalHamiltonian		(δ, Δ) -LocalHamiltonian	
	$\delta = 1/\text{poly}$	$\delta = 1/\exp$	$\delta = 1/\text{poly}$	$\delta = 1/\exp$
$\Delta = 1/\text{poly}$	QCMA	PP	PGQMA	PP
$\Delta = 1/\exp$	QCMA	NP \wedge PP	?	PSPACE
$\Delta = 0$	QCMA	NP \wedge PP	QMA	PSPACE