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Abstract

Based on the recent breakthrough of Huang (2019), we show that for any total Boolean
function f,

1. deg(f) = O(dAeE(f)z): The degree of f is at most quadratic in the approximate degree of f.
This is optimal as witnessed by the OR function.

2. D(f) = O(Q(f)*): The deterministic query complexity of f is at most quartic in the
quantum query complexity of f. This matches the known separation (up to log factors)
due to Ambainis, Balodis, Belovs, Lee, Santha, and Smotrovs (2017).

We apply these results to resolve the quantum analogue of the Aanderaa—Karp—Rosenberg
conjecture. We show that if f is a nontrivial monotone graph property of an n-vertex graph
specified by its adjacency matrix, then Q(f) = Q(n), which is also optimal. We also show that
the approximate degree of any read-once formula on n variables is ©(y/n).

Last year, Huang resolved a major open problem in the analysis of Boolean functions called the
sensitivity conjecture [Hual9], which was open for nearly 30 years [NS94|. Surprisingly, Huang’s
elegant proof takes less than 2 pages—truly a “proof from the book.” Specifically, Huang showed
that for any total Boolean function, which is a function f: {0,1}" — {0, 1}, we have

deg(f) <s(f)?, (1)

where deg(f) is the real degree of f! and s(f) is the (maximum) sensitivity of f.2

In this paper, we describe some implications of Huang’s resolution of the sensitivity conjecture
to polynomial-based complexity measures of Boolean functions and quantum query complexity. Our
first observation is that Huang actually proves a stronger claim than Eq. (1), in which s(f) can be
replaced by A(f), a spectral relaxation of sensitivity.

Theorem 1. For all Boolean functions f : {0,1}" — {0,1}, we have deg(f) < A(f)2.

In short, while s(f) can be viewed as the maximum number of 1s in any row or column of
a certain Boolean matrix, A\(f) is the largest eigenvalue of that matrix, which could potentially

'The real degree of a Boolean function f : {0,1}" — {0,1} is the minimum degree of a real polynomial p over
variables 1, ..., x, such that for all z € {0,1}", p(z) = f(x).

*The sensitivity of a Boolean function f : {0,1}" — {0, 1} is defined as s(f) = max,e(o,13» [{i : f(z D es) # f(x)}],
where e; is the n-bit string with the ¢th bit set to 1 and all other bits set to 0.



be smaller. This observation has several implications because, as we show, A(f) lower bounds
many other complexity measures. One of the messages of this work is that A(f) is an interesting
complexity measure and can be used to establish relationships between other complexity measures.
We use this observation to prove two main results: Our first result is an optimal relationship
between deterministic and quantum query complexity for total functions, and our second result is
an optimal relationship between degree and approximate degree for total functions. We then apply
the first result to prove the quantum analogue of the Aanderaa—Karp—Rosenberg conjecture and
apply the second result to show that the approximate degree of any read-once formula is ©(y/n).

Deterministic vs. quantum query complexity. We know from the seminal results of Nisan
[Nis91], Nisan and Szegedy [NS94], and Beals et al. [BBCT01] that for any total Boolean function
f, the deterministic query complexity, D(f), and quantum query complexity, Q(f), satisfy®

D(f) = O(Q(f)")- (2)

Grover’s algorithm [Gro96] shows that for the OR function, a quadratic separation between D(f)
and Q(f) is possible. This was the best known quantum speedup for total functions until Ambainis
et al. [ABBT17] constructed a total function f with

D(f) = 2(Q(f)"). (3)
We show that the quartic separation (up to log factors) in Eq. (3) is actually the best possible.
Theorem 2. For all Boolean functions f : {0,1}" — {0, 1}, we have D(f) = O(Q(f)*).
We deduce Theorem 2 as a corollary of a new tight relationship between deg(f) and Q(f):
Theorem 3. For all Boolean functions f : {0,1}™ — {0,1}, we have deg(f) = O(Q(f)?).

Observe that Theorem 3 is tight for the OR function on n variables, whose degree is n and
whose quantum query complexity is ©(y/n) [Gro96, BBBV97]. Prior to this work, the best relation
between deg(f) and Q(f) was a sixth power relation, deg(f) = O(Q(f)%), which follows from Eq. (2).

Our proof of Theorem 3 relies on the restatement of Huang’s result (Theorem 1), showing that
deg(f) < A(f)?. We then show that the measure \(f) lower bounds the spectral adversary method
in quantum query complexity [BSS03], which is equivalent to the original quantum adversary method
of Ambainis [Amb02], which lower bounds Q(f).

We now show how Theorem 2 straightforwardly follows from Theorem 3 using two previously
known connections between complexity measures of Boolean functions.

Proof of Theorem 2 assuming Theorem 3. Midrijanis [Mid04] showed that for all total functions f,

D(f) < bs(f)deg(f), (4)

where bs(f) is the block sensitivity of f.

Theorem 3 shows that deg(f) = O(Q(f)?). Combining the relationship between block sensitivity
and approximate degree from [NS94] with the results of [BBCT01], we get that bs(f) = O(Q(f)?).
(This can also be proved directly using the lower bound method in [BBBV97].)

Combining these three inequalities yields D(f) = O(Q(f)*) for all total Boolean functions f. W

3This means that for total functions, quantum query algorithms can only outperform classical query algorithms by
a polynomial factor. On the other hand, for partial functions, which are defined on a subset of {0,1}", exponential
and even larger speedups are possible.



Degree vs. approximate degree. We also know from the works of Nisan and Szegedy [NS94]
and Beals et al. [BBCT01], that for any total Boolean function f,

deg(f) = O(deg(f)°), (5)

where d?:é( f) is the approximate degree of f, the minimum degree of a real polynomial p that for
all x € {0,1}", satisfies |p(z) — f(x)| < 1/3. We show that this relationship can be also significantly
improved.

Theorem 4. For all Boolean functions f :{0,1}"™ — {0,1}, we have deg(f) = 0(88&(f)2)

This relationship is optimal since it is saturated by the OR function on n bits that has degree n
and approximate degree ©(y/n) [NS94].

Theorem 4 follows by combining deg(f) < A(f)? (Theorem 1) with A(f) = O(E%(f)) This is
the most technically challenging part of this submission, and we provide two proofs of this claim.
The first proof is arguably simpler, but it is not self contained and uses Sherstov’s composition
theorem for approximate degree [Shel3b], and has a large constant hidden in the big Oh. The
second proof does not rely on this result and achieves the optimal constant inside the big Oh.

Observe that because approximate degree lower bounds quantum query complexity, Theorem 4
also implies Theorem 3 (and hence Theorem 2). Although Theorem 3 is a consequence of this, our
proof of Theorem 3 is much simpler and additionally proves that A(f) lower bounds the original
adversary method [Amb02], which is not implied by the proof of Theorem 4.

Applications. We use Theorem 3 to prove the quantum analogue of the famous Aanderaa—Karp—
Rosenberg conjecture. Briefly, this conjecture is about the minimum possible query complexity of a
nontrivial monotone graph property, for graphs specified by their adjacency matrices.

There are variants of the conjecture for different models of computation. For example, the ran-
domized variant of the Aanderaa—Karp—Rosenberg conjecture, attributed to Karp [SW86, Conjecture
1.2] and Yao [Yao77, Remark (2)], states that for all nontrivial monotone graph properties f, we have
R(f) = Q(n2). Following a long line of work, the current best lower bound is R(f) = Q(n/3log!/? n)
due to Chakrabarti and Khot [CKO01].

The quantum version of the conjecture was raised by Buhrman, Cleve, de Wolf, and Za-
lka [BCAWZ99], who observed that the best we could hope for is Q(f) = Q(n), because the
nontrivial monotone graph property “contains at least one edge” can be decided with O(n) queries
using Grover’s algorithm. Buhrman et al. [BCAWZ99] also showed that all nontrivial monotone
graph properties satisfy Q(f) = Q(y/n). The current best bound is Q(f) = Q(n2/31og"® n), which
is credited to Yao in [MSS07]. We resolve this conjecture by showing an optimal Q(n) lower bound.

Theorem 5. Let f : {0, 1}(3) — {0,1} be a nontrivial monotone graph property. Then Q(f) = Q(n).

Theorem 5 follows by combining Theorem 3 with a known quadratic lower bound on the degree
of monotone graph properties.

We then use Theorem 4 to completely characterize the approximate degree of any read-once
formula. It is known that the quantum query complexity of any read-once formula on n variables
is ©(y/n) [BS04, Reill]. It has long been conjectured that the approximate degree of any read-
once formula is also ©(y/n). It has taken much effort to establish this even for special cases.
For example, the conjecture was proved for the simple depth-two read-once formula AND o OR in
2013 [BT13, Shel3a]. This result was later extended to all constant-depth balanced read-once
formulas [BT15] and then to constant-depth unbalanced read-once formulas [BBGK18]. We resolve
this question for all read-once formulas.

Theorem 6. For any read-once formula f : {0,1}™ — {0,1}, we have d?é(f) =0(y/n).
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