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Summary of Results

Definition (Boolean Functions)

f : {0, 1}n → {0, 1} (total).

Our Results

I deg(f ) = O(Q(f )2)
I D(f ) = O(Q(f )4)
I The quantum query complexity of any non-trival monotone

graph property on n vertices is Ω(n).

I deg(f ) = O(d̃eg(f )2)
I The approximate degree of any read-once formula on n

variables is Ω(
√
n).
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Boolean Functions

Definition (Boolean Functions)

f : {0, 1}n → {0, 1} (total).

Examples

I DICTATOR(x1, . . . , xn) = x1

I OR(x1, . . . , xn) =

{
0 if x1 = x2 = · · · = xn = 0

1 otherwise

I XOR(x1, . . . , xn) =

{
0 if x1 + x2 + · · ·+ xn is even

1 otherwise



Deterministic Query Complexity

Definition (Deterministic Query Complexity, D(f ))

The deterministic query complexity of a Boolean function f , is the
number of deterministic queries required to compute f on any
input. (Compute f (x) by reading as few bits as possible.)

DICTATOR OR XOR

D(f ) 1 n n



Quantum Query Complexity

Definition (Quantum Query Complexity, Q(f ))

The quantum query complexity of a Boolean function f , is the
number of quantum queries required to compute f on any input
with error probability at most 1/3.

DICTATOR OR XOR

D(f ) 1 n n
Q(f ) 1 Θ(

√
n) (Grover, BBBV) n/2



Determinstic vs Quantum Query Complexity

Theorem (Nisan 1991, Nisan Szegedy 1994, Beals Buhrman
Cleve Mosca de Wolf 2001)

For all total Boolean functions f , D(f ) = O(Q(f )6)

Theorem (This work)

For all total Boolean functions f , D(f ) = O(Q(f )4).

Remark

This relationship is tight, due to (Ambainis Balodis Belovs Lee
Santha Smotrovs 2017).



Degree

Theorem

Every Boolean function f can be represented exactly by a
polynomial, that is,

f (x1, . . . , xn) =
∑

S⊆[n]

aS
∏

i∈S
xi

Definition (Degree, deg(f ))

The degree of a Boolean function f , is the degree of its polynomial
representation.

Theorem

deg(f ) ≤ D(f )



Degree of OR

OR(x1, . . . , xn) =

{
0 if x1 = x2 = · · · = xn = 0

1 otherwise

= 1−
n∏

i=1

(1− xi ).

I deg(OR) = n



Spectral Sensitivity

Definition (Spectral Sensitivity, λ(f ))

The spectral sensitivity of a Boolean function f is the largest
eigenvalue of the matrix Af ∈ R{0,1}n×{0,1}n defined by

Af (x , y) =

{
1 if x and y differ in 1 coordinate and f (x) 6= f (y)

0 otherwise.

Example (Spectral Sensitivity of OR)

AOR =




0 1 1 . . . 1
1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0




λ(OR) =
√
n
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Proof Overview

Theorem

For all total Boolean functions f , deg(f ) = O(Q(f )2).

Proof.

1. deg(f ) ≤ λ(f )2 (Huang 2019)

2. λ(f ) ≤ SA(f ) (This work)

3. SA(f ) = O(Q(f )) (Barnum Saks Szegedy 2003)



Deterministic vs Quantum Query Complexity

Corollary

D(f ) = O(Q(f )4)

Proof.

1. D(f ) ≤ bs(f ) deg(f ) (Midrijanis 2004)

2. bs(f ) = O(Q(f )2) (Beals Buhrman Cleve Mosca de Wolf
2001)

3. deg(f ) = O(Q(f )2) (This work)



Aanderaa–Karp–Rosenberg Conjecture

Corollary

The quantum query complexity of any non-trival monotone graph
property (e.g. Connectivity, k-Clique) on n vertices is Ω(n), which
is tight.

Proof.

1. The degree of any non-trival monotone graph property is
Ω(n2) (Dodis Khanna 1999)

2. deg(f ) = O(Q(f )2) (This work)

Remark

The best lower bound for the randomized query complexity of any
non-trival monotone graph property on n vertices is Ω(n4/3)
(conjectured Ω(n2)).



Approximate Degree

Definition

A polynomial p ε-approximates a Boolean function f if
|f (x)− p(x)| ≤ ε and p(x) ∈ [0, 1] for all x ∈ {0, 1}n.

Definition (Approximate Degree, d̃eg(f ))

The approximate degree of a Boolean function f , is the smallest
degree of a polynomial that 1/3-approximates f .

Theorem (Beals Buhrman Cleve Mosca de Wolf 2001)

d̃eg(f ) = O(Q(f ))



Degree and Approximate Degree of OR

OR(x1, . . . , xn) =

{
0 if x1 = x2 = · · · = xn = 0

1 otherwise

= 1−
n∏

i=1

(1− xi ).

OR(x1, x2) ≈ 1

3
+

1

3
x1 +

1

3
x2

I deg(OR) = n

I d̃eg(OR) = Θ(
√
n) (Chebyshev polynomials)



Degree vs Approximate Degree

Theorem (Nisan Szegedy 1994, Beals Buhrman Cleve Mosca
de Wolf 2001)

For all total Boolean functions f , deg(f ) = O(d̃eg(f )6)

Theorem (This work)

For all total Boolean functions f , deg(f ) = O(d̃eg(f )2).

Remark

This relationship is tight, as deg(OR) = n and d̃eg(OR) = Θ(
√
n).



Read-once Formulas

Definition

A read-once formula is a formula
of AND, OR, and NOT gates in
which each variable appears ex-
actly once.

∨

∧ ∧∧

x2 x5x4 x1 x8x7 x3 x9x6

Corollary

The approximate degree of any read-once formula on n variables is
Ω(
√
n), which is tight.

Proof.

The degree of any read-once formula on n variables is n.



Proof Overview

Theorem

For all total Boolean functions f , deg(f ) = O(d̃eg(f )2).

Proof.

1. deg(f ) ≤ λ(f )2 (Huang 2019)

2. λ(f ) = O(d̃eg(f )) (This work)



Proof Overview

Theorem

λ(f ) = O(d̃eg(f ))

Proof Idea

1. 2Af (x , y) = 1− (2f (x)− 1)(2f (y)− 1) when x and y differ
in 1 coordinate.

2. 2Af = AH − diag(2f − 1)AH diag(2f − 1) where AH is the
adjacency matrix of the hypercube.

3. If f is a parity function on d inputs, AH and
diag(2f − 1)AH diag(2f − 1) have the same eigenvectors with
eigenvalues that differ by at most 2d .

4. Generalize to all polynomials, and approximations of
polynomials.



Take-home and Open Problems

Take-home

I D(f ) = O(Q(f )4) for total functions f .

I deg(f ) = O(d̃eg(f )2) = O(Q(f )2).

I Spectral sensitivity is a useful complexity measure.

Open Problems

I What is the relationship between R(f ), randomized query
complexity, and Q(f )?
(There exist f such that R(f ) = Ω(Q(f )3) due to Bansal
Sinha 2021, Sherstov Storozhenko Wu 2021)

I What is the relationship between bs(f ), block sensitivty, and
λ(f )?
(i.e., can bs(f ) = O(λ(f )4) due to Huang be improved?)



Open Problems

Table 1: Best known separations between complexity measures

D R0 R C RC bs s λ QE deg Q d̃eg

D 2, 2
[ABB+17]

2, 3
[ABB+17]

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABB+17]

2, 3
[ABB+17]

2, 3
[GPW18]

4, 4
[ABB+17]

4, 4
[ABB+17]

R0 1, 1
⊕

2, 2
[ABB+17]

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABB+17]

2, 3
[ABB+17]

2, 3
[GJPW18]

3, 4
[ABB+17]

4, 4
[ABB+17]

R 1, 1
⊕

1, 1
⊕

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABB+17]

3
2 , 3

[ABB+17]

2, 3
[GJPW18]

3, 4
[BS20]
[SSW20]

4, 4
[ABB+17]

C 1, 1
⊕

1, 1
⊕

1, 2
⊕

2, 2
[GSS13]

2, 2
[GSS13]

2.22, 5
[BHT17]

2.44, 6
[BHT17]

1.15, 3
[Amb13]

1.63, 3
[NW95]

2, 4
∧

2, 4
∧

RC 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

3
2 , 2

[GSS13]

2, 4
[Rub95]

2, 4
∧

1.15, 2
[Amb13]

1.63, 2
[NW95]

2, 2
∧

2, 2
∧

bs 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 4
[Rub95]

2, 4
∧

1.15, 2
[Amb13]

1.63, 2
[NW95]

2, 2
∧

2, 2
∧

s 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 2
∧

1.15, 2
[Amb13]

1.63, 2
[NW95]

2, 2
∧

2, 2
∧

λ 1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

1, 1
⊕

QE 1, 1
⊕

1.33, 2
∧̄-tree

1.33, 3
∧̄-tree

2, 2
∧ ◦ ∨

2, 3
∧ ◦ ∨

2, 3
∧ ◦ ∨

3, 6
[BHT17]

4, 6
[ABK16]

2, 3
[ABK16]

2, 4
∧

4, 4
[ABK16]

deg 1, 1
⊕

1.33, 2
∧̄-tree

1.33, 2
∧̄-tree

2, 2
∧ ◦ ∨

2, 2
∧ ◦ ∨

2, 2
∧ ◦ ∨

2, 2
∧ ◦ ∨

2, 2
∧

1, 1
⊕

2, 2
∧

2, 2
∧

Q 1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 2
[ABK16]

2, 3
[ABK16]

2, 3
[ABK16]

3, 6
[BHT17]

4, 6
[ABK16]

1, 1
⊕

2, 3
[ABK16]

4, 4
[ABK16]

d̃eg 1, 1
⊕

1, 1
⊕

1, 1
⊕

2, 2
[BT17]

2, 2
[BT17]

2, 2
[BT17]

2, 2
[BT17]

2, 2
[BT17]

1, 1
⊕

1, 1
⊕

1, 1
⊕

1


